Evaluation and characterization of commercial fungi and proteolytic bacterial consortium applied for rice straw degradation

dc.contributor.advisorUribe Velez, Daniel
dc.contributor.advisorOtero Jiménez, Vanessaspa
dc.contributor.authorNovoa Montenegro, Nicolás Albertospa
dc.contributor.researchgroupMicrobiologia agricolaspa
dc.date.accessioned2025-02-25T13:08:26Z
dc.date.available2025-02-25T13:08:26Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos residuos agrícolas representan una fuente primaria de nutrientes esenciales para el suelo. La descomposición de este material en el campo introduce una serie de compuestos y nutrientes que mejoran la fertilidad del suelo. La paja de arroz (RS) es un residuo importante en el contexto arrocero, y su aplicación como mantillo durante los períodos de barbecho es una práctica habitual. La incorporación de consorcios microbianos capaces de degradar la paja de arroz (RS) durante las operaciones de cobertura del suelo con paja de arroz tiene el potencial de mejorar el ciclaje y la movilización de nutrientes. Se realizaron experimentos in vitro para dilucidar las interacciones entre varios consorcios. Sobre la base de estos resultados, se seleccionó un consorcio (consorcio comercial de Trichoderma más la cepa bacteriana IBUN 2717) para seguir investigando. Los resultados demostraron la eficacia del consorcio seleccionado como degradador e indicaron la presencia de relaciones antagónicas mínimas entre sus miembros fúngicos y bacterianos. A continuación, el consorcio mencionado se aplicó en un entorno de campo con el objetivo de facilitar la degradación de la paja de arroz. Se recogieron y evaluaron muestras de suelo y de paja de arroz para determinar sus parámetros fisicoquímicos y sus actividades enzimáticas. La incorporación de un consorcio microbiano seleccionado y una estrategia de gestión de la relación carbono-nitrógeno fueron cruciales para el secuestro de carbono en el suelo y las actividades enzimáticas asociadas a los cambios de nitrógeno y carbono debidos a su aplicación. Este estudio seleccionó y caracterizó un consorcio microbiano eficiente para la degradación de la paja del arroz y la mejora de la calidad del suelo en condiciones de campo. Además, describió y caracterizó las interacciones microbianas en el contexto de la degradación de la RS (Texto tomado de la fuente).spa
dc.description.abstractAgricultural waste represents a primary source of essential soil nutrients. The decomposition of this material in the field introduces a number of compounds and nutrients that enhance soil fertility. Rice straw (RS) is a substantial residue, and its application as a mulch during fallow periods is a common practice. The incorporation of microbial consortia capable of degrading rice straw (RS) during mulching operations has the potential to enhance nutrient cycling and mobilization. In vitro experiments were conducted to elucidate the interactions between a number of consortia. Based on these results, a consortium (commercial Trichoderma consortia plus bacterial strain IBUN 2717) was selected for further investigation. The results demonstrated the efficacy of the selected consortium and indicated the presence of minimal antagonistic relationships between its fungal and bacterial members. The aforementioned consortium was then applied in a field setting with the objective of facilitating the degradation of rice straw. Soil and rice straw (RS) samples were collected and evaluated to determine their physicochemical parameters and enzymatic activities. The incorporation of a selected microbial consortium and a carbon-nitrogen ratio management strategy was crucial for soil carbon sequestration and enzymatic activities associated with nitrogen and carbon changes due to its application. This study selected and characterized an efficient microbial consortium for the degradation of rice straw and the improvement of soil quality under field conditions. Additionally, it described and characterized the microbial interactions within the context of RS degradation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestria en ciencias microbiologiaspa
dc.description.researchareaMicrobiologia agricolaspa
dc.format.extent162 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87547
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbrantes, J. R. C. B., Prats, S. A., Keizer, J. J., & de Lima, J. L. M. P. (2018). Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil and Tillage Research, 180, 238-249. https://doi.org/10.1016/j.still.2018.03.015spa
dc.relation.referencesAlef, K., & Nannipieri, P. (Eds.). (1995). 7—Enzyme activities. En Methods in Applied Soil Microbiology and Biochemistry (pp. 311-373). Academic Press. https://doi.org/10.1016/B978-012513840-6/50022-7 Alkalinity—IRRI Rice Knowledge Bank. (s. f.). Recuperado 12 de diciembre de 2023, de http://www.knowledgebank.irri.org/training/fact-sheets/nutrient-management/deficiencspa
dc.relation.referencesAllen B, Drake M, Harris N, Sullivan T. Using KBase to Assemble and Annotate Prokaryotic Genomes. Current Protocols in Microbiology. 2017;46: 1E.13.1-1E.13.18. doi:10.1002/cpmc.37spa
dc.relation.referencesAllen, J., Pascual, K. S., Romasanta, R. R., Van Trinh, M., Van Thach, T., Van Hung, N., Sander, B. O., & Chivenge, P. (2020). Rice Straw Management Effects on Greenhouse Gas Emissions and Mitigation Options. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 145-159). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_9spa
dc.relation.referencesAnith, K. N., Nysanth, N. S., & Natarajan, C. (2021). Novel and rapid agar plate methods for in vitro assessment of bacterial biocontrol isolates’ antagonism against multiple fungal phytopathogens. Letters in Applied Microbiology, 73(2), 229-236. https://doi.org/10.1111/lam.13495spa
dc.relation.referencesAquino, D., Del Barrio, A., Trach, N. X., Hai, N. T., Khang, D. N., Toan, N. T., & Van Hung, N. (2020). Rice Straw-Based Fodder for Ruminants. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 111-129). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_7spa
dc.relation.referencesArai, H., Hosen, Y., Pham Hong, V. N., Thi, N. T., Huu, C. N., & Inubushi, K. (2015). Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. Soil Science and Plant Nutrition, 61(4), 719-735. https://doi.org/10.1080/00380768.2015.1041862spa
dc.relation.referencesArkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018;36: 566. doi: 10.1038/nbt.4163spa
dc.relation.referencesAziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., … Zagnitko, O. (2008). The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics, 9, 75. https://doi.org/10.1186/1471-2164-9-75spa
dc.relation.referencesBalingbing, C., Van Hung, N., Nghi, N. T., Van Hieu, N., Roxas, A. P., Tado, C. J., Bautista, E., & Gummert, M. (2020). Mechanized Collection and Densification of Rice Straw. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 15-32). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_2spa
dc.relation.referencesBalser, T. C., Wixon, D., Moritz, L. K., & Lipps, L. (2010). The Microbiology of Natural Soils. En G. R. Dixon & E. L. Tilston (Eds.), Soil Microbiology and Sustainable Crop Production (pp. 27-57). Springer Netherlands. https://doi.org/10.1007/978-90-481-9479-7_2spa
dc.relation.referencesBaweja, M., Tiwari, R., Singh, P. K., Nain, L., & Shukla, P. (2016). An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive. Frontiers in Microbiology, 7, 1195. https://doi.org/10.3389/fmicb.2016.01195spa
dc.relation.referencesBlanco Zapata, D. C. (2012). Evaluación de bacilos aerobios formadores de endosporas (bafes) para el control biológico de Rhizoctonia solani Kuhn en el cultivo de papa criolla (solanum tuberosum Grupo Phureja). https://repositorio.unal.edu.co/handle/unal/20223spa
dc.relation.referencesBoer, W. de, Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). Living in a fungal world: Impact of fungi on soil bacterial niche development⋆. FEMS Microbiology Reviews, 29(4), 795-811. https://doi.org/10.1016/j.femsre.2004.11.005spa
dc.relation.referencesBonifer, K. S., Wen, X., Hasim, S., Phillips, E. K., Dunlap, R. N., Gann, E. R., DeBruyn, J. M., & Reynolds, T. B. (2019). Bacillus pumilus B12 Degrades Polylactic Acid and Degradation Is Affected by Changing Nutrient Conditions. Frontiers in Microbiology, 10, 2548. https://doi.org/10.3389/fmicb.2019.02548spa
dc.relation.referencesBossolani, J. W., Leite, M. F. A., Momesso, L., ten Berge, H., Bloem, J., & Kuramae, E. E. (2023). Nitrogen input on organic amendments alters the pattern of soil–microbe-plant co-dependence. Science of The Total Environment, 890, 164347. https://doi.org/10.1016/j.scitotenv.2023.164347spa
dc.relation.referencesBunna, S., Sinath, P., Makara, O., Mitchell, J., & Fukai, S. (2011). Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils. Field Crops Research, 124(3), 295-301. https://doi.org/10.1016/j.fcr.2011.06.015.spa
dc.relation.referencesCao, S., Chen, F., Dai, Y., Zhao, Z., Jiang, B., Pan, Y., Gao, Z. (2024). Characterization and evaluation of Bacillus altitudinis BS-4 as a novel potential biocontrol agent against Phytophthora sojae in soybean. Tropical Plant Pathology, 49(3), 384-399. https://doi.org/10.1007/s40858-024-00637-5spa
dc.relation.referencesCastilla, L., Vanegas, J., Rodriguez, Y. y Uribe, D. 2012. Evaluación de la fertilidad de suelos de las zonas arroceras del Tolima y Meta. En Ecología de microorganismos Rizosféricos asociados a cultivos de arroz de Tolima y Meta. Uribe, D y Melgarejo, L (eds).Universidad Nacional de Colombia. Bogotá, D.C. pp. 33-51.spa
dc.relation.referencesChakraborti, J., Mondal, S., & Palit, D. (2021). Food and Nutrition Security in India Throµg h Agroecology: New Opportunities in Agriculture System. En M. K. Jhariya, A. Banerjee, R. S. Meena, S. Kumar, & A. Raj (Eds.), Sustainable Intensification for Agroecosystem Services and Management (pp. 37-68). Springer. https://doi.org/10.1007/978-981-16-3207-5_2spa
dc.relation.referencesChandra, R. (2021). Soil Biodiversity and Community Composition for Ecosystem Services. En A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances (pp. 69-84). Springer. https://doi.org/10.1007/978-981-16-0917-6_5spa
dc.relation.referencesChang, J., Sun, Y., Tian, L., Ji, L., Luo, S., Nasir, F., Kuramae, E. E., & Tian, C. (2021). The Structure of Rhizosphere Fungal Communities of Wild and Domesticated Rice: Changes in Diversity and Co-occurrence Patterns. Frontiers in Microbiology, 12, 45. https://doi.org/10.3389/fmicb.2021.610823spa
dc.relation.referencesChen, L., Heng, J., Qin, S., & Bian, K. (2018). A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PloS One, 13(6), e0198560. https://doi.org/10.1371/journal.pone.0198560.spa
dc.relation.referencesChen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H., Kuzyakov, Y., Ge, T., Wu, J., & Su, Y. (2020). Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agriculture, Ecosystems & Environment, 292, 106816. https://doi.org/10.1016/j.agee.2020.106816.spa
dc.relation.referencesChappell, E., Easher, T. H., Saurette, D., & Biswas, A. (2021). Soil Organic Carbon: Past, Present, and Future Research. En A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances (pp. 35-47). Springer. https://doi.org/10.1007/978-981-16-0917-6_3spa
dc.relation.referencesChivenge, P., Rubianes, F., Van Chin, D., Van Thach, T., Khang, V. T., Romasanta, R. R., Van Hung, N., & Van Trinh, M. (2020). Rice Straw Incorporation Influences Nutrient Cycling and Soil Organic Matter. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 131-144). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_8spa
dc.relation.referencesCondron, L., Stark, C., O’Callaghan, M., Clinton, P., & Huang, Z. (2010). The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter. En G. R. Dixon & E. L. Tilston (Eds.), Soil Microbiology and Sustainable Crop Production (pp. 81-118). Springer Netherlands. https://doi.org/10.1007/978-90-481-9479-7_4spa
dc.relation.referencesConrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60(4), 609-640.spa
dc.relation.referencesContreras Medina, E. J. (2016). Potencial degradador de bacterias aerobias formadoras de endosporas sobre el tamo de arroz y determinación de su actividad antagonista contra rhizoctonia solani. http://alejandria.ufps.edu.co/descargas/tesis/1610108.pdf. http://repositorio.ufps.edu.co/handle/ufps/3495spa
dc.relation.referencesCruz-Ramírez, C. A., Gómez-Ramírez, L. F., & Uribe-Vélez, D. (2017). Manejo biológico del tamo de arroz bajo diferentes relaciones C:N empleando co-inóculos microbianos y promotores de crecimiento vegetal. Revista Colombiana de Biotecnología, 19(2), 47-62. https://doi.org/10.15446/rev.colomb.biote.v19n2.70168spa
dc.relation.referencesCucu, M. A., Said-Pullicino, D., Maurino, V., Bonifacio, E., Romani, M., & Celi, L. (2014). Influence of redox conditions and rice straw incorporation on nitrogen availability in fertilized paddy soils. Biology and Fertility of Soils, 50(5), 755-764. https://doi.org/10.1007/s00374-013-0893-4spa
dc.relation.referencesDantroliya, S., Joshi, C., Mohapatra, A., Shah, D., Bhargava, P., Bhanushali, S., Pandit, R., Joshi, C., & Joshi, M. (2022). Creating wealth from waste: An approach for converting organic waste in to value-added products using microbial consortia. Environmental Technology & Innovation, 25, 102092. https://doi.org/10.1016/j.eti.2021.102092spa
dc.relation.referencesDevêvre, O. C., & Horwáth, W. R. (2000). Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology and Biochemistry, 32(11-12), 1773-1785. https://doi.org/10.1016/S0038-0717(00)00096-1spa
dc.relation.referencesDeng, S., Li, J., Du, Z., Wu, Z., Yang, J., Cai, H., Wu, G., Xu, F., Huang, Y., Wang, S., & Wang, C. (2022). Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. Plant, Cell & Environment, 45(1), 191-205. https://doi.org/10.1111/pce.14191spa
dc.relation.referencesDeveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O. A., Mieszkin, S., Millet, L. J., Vajna, B., Junier, P., Bonfante, P., Krom, B. P., Olsson, S., van Elsas, J. D., & Wick, L. Y. (2018). Bacterial–fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiology Reviews, 42(3), 335-352. https://doi.org/10.1093/femsre/fuy008spa
dc.relation.referencesEbadzadsahrai, G., Higgins Keppler, E. A., Soby, S. D., & Bean, H. D. (2020). Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds. Frontiers in Microbiology, 11.spa
dc.relation.referencesFAO publications catalogue 2023. (2023). FAO. https://doi.org/10.4060/cc7285enspa
dc.relation.referencesEncuesta nacional de arroz mecanizado (ENAM). (s. f.). Recuperado 30 de enero de 2023, de https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado Fedearroz. Recuperado 18 de mayo de 2021, de http://www.fedearroz.com.co/new/mapa.phpspa
dc.relation.referencesFrazer, J. (s. f.). Life Is a Highway: Watch Bacteria Riding the Fungal Expressway [Video]. Scientific American Blog Network. Recuperado 5 de mayo de 2021, de https://blogs.scientificamerican.com/artful-amoeba/life-is-a-highway-watch-bacteria-riding-the-fungal-expressway-video/spa
dc.relation.referencesGadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157(5), 1554-1558. https://doi.org/10.1016/j.envpol.2009.01.004spa
dc.relation.referencesGe, Y., Chen, C., Xu, Z., Eldridge, S. M., Chan, K. Y., He, Y., & He, J.-Z. (2010). Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques. Environmental Science and Pollution Research, 17(3), 807-815. https://doi.org/10.1007/s11356-009-0185-6spa
dc.relation.referencesGillings, M. R., & Hagan-Lawson, E. L. (2014). The cost of living in the Anthropocene. Earth Perspectives, 1(1), 2. https://doi.org/10.1186/2194-6434-1-2spa
dc.relation.referencesGhosh, A., Biswas, D. R., Das, S., Das, T. K., Bhattacharyya, R., Alam, K., & Rahman, M. M. (2023). Rice straw incorporation mobilizes inorganic soil phosphorus by reorienting hysteresis effect under varying hydrothermal regimes in a humid tropical Inceptisol. Soil and Tillage Research, 225, 105531. https://doi.org/10.1016/j.still.2022.105531.spa
dc.relation.referencesGómez Ramírez, L. F. (2015). Desarrollo y aplicación de una estrategia de biofertilización en plantas de arroz (oryza sativa l.) Empleando microorganismos promotores de crecimiento vegetal. https://repositorio.unal.edu.co/handle/unal/56688spa
dc.relation.referencesGomez-Ramirez, L. F., & Uribe-Velez, D. (2021). Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Current Microbiology, 78(3), 932-943. https://doi.org/10.1007/s00284-021-02354-7.spa
dc.relation.referencesGopalakrishnan, S., Humayun, P., Kiran, B. K., Kannan, I. G. K., Vidya, M. S., Deepthi, K., & Rupela, O. (2011). Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World Journal of Microbiology & Biotechnology, 27(6), 1313-1321. https://doi.org/10.1007/s11274-010-0579-0spa
dc.relation.referencesGruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), Article 7176. https://doi.org/10.1038/nature06592spa
dc.relation.referencesGu, J., & Yang, J. (2022). Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment, 1(1), 7-14. https://doi.org/10.1016/j.crope.2022.03.003spa
dc.relation.referencesGuo, P., Yang, F., Ye, S., Li, J., Shen, F., & Ding, Y. (s. f.). Characterization of lipopeptide produced by Bacillus altitudinis Q7 and inhibitory effect on Alternaria alternata. https://doi.org/10.1002/jobm.202200530spa
dc.relation.referencesHussain, M. Z., Hamilton, S. K., Robertson, G. P., & Basso, B. (2021). Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-99877-7spa
dc.relation.referencesIbrahim, M., Cao, C.-G., Zhan, M., Li, C.-F., & Iqbal, J. (2015). Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. International Journal of Environmental Science and Technology, 12(1), 263-274. https://doi.org/10.1007/s13762-013-0429-3spa
dc.relation.referencesIrfan, M., Aziz, T., Maqsood, M. A., Bilal, H. M., Siddique, K. H. M., & Xu, M. (2020). Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation patterns. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-61147-3spa
dc.relation.referencesIshii, T., & Ishikawa, R. (2018). Domestication Loci Controlling Panicle Shape, Seed Shattering, and Seed Awning. En T. Sasaki & M. Ashikari (Eds.), Rice Genomics, Genetics and Breeding (pp. 207-221). Springer. https://doi.org/10.1007/978-981-10-7461-5_12spa
dc.relation.referencesIzquierdo-García, L. F., González-Almario, A., Cotes, A. M., & Moreno-Velandia, C. A. (2020). Trichoderma virens Gl006 and Bacillus velezensis Bs006: A compatible interaction controlling Fusarium wilt of cape gooseberry. Scientific Reports, 10(1), 6857. https://doi.org/10.1038/s41598-020-63689-yspa
dc.relation.referencesJunier, P., Cailleau, G., Palmieri, I., Vallotton, C., Trautschold, O. C., Junier, T., Paul, C., Bregnard, D., Palmieri, F., Estoppey, A., Buffi, M., Lohberger, A., Robinson, A., Kelliher, J. M., Davenport, K., House, G. L., Morales, D., Gallegos-Graves, L. V., Dichosa, A. E. K., … Chain, P. S. G. (2021). Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi. FEMS Microbiology Ecology, 97(fiab003). https://doi.org/10.1093/femsec/fiab003spa
dc.relation.referencesKadam, K. L., Forrest, L. H., & Jacobson, W. A. (2000). Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 18(5), 369-389. https://doi.org/10.1016/S0961-9534(00)00005-2spa
dc.relation.referencesKhumairoh, U., Lantinga, E. A., Handriyadi, I., Schulte, R. P. O., & Groot, J. C. J. (2021). Agro-ecological mechanisms for weed and pest suppression and nutrient recycling in high yielding complex rice systems. Agriculture, Ecosystems & Environment, 313, 107385. https://doi.org/10.1016/j.agee.2021.107385spa
dc.relation.referencesKiesewalter, H. T., Lozano-Andrade, C. N., Strube, M. L., & Kovács, Á. T. (2020). Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry, 16, 2983-2998. https://doi.org/10.3762/bjoc.16.248spa
dc.relation.referencesKumar, A., Nayak, A. K., Sharma, S., Senapati, A., Mitra, D., Mohanty, B., Prabhukarthikeyan, S. R., Sabarinathan, K. G., Mani, I., Garhwal, R. S., Thankappan, S., Sagarika, M. S., de los SANTOS-VILLALOBOS, S., & Panneerselvam, P. (2022). Recycling of rice straw—a sustainable approach for ensuring environmental quality and economic security: A review. Pedosphere. https://doi.org/10.1016/j.pedsph.2022.06.036spa
dc.relation.referencesLi, L., He, L., Li, Y., Wang, Y., Ashraf, U., Hamoud, Y. A., Hu, X., Wu, T., Tang, X., & Pan, S. (2023). Deep fertilization combined with straw incorporation improved rice lodging resistance and soil properties of paddy fields. European Journal of Agronomy, 142, 126659. https://doi.org/10.1016/j.eja.2022.126659spa
dc.relation.referencesLi, Y., Wu, J., Shen, J., Liu, S., Wang, C., Chen, D., Huang, T., & Zhang, J. (2016). Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields. Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep35266spa
dc.relation.referencesLin, F., Li, X., Jia, N., Feng, F., Huang, H., Huang, J., Fan, S., Ciais, P., & Song, X.-P. (2023). The impact of Russia-Ukraine conflict on global food security. Global Food Security, 36, 100661. https://doi.org/10.1016/j.gfs.2022.100661spa
dc.relation.referencesLiu, G., Ma, J., Yang, Y., Yu, H., Zhang, G., & Xu, H. (2019). Effects of Straw Incorporation Methods on Nitrous Oxide and Methane Emissions from a Wheat-Rice Rotation System. Pedosphere, 29(2), 204-215. https://doi.org/10.1016/S1002-0160(17)60410-7spa
dc.relation.referencesLiu, B., Dai, Y., Cheng, X., He, X., Bei, Q., Wang, Y., Zhou, Y., Zhu, B., Zhang, K., Tian, X., Duan, M., Xie, X., & Wang, L. (2023). Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Frontiers in Microbiology, 14. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1217966spa
dc.relation.referencesLopez, B., & Santiago, D. (2020). Efecto de la incorporación de tamo de arroz degradado por Talaromyces sayulitensis HC1 y el enriquecimiento con nitrógeno sobre la germinación y el crecimiento de arroz y tomate. http://repository.javeriana.edu.co/handle/10554/50295spa
dc.relation.referencesLupini, S., Nguyen, H. N., Morales, D., House, G. L., Paudel, S., Chain, P. S. G., & Rodrigues, D. F. (2023). Diversity of fungal microbiome obtained from plant rhizoplanes. Science of The Total Environment, 892, 164506. https://doi.org/10.1016/j.scitotenv.2023.164506spa
dc.relation.referencesLv, R., Wang, Y., Wang, Q., Wen, Y., & Shang, Q. (2023). Rice straw biochar alters inorganic nitrogen availability in paddy soil mainly throµg h abiotic processes. Journal of Soils and Sediments, 23(2), 568-581. https://doi.org/10.1007/s11368-022-03355-0spa
dc.relation.referencesMariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Critical Reviews in Food Science and Nutrition, 48(2), 177-184. https://doi.org/10.1080/10408390701279749spa
dc.relation.referencesMehra, P., Pandey, B. K., & Giri, J. (2017). Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnology Journal, 15(8), 1054-1067. https://doi.org/10.1111/pbi.12699spa
dc.relation.referencesMilled rice production in Latin America by country 2021. (s. f.). Statista. Recuperado 30 de enero de 2023, dettps://www.statista.com/statistics/1002939/latin-america-milled-rice-production-volume-country/spa
dc.relation.referencesMiranda Martinez, Y. L. (2022). Caracterización de los metabolitos secundarios producidos por la cepa IBUN- 2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/83355spa
dc.relation.referencesMoiseenko, T. I. (2017). Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. Geochemistry International, 55(10), 841-860. https://doi.org/10.1134/S0016702917100081spa
dc.relation.referencesNannipieri, P., Trasar-Cepeda, C., & Dick, R. P. (2018). Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 54(1), 11-19. https://doi.org/10.1007/s00374-017-1245-6.spa
dc.relation.referencesNeu, S., Schaller, J., & Dudel, E. G. (2017). Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Scientific Reports, 7, 40829. https://doi.org/10.1038/srep40829spa
dc.relation.referencesNgan, N. V. C., Chan, F. M. S., Nam, T. S., Van Thao, H., Maguyon-Detras, M. C., Hung, D. V., Cuong, D. M., & Van Hung, N. (2020). Anaerobic Digestion of Rice Straw for Biogas Production. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 65-92). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_5spa
dc.relation.referencesNghi, N. T., Romasanta, R. R., Van Hieu, N., Vinh, L. Q., Du, N. X., Ngan, N. V. C., Chivenge, P., & Van Hung, N. (2020). Rice Straw-Based Composting. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 33-41). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_3spa
dc.relation.referencesNishigaki, T., Tsujimoto, Y., Rinasoa, S., Rakotoson, T., Andriamananjara, A., & Razafimbelo, T. (2019). Phosphorus uptake of rice plants is affected by phosphorus forms and physicochemical properties of tropical weathered soils. Plant and Soil, 435(1-2), 27-38. https://doi.org/10.1007/s11104-018-3869-1spa
dc.relation.referencesNóia Júnior, R. de S., Ewert, F., Webber, H., Martre, P., Hertel, T. W., van Ittersum, M. K., & Asseng, S. (2022). Needed global wheat stock and crop management in response to the war in Ukraine. Global Food Security, 35, 100662. https://doi.org/10.1016/j.gfs.2022.100662spa
dc.relation.referencesNujthet, Y., Kaewkrajay, C., Kijjoa, A., & Dethoup, T. (2024). Biocontrol efficacy of antagonists Trichoderma and Bacillus against post-harvest diseases in mangos. European Journal of Plant Pathology, 168(2), 315-327. https://doi.org/10.1007/s10658-023-02757-1spa
dc.relation.referencesOlabi, A. G., Abdelkareem, M. A., Al-Murisi, M., Shehata, N., Alami, A. H., Radwan, A., Wilberforce, T., Chae, K.-J., & Sayed, E. T. (2023). Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 277, 116594. https://doi.org/10.1016/j.enconman.2022.116594spa
dc.relation.referencesOtero Jiménez, V. (2021). Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz [Trabajo de grado - Doctorado, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/81291spa
dc.relation.referencesOtero-Jiménez, V., Carreño-Carreño, J. del P., Barreto-Hernandez, E., van Elsas, J. D., & Uribe-Vélez, D. (2021). Impact of rice straw management strategies on rice rhizosphere microbiomes. Applied Soil Ecology, 167, 104036. https://doi.org/10.1016/j.apsoil.2021.104036spa
dc.relation.referencesPanchalingam, H., Powell, D., Adra, C., Foster, K., Tomlin, R., Quigley, B. L., Nyari, S., Hayes, R. A., Shapcott, A., & Kurtböke, D. İ. (2022). Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. Journal of Fungi, 8(10), 1105. https://doi.org/10.3390/jof8101105spa
dc.relation.referencesPast 4—The Past of the Future—Natural History Museum. (s. f.). Recuperado 2 de enero de 2024, de https://www.nhm.uio.no/english/research/resources/past/index.htmlspa
dc.relation.referencesPathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1, 26. https://doi.org/10.1186/2193-1801-1-26spa
dc.relation.referencesPaul, P. L. C., Bell, R. W., Barrett-Lennard, E. G., & Kabir, E. (2021). Impact of Rice Straw Mulch on Soil Physical Properties, Sunflower Root Distribution and Yield in a Salt-Affected Clay-Textured Soil. Agriculture, 11(3), Article 3. https://doi.org/10.3390/agriculture11030264spa
dc.relation.referencesPedraza Herrera, L. A. (2016). Evaluación de Bacterias Aerobias Formadoras de Endospora (BAFEs) de suelos rizosféricos, como agentes de control biológico de Burkholderia glumae. https://repositorio.unal.edu.co/handle/unal/56696spa
dc.relation.referencesPedraza-Herrera, L. A., Lopez- Carrascal, C. E., & Uribe Vélez, D. (2020). Mecanismos de acción de Bacillus spp. (Bacillaceae) contra microorganismos fitopatógenos durante su interacción con plantas. Acta Biológica Colombiana, 25(1), 112-125.spa
dc.relation.referencesPedraza, LA., Barreto, E., Uribe-Vélez D. In presentation. Genomic comparison of the IBUN 2755 strain with Bacillus amyloliquefaciens/B. velezensis strains reveals novel interactions of B. velezensis with plants. Functional & Integrative Genomicsspa
dc.relation.referencesPedraza-Zapata, D. C., Sánchez-Garibello, A. M., Quevedo-Hidalgo, B., Moreno-Sarmiento, N., & Gutiérrez-Rojas, I. (2017). Promising cellulolytic fungi isolates for rice straw degradation. Journal of Microbiology, 55(9), 711-719. https://doi.org/10.1007/s12275-017-6282-1spa
dc.relation.referencesR Core Team (2021). R: A language and environment for statistical ## computing. R Foundation for Statistical Computing, Vienna, Austria. ## URL https://www.R-project.org/.spa
dc.relation.referencesReavis, C. W., Suvočarev, K., Reba, M. L., & Runkle, B. R. K. (2021). Impacts of alternate wetting and drying and delayed flood rice irrigation on growing season evapotranspiration. Journal of Hydrology, 596, 126080. https://doi.org/10.1016/j.jhydrol.2021.126080spa
dc.relation.referencesRice straw management—Rice Straw. (s. f.). Recuperado 8 de junio de 2021, de http://ricestraw.irri.org/rice-straw-managementspa
dc.relation.referencesRezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., & Hosseini, H. M. (2022). The effect of silicon fertilization and phosphate-solubilizing bacteria on chemical forms of silicon and phosphorus uptake by wheat plant in a calcareous soil. Plant and Soil, 477(1), 259-280. https://doi.org/10.1007/s11104-021-05274-4spa
dc.relation.referencesSamal, P., Babu, S. C., Mondal, B., & Mishra, S. N. (2022). The global rice agriculture towards 2050: An inter-continental perspective. Outlook on Agriculture, 51(2), 164-172. https://doi.org/10.1177/00307270221088338spa
dc.relation.referencesRosado, M. J., Marques, G., Rencoret, J., Gutiérrez, A., & del Río, J. C. (2022). Chemical Composition of Lipophilic Compounds From Rice (Oryza sativa) Straw: An Attractive Feedstock for Obtaining Valuable Phytochemicals. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.868319spa
dc.relation.referencesSadeghi, S. H. R., Gholami, L., Sharifi, E., Khaledi Darvishan, A., & Homaee, M. (2015). Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth, 6(1), 1-8. https://doi.org/10.5194/se-6-1-2015spa
dc.relation.referencesS.A.S, M. (2024.). Área, producción y rendimiento. Fedearroz. Recuperado 5 de febrero de 2024, de https://fedearroz.com.co/es/fondo-nacional-del-arroz/investigaciones-economicas/estadisticas-arroceras/area-produccion-y-rendimiento/spa
dc.relation.referencesS.A.S, M. (2023) - b. Costos. Fedearroz. Recuperado 5 de febrero de 2024, de https://fedearroz.com.co/es/fondo-nacional-del-arroz/investigaciones-economicas/estadisticas-arroceras/costos/spa
dc.relation.referencesShahane, A. A., Shivay, Y. S., & Prasanna, R. (2023). Wheat (Triticum aestivum) Establishment Methods and Microbial Inoculation for Improving Soil Microbial Properties and Crop Productivity. Agricultural Research, 12(1), 1-11. https://doi.org/10.1007/s40003-022-00630-xspa
dc.relation.referencesSheng, R. T.-C., Huang, Y.-H., Chan, P.-C., Bhat, S. A., Wu, Y.-C., & Huang, N.-F. (2022). Rice Growth Stage Classification via RF-Based Machine Learning and Image Processing. Agriculture, 12(12), Article 12. https://doi.org/10.3390/agriculture12122137spa
dc.relation.referencesShourie, A., & Singh, A. (2021). Impact of Climate Change on Soil Fertility. En D. K. Choudhary, A. Mishra, & A. Varma (Eds.), Climate Change and the Microbiome: Sustenance of the Ecosphere (pp. 49-62). Springer International Publishing.spa
dc.relation.referencesShukla, S. K., Shee, S., Maity, S. K., Solomon, S., Awasthi, S. K., Gaur, A., Pathak, A. D., & Jaiswal, V. P. (2017). Soil Carbon Sequestration and Crop Yields in Rice–Wheat and Sµg arcane–Ratoon–Wheat Cropping Systems Throµg h Crop Residue Management and Inoculation of Trichoderma viride in Subtropical India. Sµg ar Tech, 19(4), 347-358. https://doi.org/10.1007/s12355-016-0470-xspa
dc.relation.referencesSivaram, A. K., Abinandan, S., Chen, C., Venkateswartlu, K., & Megharaj, M. (2023). Chapter Two - Microbial inoculant carriers: Soil health improvement and moisture retention in sustainable agriculture. En D. L. Sparks (Ed.), Advances in Agronomy (Vol. 180, pp. 35-91). Academic Press. https://doi.org/10.1016/bs.agron.2023.03.001spa
dc.relation.referencesSu, P., Wicaksono, W. A., Li, C., Michl, K., Berg, G., Wang, D., Xiao, Y., Huang, R., Kang, H., Zhang, D., Cernava, T., & Liu, Y. (2022). Recovery of metagenome-assembled genomes from the phyllosphere of 110 rice genotypes. Scientific Data, 9(1), Article 1. https://doi.org/10.1038/s41597-022-01320-7spa
dc.relation.referencesThuc, L. V., Corales, R. G., Sajor, J. T., Truc, N. T. T., Hien, P. H., Ramos, R. E., Bautista, E., Tado, C. J. M., Ompad, V., Son, D. T., & Van Hung, N. (2020). Rice-Straw Mushroom Production. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 93-109). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_6spa
dc.relation.referencesTian, M., Zheng, Y., Sun, X., & Zheng, H. (2022). A research on promoting chemical fertiliser reduction for sustainable agriculture purposes: Evolutionary game analyses involving ‘government, farmers, and consumers’. Ecological Indicators, 144, 109433. https://doi.org/10.1016/j.ecolind.2022.109433spa
dc.relation.referencesToan, N.-S., Hanh, D. H., Dong Phuong, N. T., Thuy, P. T., Dong, P. D., Gia, N. T., Tam, L. D., Thu, T. T. N., Thanh, D. T. V., Khoo, K. S., & Show, P. L. (2022). Effects of burning rice straw residue on-field on soil organic carbon pools: Environment-friendly approach from a conventional rice paddy in central Viet Nam. Chemosphere, 294, 133596. https://doi.org/10.1016/j.chemosphere.2022.133596spa
dc.relation.referencesTong, S., Bambrick, H., Beggs, P. J., Chen, L., Hu, Y., Ma, W., Steffen, W., & Tan, J. (2022). Current and future threats to human health in the Anthropocene. Environment International, 158, 106892. https://doi.org/10.1016/j.envint.2021.106892spa
dc.relation.referencesTrivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H., Anderson, I. C., Jeffries, T. C., Zhou, J., & Singh, B. K. (2016). Microbial regulation of the soil carbon cycle: Evidence from gene–enzyme relationships. The ISME Journal, 10(11), 2593-2604. https://doi.org/10.1038/ismej.2016.65spa
dc.relation.referencesTuo, Y., Tan, H., Liang, J., Li, J., Xiang, P., Yang, Q., & He, X. (2024). Optimization of water and fertilizer management of Panax pseudoginseng based on changes in soil microbial biomass carbon and nitrogen and enzyme activities. Applied Soil Ecology, 196, 105282. https://doi.org/10.1016/j.apsoil.2024.105282spa
dc.relation.referencesVargas, G., León, N., & Hernández, Y. (2019). Agricultural Socio-economic Effects in Colombia due to Degradation of Soils. En R. S. Meena, S. Kumar, J. S. Bohra, & M. L. Jat (Eds.), Sustainable Management of Soil and Environment (pp. 289-337). Springer. https://doi.org/10.1007/978-981-13-8832-3_9spa
dc.relation.referencesWAD | World Atlas of Desertification. Recuperado 15 de abril de 2021, de https://wad.jrc.ec.europa.eu/spa
dc.relation.referencesWarmink, J. A., Nazir, R., Corten, B., & van Elsas, J. D. (2011). Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae. Soil Biology and Biochemistry, 43(4), 760-765. https://doi.org/10.1016/j.soilbio.2010.12.009spa
dc.relation.referencesWei, K., Wang, J., Yuan, C., Tang, J., & Zhu, B. (2024). Relationships of bacterial-feeding nematodes, phosphatase-producing bacteria, phosphatase activity and their effects on soil organic phosphorus mineralization under straw return. Applied Soil Ecology, 196, 105280. https://doi.org/10.1016/j.apsoil.2024.105280spa
dc.relation.referencesWattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL.spa
dc.relation.referencesNucleic Acids Res. 2017 Jan 4;45(D1):D535-D542. doi: 10.1093/nar/gkw1017. PMID: 27899627; PMCID: PMC5210524.spa
dc.relation.referencesZhao, X., Zhou, J., Tian, R., & Liu, Y. (2022). Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology, 13, 922450. https://doi.org/10.3389/fmicb.2022.922450spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.ddc633.18spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.lembABONO ORGANICOspa
dc.subject.lembFarm manureeng
dc.subject.lembCASCARILLA DE ARROZspa
dc.subject.lembRice hullseng
dc.subject.lembCONVERSION DE RESIDUOS DE ARROZspa
dc.subject.lembRice waste - Recyclingeng
dc.subject.lembFERTILIDAD DEL SUELO-EXPERIMENTOS DE CAMPOspa
dc.subject.lembSoil fertility - Field experimentseng
dc.subject.lembTECNICAS DE CULTIVO (BIOLOGIA)spa
dc.subject.lembCulture techniques(Biology)eng
dc.subject.lembPlant-microbe relationsships -- Genetic aspectseng
dc.subject.lembRELACIONES PLANTA-MICROBIO-ASPECTOS GENETICOSspa
dc.subject.proposalDegradationeng
dc.subject.proposalEnzymeseng
dc.subject.proposalMicrobial consortiaeng
dc.subject.proposalBiogeochemical cycleseng
dc.subject.proposalRice straweng
dc.subject.proposalDegradaciónspa
dc.subject.proposalEnzimasspa
dc.subject.proposalConsorcios microbianosspa
dc.subject.proposalCiclos biogeoquímicosspa
dc.subject.proposalTamo de arrozspa
dc.titleEvaluation and characterization of commercial fungi and proteolytic bacterial consortium applied for rice straw degradationeng
dc.title.translatedEvaluación y caracterización de consorcios hongos comerciales y bacterias proteolíticas aplicadas a la degradación del tamo de arrozspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016057048.2024.pdf
Tamaño:
21.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: