Evaluation and characterization of commercial fungi and proteolytic bacterial consortium applied for rice straw degradation
dc.contributor.advisor | Uribe Velez, Daniel | |
dc.contributor.advisor | Otero Jiménez, Vanessa | spa |
dc.contributor.author | Novoa Montenegro, Nicolás Alberto | spa |
dc.contributor.researchgroup | Microbiologia agricola | spa |
dc.date.accessioned | 2025-02-25T13:08:26Z | |
dc.date.available | 2025-02-25T13:08:26Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Los residuos agrícolas representan una fuente primaria de nutrientes esenciales para el suelo. La descomposición de este material en el campo introduce una serie de compuestos y nutrientes que mejoran la fertilidad del suelo. La paja de arroz (RS) es un residuo importante en el contexto arrocero, y su aplicación como mantillo durante los períodos de barbecho es una práctica habitual. La incorporación de consorcios microbianos capaces de degradar la paja de arroz (RS) durante las operaciones de cobertura del suelo con paja de arroz tiene el potencial de mejorar el ciclaje y la movilización de nutrientes. Se realizaron experimentos in vitro para dilucidar las interacciones entre varios consorcios. Sobre la base de estos resultados, se seleccionó un consorcio (consorcio comercial de Trichoderma más la cepa bacteriana IBUN 2717) para seguir investigando. Los resultados demostraron la eficacia del consorcio seleccionado como degradador e indicaron la presencia de relaciones antagónicas mínimas entre sus miembros fúngicos y bacterianos. A continuación, el consorcio mencionado se aplicó en un entorno de campo con el objetivo de facilitar la degradación de la paja de arroz. Se recogieron y evaluaron muestras de suelo y de paja de arroz para determinar sus parámetros fisicoquímicos y sus actividades enzimáticas. La incorporación de un consorcio microbiano seleccionado y una estrategia de gestión de la relación carbono-nitrógeno fueron cruciales para el secuestro de carbono en el suelo y las actividades enzimáticas asociadas a los cambios de nitrógeno y carbono debidos a su aplicación. Este estudio seleccionó y caracterizó un consorcio microbiano eficiente para la degradación de la paja del arroz y la mejora de la calidad del suelo en condiciones de campo. Además, describió y caracterizó las interacciones microbianas en el contexto de la degradación de la RS (Texto tomado de la fuente). | spa |
dc.description.abstract | Agricultural waste represents a primary source of essential soil nutrients. The decomposition of this material in the field introduces a number of compounds and nutrients that enhance soil fertility. Rice straw (RS) is a substantial residue, and its application as a mulch during fallow periods is a common practice. The incorporation of microbial consortia capable of degrading rice straw (RS) during mulching operations has the potential to enhance nutrient cycling and mobilization. In vitro experiments were conducted to elucidate the interactions between a number of consortia. Based on these results, a consortium (commercial Trichoderma consortia plus bacterial strain IBUN 2717) was selected for further investigation. The results demonstrated the efficacy of the selected consortium and indicated the presence of minimal antagonistic relationships between its fungal and bacterial members. The aforementioned consortium was then applied in a field setting with the objective of facilitating the degradation of rice straw. Soil and rice straw (RS) samples were collected and evaluated to determine their physicochemical parameters and enzymatic activities. The incorporation of a selected microbial consortium and a carbon-nitrogen ratio management strategy was crucial for soil carbon sequestration and enzymatic activities associated with nitrogen and carbon changes due to its application. This study selected and characterized an efficient microbial consortium for the degradation of rice straw and the improvement of soil quality under field conditions. Additionally, it described and characterized the microbial interactions within the context of RS degradation. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestria en ciencias microbiologia | spa |
dc.description.researcharea | Microbiologia agricola | spa |
dc.format.extent | 162 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87547 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Abrantes, J. R. C. B., Prats, S. A., Keizer, J. J., & de Lima, J. L. M. P. (2018). Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil and Tillage Research, 180, 238-249. https://doi.org/10.1016/j.still.2018.03.015 | spa |
dc.relation.references | Alef, K., & Nannipieri, P. (Eds.). (1995). 7—Enzyme activities. En Methods in Applied Soil Microbiology and Biochemistry (pp. 311-373). Academic Press. https://doi.org/10.1016/B978-012513840-6/50022-7 Alkalinity—IRRI Rice Knowledge Bank. (s. f.). Recuperado 12 de diciembre de 2023, de http://www.knowledgebank.irri.org/training/fact-sheets/nutrient-management/deficienc | spa |
dc.relation.references | Allen B, Drake M, Harris N, Sullivan T. Using KBase to Assemble and Annotate Prokaryotic Genomes. Current Protocols in Microbiology. 2017;46: 1E.13.1-1E.13.18. doi:10.1002/cpmc.37 | spa |
dc.relation.references | Allen, J., Pascual, K. S., Romasanta, R. R., Van Trinh, M., Van Thach, T., Van Hung, N., Sander, B. O., & Chivenge, P. (2020). Rice Straw Management Effects on Greenhouse Gas Emissions and Mitigation Options. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 145-159). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_9 | spa |
dc.relation.references | Anith, K. N., Nysanth, N. S., & Natarajan, C. (2021). Novel and rapid agar plate methods for in vitro assessment of bacterial biocontrol isolates’ antagonism against multiple fungal phytopathogens. Letters in Applied Microbiology, 73(2), 229-236. https://doi.org/10.1111/lam.13495 | spa |
dc.relation.references | Aquino, D., Del Barrio, A., Trach, N. X., Hai, N. T., Khang, D. N., Toan, N. T., & Van Hung, N. (2020). Rice Straw-Based Fodder for Ruminants. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 111-129). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_7 | spa |
dc.relation.references | Arai, H., Hosen, Y., Pham Hong, V. N., Thi, N. T., Huu, C. N., & Inubushi, K. (2015). Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. Soil Science and Plant Nutrition, 61(4), 719-735. https://doi.org/10.1080/00380768.2015.1041862 | spa |
dc.relation.references | Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018;36: 566. doi: 10.1038/nbt.4163 | spa |
dc.relation.references | Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., … Zagnitko, O. (2008). The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics, 9, 75. https://doi.org/10.1186/1471-2164-9-75 | spa |
dc.relation.references | Balingbing, C., Van Hung, N., Nghi, N. T., Van Hieu, N., Roxas, A. P., Tado, C. J., Bautista, E., & Gummert, M. (2020). Mechanized Collection and Densification of Rice Straw. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 15-32). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_2 | spa |
dc.relation.references | Balser, T. C., Wixon, D., Moritz, L. K., & Lipps, L. (2010). The Microbiology of Natural Soils. En G. R. Dixon & E. L. Tilston (Eds.), Soil Microbiology and Sustainable Crop Production (pp. 27-57). Springer Netherlands. https://doi.org/10.1007/978-90-481-9479-7_2 | spa |
dc.relation.references | Baweja, M., Tiwari, R., Singh, P. K., Nain, L., & Shukla, P. (2016). An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive. Frontiers in Microbiology, 7, 1195. https://doi.org/10.3389/fmicb.2016.01195 | spa |
dc.relation.references | Blanco Zapata, D. C. (2012). Evaluación de bacilos aerobios formadores de endosporas (bafes) para el control biológico de Rhizoctonia solani Kuhn en el cultivo de papa criolla (solanum tuberosum Grupo Phureja). https://repositorio.unal.edu.co/handle/unal/20223 | spa |
dc.relation.references | Boer, W. de, Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). Living in a fungal world: Impact of fungi on soil bacterial niche development⋆. FEMS Microbiology Reviews, 29(4), 795-811. https://doi.org/10.1016/j.femsre.2004.11.005 | spa |
dc.relation.references | Bonifer, K. S., Wen, X., Hasim, S., Phillips, E. K., Dunlap, R. N., Gann, E. R., DeBruyn, J. M., & Reynolds, T. B. (2019). Bacillus pumilus B12 Degrades Polylactic Acid and Degradation Is Affected by Changing Nutrient Conditions. Frontiers in Microbiology, 10, 2548. https://doi.org/10.3389/fmicb.2019.02548 | spa |
dc.relation.references | Bossolani, J. W., Leite, M. F. A., Momesso, L., ten Berge, H., Bloem, J., & Kuramae, E. E. (2023). Nitrogen input on organic amendments alters the pattern of soil–microbe-plant co-dependence. Science of The Total Environment, 890, 164347. https://doi.org/10.1016/j.scitotenv.2023.164347 | spa |
dc.relation.references | Bunna, S., Sinath, P., Makara, O., Mitchell, J., & Fukai, S. (2011). Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils. Field Crops Research, 124(3), 295-301. https://doi.org/10.1016/j.fcr.2011.06.015. | spa |
dc.relation.references | Cao, S., Chen, F., Dai, Y., Zhao, Z., Jiang, B., Pan, Y., Gao, Z. (2024). Characterization and evaluation of Bacillus altitudinis BS-4 as a novel potential biocontrol agent against Phytophthora sojae in soybean. Tropical Plant Pathology, 49(3), 384-399. https://doi.org/10.1007/s40858-024-00637-5 | spa |
dc.relation.references | Castilla, L., Vanegas, J., Rodriguez, Y. y Uribe, D. 2012. Evaluación de la fertilidad de suelos de las zonas arroceras del Tolima y Meta. En Ecología de microorganismos Rizosféricos asociados a cultivos de arroz de Tolima y Meta. Uribe, D y Melgarejo, L (eds).Universidad Nacional de Colombia. Bogotá, D.C. pp. 33-51. | spa |
dc.relation.references | Chakraborti, J., Mondal, S., & Palit, D. (2021). Food and Nutrition Security in India Throµg h Agroecology: New Opportunities in Agriculture System. En M. K. Jhariya, A. Banerjee, R. S. Meena, S. Kumar, & A. Raj (Eds.), Sustainable Intensification for Agroecosystem Services and Management (pp. 37-68). Springer. https://doi.org/10.1007/978-981-16-3207-5_2 | spa |
dc.relation.references | Chandra, R. (2021). Soil Biodiversity and Community Composition for Ecosystem Services. En A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances (pp. 69-84). Springer. https://doi.org/10.1007/978-981-16-0917-6_5 | spa |
dc.relation.references | Chang, J., Sun, Y., Tian, L., Ji, L., Luo, S., Nasir, F., Kuramae, E. E., & Tian, C. (2021). The Structure of Rhizosphere Fungal Communities of Wild and Domesticated Rice: Changes in Diversity and Co-occurrence Patterns. Frontiers in Microbiology, 12, 45. https://doi.org/10.3389/fmicb.2021.610823 | spa |
dc.relation.references | Chen, L., Heng, J., Qin, S., & Bian, K. (2018). A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PloS One, 13(6), e0198560. https://doi.org/10.1371/journal.pone.0198560. | spa |
dc.relation.references | Chen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H., Kuzyakov, Y., Ge, T., Wu, J., & Su, Y. (2020). Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agriculture, Ecosystems & Environment, 292, 106816. https://doi.org/10.1016/j.agee.2020.106816. | spa |
dc.relation.references | Chappell, E., Easher, T. H., Saurette, D., & Biswas, A. (2021). Soil Organic Carbon: Past, Present, and Future Research. En A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances (pp. 35-47). Springer. https://doi.org/10.1007/978-981-16-0917-6_3 | spa |
dc.relation.references | Chivenge, P., Rubianes, F., Van Chin, D., Van Thach, T., Khang, V. T., Romasanta, R. R., Van Hung, N., & Van Trinh, M. (2020). Rice Straw Incorporation Influences Nutrient Cycling and Soil Organic Matter. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 131-144). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_8 | spa |
dc.relation.references | Condron, L., Stark, C., O’Callaghan, M., Clinton, P., & Huang, Z. (2010). The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter. En G. R. Dixon & E. L. Tilston (Eds.), Soil Microbiology and Sustainable Crop Production (pp. 81-118). Springer Netherlands. https://doi.org/10.1007/978-90-481-9479-7_4 | spa |
dc.relation.references | Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60(4), 609-640. | spa |
dc.relation.references | Contreras Medina, E. J. (2016). Potencial degradador de bacterias aerobias formadoras de endosporas sobre el tamo de arroz y determinación de su actividad antagonista contra rhizoctonia solani. http://alejandria.ufps.edu.co/descargas/tesis/1610108.pdf. http://repositorio.ufps.edu.co/handle/ufps/3495 | spa |
dc.relation.references | Cruz-Ramírez, C. A., Gómez-Ramírez, L. F., & Uribe-Vélez, D. (2017). Manejo biológico del tamo de arroz bajo diferentes relaciones C:N empleando co-inóculos microbianos y promotores de crecimiento vegetal. Revista Colombiana de Biotecnología, 19(2), 47-62. https://doi.org/10.15446/rev.colomb.biote.v19n2.70168 | spa |
dc.relation.references | Cucu, M. A., Said-Pullicino, D., Maurino, V., Bonifacio, E., Romani, M., & Celi, L. (2014). Influence of redox conditions and rice straw incorporation on nitrogen availability in fertilized paddy soils. Biology and Fertility of Soils, 50(5), 755-764. https://doi.org/10.1007/s00374-013-0893-4 | spa |
dc.relation.references | Dantroliya, S., Joshi, C., Mohapatra, A., Shah, D., Bhargava, P., Bhanushali, S., Pandit, R., Joshi, C., & Joshi, M. (2022). Creating wealth from waste: An approach for converting organic waste in to value-added products using microbial consortia. Environmental Technology & Innovation, 25, 102092. https://doi.org/10.1016/j.eti.2021.102092 | spa |
dc.relation.references | Devêvre, O. C., & Horwáth, W. R. (2000). Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology and Biochemistry, 32(11-12), 1773-1785. https://doi.org/10.1016/S0038-0717(00)00096-1 | spa |
dc.relation.references | Deng, S., Li, J., Du, Z., Wu, Z., Yang, J., Cai, H., Wu, G., Xu, F., Huang, Y., Wang, S., & Wang, C. (2022). Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. Plant, Cell & Environment, 45(1), 191-205. https://doi.org/10.1111/pce.14191 | spa |
dc.relation.references | Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O. A., Mieszkin, S., Millet, L. J., Vajna, B., Junier, P., Bonfante, P., Krom, B. P., Olsson, S., van Elsas, J. D., & Wick, L. Y. (2018). Bacterial–fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiology Reviews, 42(3), 335-352. https://doi.org/10.1093/femsre/fuy008 | spa |
dc.relation.references | Ebadzadsahrai, G., Higgins Keppler, E. A., Soby, S. D., & Bean, H. D. (2020). Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds. Frontiers in Microbiology, 11. | spa |
dc.relation.references | FAO publications catalogue 2023. (2023). FAO. https://doi.org/10.4060/cc7285en | spa |
dc.relation.references | Encuesta nacional de arroz mecanizado (ENAM). (s. f.). Recuperado 30 de enero de 2023, de https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado Fedearroz. Recuperado 18 de mayo de 2021, de http://www.fedearroz.com.co/new/mapa.php | spa |
dc.relation.references | Frazer, J. (s. f.). Life Is a Highway: Watch Bacteria Riding the Fungal Expressway [Video]. Scientific American Blog Network. Recuperado 5 de mayo de 2021, de https://blogs.scientificamerican.com/artful-amoeba/life-is-a-highway-watch-bacteria-riding-the-fungal-expressway-video/ | spa |
dc.relation.references | Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157(5), 1554-1558. https://doi.org/10.1016/j.envpol.2009.01.004 | spa |
dc.relation.references | Ge, Y., Chen, C., Xu, Z., Eldridge, S. M., Chan, K. Y., He, Y., & He, J.-Z. (2010). Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques. Environmental Science and Pollution Research, 17(3), 807-815. https://doi.org/10.1007/s11356-009-0185-6 | spa |
dc.relation.references | Gillings, M. R., & Hagan-Lawson, E. L. (2014). The cost of living in the Anthropocene. Earth Perspectives, 1(1), 2. https://doi.org/10.1186/2194-6434-1-2 | spa |
dc.relation.references | Ghosh, A., Biswas, D. R., Das, S., Das, T. K., Bhattacharyya, R., Alam, K., & Rahman, M. M. (2023). Rice straw incorporation mobilizes inorganic soil phosphorus by reorienting hysteresis effect under varying hydrothermal regimes in a humid tropical Inceptisol. Soil and Tillage Research, 225, 105531. https://doi.org/10.1016/j.still.2022.105531. | spa |
dc.relation.references | Gómez Ramírez, L. F. (2015). Desarrollo y aplicación de una estrategia de biofertilización en plantas de arroz (oryza sativa l.) Empleando microorganismos promotores de crecimiento vegetal. https://repositorio.unal.edu.co/handle/unal/56688 | spa |
dc.relation.references | Gomez-Ramirez, L. F., & Uribe-Velez, D. (2021). Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Current Microbiology, 78(3), 932-943. https://doi.org/10.1007/s00284-021-02354-7. | spa |
dc.relation.references | Gopalakrishnan, S., Humayun, P., Kiran, B. K., Kannan, I. G. K., Vidya, M. S., Deepthi, K., & Rupela, O. (2011). Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World Journal of Microbiology & Biotechnology, 27(6), 1313-1321. https://doi.org/10.1007/s11274-010-0579-0 | spa |
dc.relation.references | Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), Article 7176. https://doi.org/10.1038/nature06592 | spa |
dc.relation.references | Gu, J., & Yang, J. (2022). Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment, 1(1), 7-14. https://doi.org/10.1016/j.crope.2022.03.003 | spa |
dc.relation.references | Guo, P., Yang, F., Ye, S., Li, J., Shen, F., & Ding, Y. (s. f.). Characterization of lipopeptide produced by Bacillus altitudinis Q7 and inhibitory effect on Alternaria alternata. https://doi.org/10.1002/jobm.202200530 | spa |
dc.relation.references | Hussain, M. Z., Hamilton, S. K., Robertson, G. P., & Basso, B. (2021). Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-99877-7 | spa |
dc.relation.references | Ibrahim, M., Cao, C.-G., Zhan, M., Li, C.-F., & Iqbal, J. (2015). Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. International Journal of Environmental Science and Technology, 12(1), 263-274. https://doi.org/10.1007/s13762-013-0429-3 | spa |
dc.relation.references | Irfan, M., Aziz, T., Maqsood, M. A., Bilal, H. M., Siddique, K. H. M., & Xu, M. (2020). Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation patterns. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-61147-3 | spa |
dc.relation.references | Ishii, T., & Ishikawa, R. (2018). Domestication Loci Controlling Panicle Shape, Seed Shattering, and Seed Awning. En T. Sasaki & M. Ashikari (Eds.), Rice Genomics, Genetics and Breeding (pp. 207-221). Springer. https://doi.org/10.1007/978-981-10-7461-5_12 | spa |
dc.relation.references | Izquierdo-García, L. F., González-Almario, A., Cotes, A. M., & Moreno-Velandia, C. A. (2020). Trichoderma virens Gl006 and Bacillus velezensis Bs006: A compatible interaction controlling Fusarium wilt of cape gooseberry. Scientific Reports, 10(1), 6857. https://doi.org/10.1038/s41598-020-63689-y | spa |
dc.relation.references | Junier, P., Cailleau, G., Palmieri, I., Vallotton, C., Trautschold, O. C., Junier, T., Paul, C., Bregnard, D., Palmieri, F., Estoppey, A., Buffi, M., Lohberger, A., Robinson, A., Kelliher, J. M., Davenport, K., House, G. L., Morales, D., Gallegos-Graves, L. V., Dichosa, A. E. K., … Chain, P. S. G. (2021). Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi. FEMS Microbiology Ecology, 97(fiab003). https://doi.org/10.1093/femsec/fiab003 | spa |
dc.relation.references | Kadam, K. L., Forrest, L. H., & Jacobson, W. A. (2000). Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 18(5), 369-389. https://doi.org/10.1016/S0961-9534(00)00005-2 | spa |
dc.relation.references | Khumairoh, U., Lantinga, E. A., Handriyadi, I., Schulte, R. P. O., & Groot, J. C. J. (2021). Agro-ecological mechanisms for weed and pest suppression and nutrient recycling in high yielding complex rice systems. Agriculture, Ecosystems & Environment, 313, 107385. https://doi.org/10.1016/j.agee.2021.107385 | spa |
dc.relation.references | Kiesewalter, H. T., Lozano-Andrade, C. N., Strube, M. L., & Kovács, Á. T. (2020). Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry, 16, 2983-2998. https://doi.org/10.3762/bjoc.16.248 | spa |
dc.relation.references | Kumar, A., Nayak, A. K., Sharma, S., Senapati, A., Mitra, D., Mohanty, B., Prabhukarthikeyan, S. R., Sabarinathan, K. G., Mani, I., Garhwal, R. S., Thankappan, S., Sagarika, M. S., de los SANTOS-VILLALOBOS, S., & Panneerselvam, P. (2022). Recycling of rice straw—a sustainable approach for ensuring environmental quality and economic security: A review. Pedosphere. https://doi.org/10.1016/j.pedsph.2022.06.036 | spa |
dc.relation.references | Li, L., He, L., Li, Y., Wang, Y., Ashraf, U., Hamoud, Y. A., Hu, X., Wu, T., Tang, X., & Pan, S. (2023). Deep fertilization combined with straw incorporation improved rice lodging resistance and soil properties of paddy fields. European Journal of Agronomy, 142, 126659. https://doi.org/10.1016/j.eja.2022.126659 | spa |
dc.relation.references | Li, Y., Wu, J., Shen, J., Liu, S., Wang, C., Chen, D., Huang, T., & Zhang, J. (2016). Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields. Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep35266 | spa |
dc.relation.references | Lin, F., Li, X., Jia, N., Feng, F., Huang, H., Huang, J., Fan, S., Ciais, P., & Song, X.-P. (2023). The impact of Russia-Ukraine conflict on global food security. Global Food Security, 36, 100661. https://doi.org/10.1016/j.gfs.2022.100661 | spa |
dc.relation.references | Liu, G., Ma, J., Yang, Y., Yu, H., Zhang, G., & Xu, H. (2019). Effects of Straw Incorporation Methods on Nitrous Oxide and Methane Emissions from a Wheat-Rice Rotation System. Pedosphere, 29(2), 204-215. https://doi.org/10.1016/S1002-0160(17)60410-7 | spa |
dc.relation.references | Liu, B., Dai, Y., Cheng, X., He, X., Bei, Q., Wang, Y., Zhou, Y., Zhu, B., Zhang, K., Tian, X., Duan, M., Xie, X., & Wang, L. (2023). Straw mulch improves soil carbon and nitrogen cycle by mediating microbial community structure and function in the maize field. Frontiers in Microbiology, 14. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1217966 | spa |
dc.relation.references | Lopez, B., & Santiago, D. (2020). Efecto de la incorporación de tamo de arroz degradado por Talaromyces sayulitensis HC1 y el enriquecimiento con nitrógeno sobre la germinación y el crecimiento de arroz y tomate. http://repository.javeriana.edu.co/handle/10554/50295 | spa |
dc.relation.references | Lupini, S., Nguyen, H. N., Morales, D., House, G. L., Paudel, S., Chain, P. S. G., & Rodrigues, D. F. (2023). Diversity of fungal microbiome obtained from plant rhizoplanes. Science of The Total Environment, 892, 164506. https://doi.org/10.1016/j.scitotenv.2023.164506 | spa |
dc.relation.references | Lv, R., Wang, Y., Wang, Q., Wen, Y., & Shang, Q. (2023). Rice straw biochar alters inorganic nitrogen availability in paddy soil mainly throµg h abiotic processes. Journal of Soils and Sediments, 23(2), 568-581. https://doi.org/10.1007/s11368-022-03355-0 | spa |
dc.relation.references | Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Critical Reviews in Food Science and Nutrition, 48(2), 177-184. https://doi.org/10.1080/10408390701279749 | spa |
dc.relation.references | Mehra, P., Pandey, B. K., & Giri, J. (2017). Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnology Journal, 15(8), 1054-1067. https://doi.org/10.1111/pbi.12699 | spa |
dc.relation.references | Milled rice production in Latin America by country 2021. (s. f.). Statista. Recuperado 30 de enero de 2023, dettps://www.statista.com/statistics/1002939/latin-america-milled-rice-production-volume-country/ | spa |
dc.relation.references | Miranda Martinez, Y. L. (2022). Caracterización de los metabolitos secundarios producidos por la cepa IBUN- 2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz [Trabajo de grado - Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/83355 | spa |
dc.relation.references | Moiseenko, T. I. (2017). Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. Geochemistry International, 55(10), 841-860. https://doi.org/10.1134/S0016702917100081 | spa |
dc.relation.references | Nannipieri, P., Trasar-Cepeda, C., & Dick, R. P. (2018). Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 54(1), 11-19. https://doi.org/10.1007/s00374-017-1245-6. | spa |
dc.relation.references | Neu, S., Schaller, J., & Dudel, E. G. (2017). Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Scientific Reports, 7, 40829. https://doi.org/10.1038/srep40829 | spa |
dc.relation.references | Ngan, N. V. C., Chan, F. M. S., Nam, T. S., Van Thao, H., Maguyon-Detras, M. C., Hung, D. V., Cuong, D. M., & Van Hung, N. (2020). Anaerobic Digestion of Rice Straw for Biogas Production. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 65-92). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_5 | spa |
dc.relation.references | Nghi, N. T., Romasanta, R. R., Van Hieu, N., Vinh, L. Q., Du, N. X., Ngan, N. V. C., Chivenge, P., & Van Hung, N. (2020). Rice Straw-Based Composting. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 33-41). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_3 | spa |
dc.relation.references | Nishigaki, T., Tsujimoto, Y., Rinasoa, S., Rakotoson, T., Andriamananjara, A., & Razafimbelo, T. (2019). Phosphorus uptake of rice plants is affected by phosphorus forms and physicochemical properties of tropical weathered soils. Plant and Soil, 435(1-2), 27-38. https://doi.org/10.1007/s11104-018-3869-1 | spa |
dc.relation.references | Nóia Júnior, R. de S., Ewert, F., Webber, H., Martre, P., Hertel, T. W., van Ittersum, M. K., & Asseng, S. (2022). Needed global wheat stock and crop management in response to the war in Ukraine. Global Food Security, 35, 100662. https://doi.org/10.1016/j.gfs.2022.100662 | spa |
dc.relation.references | Nujthet, Y., Kaewkrajay, C., Kijjoa, A., & Dethoup, T. (2024). Biocontrol efficacy of antagonists Trichoderma and Bacillus against post-harvest diseases in mangos. European Journal of Plant Pathology, 168(2), 315-327. https://doi.org/10.1007/s10658-023-02757-1 | spa |
dc.relation.references | Olabi, A. G., Abdelkareem, M. A., Al-Murisi, M., Shehata, N., Alami, A. H., Radwan, A., Wilberforce, T., Chae, K.-J., & Sayed, E. T. (2023). Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 277, 116594. https://doi.org/10.1016/j.enconman.2022.116594 | spa |
dc.relation.references | Otero Jiménez, V. (2021). Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz [Trabajo de grado - Doctorado, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/81291 | spa |
dc.relation.references | Otero-Jiménez, V., Carreño-Carreño, J. del P., Barreto-Hernandez, E., van Elsas, J. D., & Uribe-Vélez, D. (2021). Impact of rice straw management strategies on rice rhizosphere microbiomes. Applied Soil Ecology, 167, 104036. https://doi.org/10.1016/j.apsoil.2021.104036 | spa |
dc.relation.references | Panchalingam, H., Powell, D., Adra, C., Foster, K., Tomlin, R., Quigley, B. L., Nyari, S., Hayes, R. A., Shapcott, A., & Kurtböke, D. İ. (2022). Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. Journal of Fungi, 8(10), 1105. https://doi.org/10.3390/jof8101105 | spa |
dc.relation.references | Past 4—The Past of the Future—Natural History Museum. (s. f.). Recuperado 2 de enero de 2024, de https://www.nhm.uio.no/english/research/resources/past/index.html | spa |
dc.relation.references | Pathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1, 26. https://doi.org/10.1186/2193-1801-1-26 | spa |
dc.relation.references | Paul, P. L. C., Bell, R. W., Barrett-Lennard, E. G., & Kabir, E. (2021). Impact of Rice Straw Mulch on Soil Physical Properties, Sunflower Root Distribution and Yield in a Salt-Affected Clay-Textured Soil. Agriculture, 11(3), Article 3. https://doi.org/10.3390/agriculture11030264 | spa |
dc.relation.references | Pedraza Herrera, L. A. (2016). Evaluación de Bacterias Aerobias Formadoras de Endospora (BAFEs) de suelos rizosféricos, como agentes de control biológico de Burkholderia glumae. https://repositorio.unal.edu.co/handle/unal/56696 | spa |
dc.relation.references | Pedraza-Herrera, L. A., Lopez- Carrascal, C. E., & Uribe Vélez, D. (2020). Mecanismos de acción de Bacillus spp. (Bacillaceae) contra microorganismos fitopatógenos durante su interacción con plantas. Acta Biológica Colombiana, 25(1), 112-125. | spa |
dc.relation.references | Pedraza, LA., Barreto, E., Uribe-Vélez D. In presentation. Genomic comparison of the IBUN 2755 strain with Bacillus amyloliquefaciens/B. velezensis strains reveals novel interactions of B. velezensis with plants. Functional & Integrative Genomics | spa |
dc.relation.references | Pedraza-Zapata, D. C., Sánchez-Garibello, A. M., Quevedo-Hidalgo, B., Moreno-Sarmiento, N., & Gutiérrez-Rojas, I. (2017). Promising cellulolytic fungi isolates for rice straw degradation. Journal of Microbiology, 55(9), 711-719. https://doi.org/10.1007/s12275-017-6282-1 | spa |
dc.relation.references | R Core Team (2021). R: A language and environment for statistical ## computing. R Foundation for Statistical Computing, Vienna, Austria. ## URL https://www.R-project.org/. | spa |
dc.relation.references | Reavis, C. W., Suvočarev, K., Reba, M. L., & Runkle, B. R. K. (2021). Impacts of alternate wetting and drying and delayed flood rice irrigation on growing season evapotranspiration. Journal of Hydrology, 596, 126080. https://doi.org/10.1016/j.jhydrol.2021.126080 | spa |
dc.relation.references | Rice straw management—Rice Straw. (s. f.). Recuperado 8 de junio de 2021, de http://ricestraw.irri.org/rice-straw-management | spa |
dc.relation.references | Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., & Hosseini, H. M. (2022). The effect of silicon fertilization and phosphate-solubilizing bacteria on chemical forms of silicon and phosphorus uptake by wheat plant in a calcareous soil. Plant and Soil, 477(1), 259-280. https://doi.org/10.1007/s11104-021-05274-4 | spa |
dc.relation.references | Samal, P., Babu, S. C., Mondal, B., & Mishra, S. N. (2022). The global rice agriculture towards 2050: An inter-continental perspective. Outlook on Agriculture, 51(2), 164-172. https://doi.org/10.1177/00307270221088338 | spa |
dc.relation.references | Rosado, M. J., Marques, G., Rencoret, J., Gutiérrez, A., & del Río, J. C. (2022). Chemical Composition of Lipophilic Compounds From Rice (Oryza sativa) Straw: An Attractive Feedstock for Obtaining Valuable Phytochemicals. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.868319 | spa |
dc.relation.references | Sadeghi, S. H. R., Gholami, L., Sharifi, E., Khaledi Darvishan, A., & Homaee, M. (2015). Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth, 6(1), 1-8. https://doi.org/10.5194/se-6-1-2015 | spa |
dc.relation.references | S.A.S, M. (2024.). Área, producción y rendimiento. Fedearroz. Recuperado 5 de febrero de 2024, de https://fedearroz.com.co/es/fondo-nacional-del-arroz/investigaciones-economicas/estadisticas-arroceras/area-produccion-y-rendimiento/ | spa |
dc.relation.references | S.A.S, M. (2023) - b. Costos. Fedearroz. Recuperado 5 de febrero de 2024, de https://fedearroz.com.co/es/fondo-nacional-del-arroz/investigaciones-economicas/estadisticas-arroceras/costos/ | spa |
dc.relation.references | Shahane, A. A., Shivay, Y. S., & Prasanna, R. (2023). Wheat (Triticum aestivum) Establishment Methods and Microbial Inoculation for Improving Soil Microbial Properties and Crop Productivity. Agricultural Research, 12(1), 1-11. https://doi.org/10.1007/s40003-022-00630-x | spa |
dc.relation.references | Sheng, R. T.-C., Huang, Y.-H., Chan, P.-C., Bhat, S. A., Wu, Y.-C., & Huang, N.-F. (2022). Rice Growth Stage Classification via RF-Based Machine Learning and Image Processing. Agriculture, 12(12), Article 12. https://doi.org/10.3390/agriculture12122137 | spa |
dc.relation.references | Shourie, A., & Singh, A. (2021). Impact of Climate Change on Soil Fertility. En D. K. Choudhary, A. Mishra, & A. Varma (Eds.), Climate Change and the Microbiome: Sustenance of the Ecosphere (pp. 49-62). Springer International Publishing. | spa |
dc.relation.references | Shukla, S. K., Shee, S., Maity, S. K., Solomon, S., Awasthi, S. K., Gaur, A., Pathak, A. D., & Jaiswal, V. P. (2017). Soil Carbon Sequestration and Crop Yields in Rice–Wheat and Sµg arcane–Ratoon–Wheat Cropping Systems Throµg h Crop Residue Management and Inoculation of Trichoderma viride in Subtropical India. Sµg ar Tech, 19(4), 347-358. https://doi.org/10.1007/s12355-016-0470-x | spa |
dc.relation.references | Sivaram, A. K., Abinandan, S., Chen, C., Venkateswartlu, K., & Megharaj, M. (2023). Chapter Two - Microbial inoculant carriers: Soil health improvement and moisture retention in sustainable agriculture. En D. L. Sparks (Ed.), Advances in Agronomy (Vol. 180, pp. 35-91). Academic Press. https://doi.org/10.1016/bs.agron.2023.03.001 | spa |
dc.relation.references | Su, P., Wicaksono, W. A., Li, C., Michl, K., Berg, G., Wang, D., Xiao, Y., Huang, R., Kang, H., Zhang, D., Cernava, T., & Liu, Y. (2022). Recovery of metagenome-assembled genomes from the phyllosphere of 110 rice genotypes. Scientific Data, 9(1), Article 1. https://doi.org/10.1038/s41597-022-01320-7 | spa |
dc.relation.references | Thuc, L. V., Corales, R. G., Sajor, J. T., Truc, N. T. T., Hien, P. H., Ramos, R. E., Bautista, E., Tado, C. J. M., Ompad, V., Son, D. T., & Van Hung, N. (2020). Rice-Straw Mushroom Production. En M. Gummert, N. V. Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 93-109). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_6 | spa |
dc.relation.references | Tian, M., Zheng, Y., Sun, X., & Zheng, H. (2022). A research on promoting chemical fertiliser reduction for sustainable agriculture purposes: Evolutionary game analyses involving ‘government, farmers, and consumers’. Ecological Indicators, 144, 109433. https://doi.org/10.1016/j.ecolind.2022.109433 | spa |
dc.relation.references | Toan, N.-S., Hanh, D. H., Dong Phuong, N. T., Thuy, P. T., Dong, P. D., Gia, N. T., Tam, L. D., Thu, T. T. N., Thanh, D. T. V., Khoo, K. S., & Show, P. L. (2022). Effects of burning rice straw residue on-field on soil organic carbon pools: Environment-friendly approach from a conventional rice paddy in central Viet Nam. Chemosphere, 294, 133596. https://doi.org/10.1016/j.chemosphere.2022.133596 | spa |
dc.relation.references | Tong, S., Bambrick, H., Beggs, P. J., Chen, L., Hu, Y., Ma, W., Steffen, W., & Tan, J. (2022). Current and future threats to human health in the Anthropocene. Environment International, 158, 106892. https://doi.org/10.1016/j.envint.2021.106892 | spa |
dc.relation.references | Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H., Anderson, I. C., Jeffries, T. C., Zhou, J., & Singh, B. K. (2016). Microbial regulation of the soil carbon cycle: Evidence from gene–enzyme relationships. The ISME Journal, 10(11), 2593-2604. https://doi.org/10.1038/ismej.2016.65 | spa |
dc.relation.references | Tuo, Y., Tan, H., Liang, J., Li, J., Xiang, P., Yang, Q., & He, X. (2024). Optimization of water and fertilizer management of Panax pseudoginseng based on changes in soil microbial biomass carbon and nitrogen and enzyme activities. Applied Soil Ecology, 196, 105282. https://doi.org/10.1016/j.apsoil.2024.105282 | spa |
dc.relation.references | Vargas, G., León, N., & Hernández, Y. (2019). Agricultural Socio-economic Effects in Colombia due to Degradation of Soils. En R. S. Meena, S. Kumar, J. S. Bohra, & M. L. Jat (Eds.), Sustainable Management of Soil and Environment (pp. 289-337). Springer. https://doi.org/10.1007/978-981-13-8832-3_9 | spa |
dc.relation.references | WAD | World Atlas of Desertification. Recuperado 15 de abril de 2021, de https://wad.jrc.ec.europa.eu/ | spa |
dc.relation.references | Warmink, J. A., Nazir, R., Corten, B., & van Elsas, J. D. (2011). Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae. Soil Biology and Biochemistry, 43(4), 760-765. https://doi.org/10.1016/j.soilbio.2010.12.009 | spa |
dc.relation.references | Wei, K., Wang, J., Yuan, C., Tang, J., & Zhu, B. (2024). Relationships of bacterial-feeding nematodes, phosphatase-producing bacteria, phosphatase activity and their effects on soil organic phosphorus mineralization under straw return. Applied Soil Ecology, 196, 105280. https://doi.org/10.1016/j.apsoil.2024.105280 | spa |
dc.relation.references | Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL. | spa |
dc.relation.references | Nucleic Acids Res. 2017 Jan 4;45(D1):D535-D542. doi: 10.1093/nar/gkw1017. PMID: 27899627; PMCID: PMC5210524. | spa |
dc.relation.references | Zhao, X., Zhou, J., Tian, R., & Liu, Y. (2022). Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology, 13, 922450. https://doi.org/10.3389/fmicb.2022.922450 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
dc.subject.ddc | 633.18 | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.lemb | ABONO ORGANICO | spa |
dc.subject.lemb | Farm manure | eng |
dc.subject.lemb | CASCARILLA DE ARROZ | spa |
dc.subject.lemb | Rice hulls | eng |
dc.subject.lemb | CONVERSION DE RESIDUOS DE ARROZ | spa |
dc.subject.lemb | Rice waste - Recycling | eng |
dc.subject.lemb | FERTILIDAD DEL SUELO-EXPERIMENTOS DE CAMPO | spa |
dc.subject.lemb | Soil fertility - Field experiments | eng |
dc.subject.lemb | TECNICAS DE CULTIVO (BIOLOGIA) | spa |
dc.subject.lemb | Culture techniques(Biology) | eng |
dc.subject.lemb | Plant-microbe relationsships -- Genetic aspects | eng |
dc.subject.lemb | RELACIONES PLANTA-MICROBIO-ASPECTOS GENETICOS | spa |
dc.subject.proposal | Degradation | eng |
dc.subject.proposal | Enzymes | eng |
dc.subject.proposal | Microbial consortia | eng |
dc.subject.proposal | Biogeochemical cycles | eng |
dc.subject.proposal | Rice straw | eng |
dc.subject.proposal | Degradación | spa |
dc.subject.proposal | Enzimas | spa |
dc.subject.proposal | Consorcios microbianos | spa |
dc.subject.proposal | Ciclos biogeoquímicos | spa |
dc.subject.proposal | Tamo de arroz | spa |
dc.title | Evaluation and characterization of commercial fungi and proteolytic bacterial consortium applied for rice straw degradation | eng |
dc.title.translated | Evaluación y caracterización de consorcios hongos comerciales y bacterias proteolíticas aplicadas a la degradación del tamo de arroz | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1016057048.2024.pdf
- Tamaño:
- 21.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: