Radón y su progenie: monitoreo individual y ambiental en minas subterráneas en la región de Antioquia, Colombia

dc.contributor.advisorPuerta Ortiz, Jorge Anselmo
dc.contributor.authorPeña Marín, Vanessa
dc.contributor.orcidPeña Marín, Vanessa [0000000195511185]
dc.contributor.orcidPuerta Ortiz, Jorge Anselmo [0000000283922363]
dc.contributor.researchgroupFísica Radiológica
dc.date.accessioned2025-10-22T16:16:16Z
dc.date.available2025-10-22T16:16:16Z
dc.date.issued2025-10-07
dc.description.abstractEn este trabajo se realizaron mediciones ambientales de radón y su progenie, en una zona de minería de oro del departamento de Antioquia, Colombia, se analizaron también muestras de agua, suelo y orina de los mineros por espectrometría gamma y se realizó la simulación de los modelos biocinéticas propuestos en la publicación 137 de la ICRP en el software MatLab para los radionúclidos presentes en la cadena de desintegración del radón, esto con el fin de estimar el riesgo radiológico en los mineros que trabajan en minería subterránea. Para ello, se eligieron siete puntos diferentes de medición en tres tipos de áreas, en cada punto se usaron cámaras de electretos EPERM y detector Doseman PRO. Se encontraron valores de concentración de 222Rn entre 858,3 +- 59 Bq m-3 y 2469 +- 158 Bq m-3 y de factor de equilibrio entre 0.15 y 0.27. A través del equipo Doseman PRO se obtuvieron espectros alfa de 222Rn y 220Rn, los cuales mostraron que la contribución significante de la dosis es debida al radón y su progenie, dado que la progenie del torón se encontraba en una concentración muy baja. Se calculó también la dosis efectiva anual para los mineros bajo dos metodologías (UNSCEAR e ICRP 137) obteniendo valores de hasta 13,5 mSv, asumiendo 2000 horas de trabajo anual. De los resultados de espectrometría gamma y alfa realizados a las muestras de orina, se evidenció que en su labor los mineros también incorporan 226Ra y que la dosis efectiva comprometida recibida por los mismos debido a este radionúclido puede incluso superar la dosis estimada por la incorporación de radón. Los resultados demuestran la importancia de los datos dosimétricos, la necesidad de realizar un seguimiento individual de los mineros y de que en el país se establezca normativa y regulación respecto a la posible exposición a materiales radiactivos naturales. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, environmental measurements of radon and its progeny were performed in a gold mining area in the department of Antioquia, Colombia. Samples of water, soil and urine of the miners were also analyzed by gamma spectrometry and the biokinetic models proposed in ICRP publication 137 were simulated in MatLab software for the radionuclides present in the radon decay chain, in order to estimate the radiological risk in miners working in underground mining. For this purpose, seven different measurement points were chosen in three types of areas, at each point EPERM electret chambers and DOSEman Pro detector were used. 222Rn concentration values were found between 858,3 +- 59 Bq m-3 and 2469 +- 158 Bq m-3 and equilibrium factor between 0.15 and 0.27. Alpha spectra of 222Rn and 220Rn were obtained through the DosemanPRO equipment, which showed that the significant dose contribution is due to radon and its progeny, since the thoron progeny was at a very low concentration. The annual effective dose for the miners was also calculated under two methodologies (UNSCEAR and ICRP 137) obtaining values up to 13.5 mSv, assuming 2000 hours of annual work. From the results of gamma and alpha spectrometry performed on the urine samples, it was evidenced that in their work the miners also incorporate 226Ra and that the committed effective dose received by them due to this radionuclide may even exceed the dose estimated by the incorporation of radon. The results demonstrate the importance of dosimetric data, the need for individual monitoring of miners and the need for the country to establish standards and regulations regarding possible exposure to naturally occurring radioactive materials.eng
dc.description.curricularareaFísica.Sede Medellín
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Física
dc.format.extent1 recurso en líne (114 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89053
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Física
dc.relation.referencesAhmed, J. U. (1994). El radón en el medio humano: Evaluación de la situación. Boletín del OIEA, 36(2), 24–31.
dc.relation.referencesAnjos, R. M., Umisedo, N., da Silva, A. A. R., Estellita, L., Rizzotto, M., Yoshimura, E. M., Velasco, H., & Santos, A. M. A. (2010). Occupational exposure to radon and natural gamma radiation in the La Carolina, a former gold mine in San Luis Province, Argentina. Journal of Environmental Radioactivity, 101, 153–158. https://doi.org/10.1016/j.jenvrad.2009.11.005
dc.relation.referencesAzeredo, A. M. F. G., & Lipsztein, J. L. (1991). 210Po excretion in urine: A comparison of an occupational exposed group and a control. Radiation Protection Dosimetry, 36(1), 51–54.
dc.relation.referencesBarrera, M., Romero, M. L., & Valiño, F. P. (2008). Puesta a punto de un sistema de espectrometría gamma para la determinación de Cs-137 en suelos españoles. Informes Técnicos CIEMAT, (1147).
dc.relation.referencesBertelli, L. (2023). Software AIDE: Activities and Internal Dose Estimates (Version 7.1).
dc.relation.referencesBertelli, L. (2007). Software AIDE: Activities and Internal Dose Estimates (Version 6.0).
dc.relation.referencesBigu, J., et al. (2000). Radioactivity measurements in Egyptian phosphate mines and their significance in the occupational exposure of mine workers. Journal of Environmental Radioactivity, 47, 229–243.
dc.relation.referencesChen, J. (2023). A review of radon exposure in non-uranium mines – Estimation of potential radon exposure in Canadian mines. Health Physics, 124(4).
dc.relation.referencesCohen, N., et al. (1973). Lead-210 concentrations in the bone, blood and excreta of a former uranium miner. Health Physics, 24, 601–609.
dc.relation.referencesCrespo, M. T., & Oller, O. (1999). Determinación de 226Ra por espectrometría alfa con el empleo de 225Ra como trazador. Informes Técnicos CIEMAT.
dc.relation.referencesCurrie, L. (1968). Limits for qualitative detection and quantitative determination: Application to radiochemistry. Analytical Chemistry, 40(3).
dc.relation.referencesDíaz Lagos, M., Sajo-Bohus, L., Sandoval Garzón, M. A., Vergara Gómez, I., & Martínez-Ovalle, S. A. (2019). Radon concentration in hydrogeothermal deposit and spas of Boyacá, Colombia. Applied Radiation and Isotopes. https://doi.org/10.1016/j.apradiso.2018.12.020
dc.relation.referencesEcheverry, S., et al. (2009). Aspectos estructurales y relaciones de algunos sistemas vetiformes del distrito minero Segovia-Remedios. Boletín de Ciencias de la Tierra, (26).
dc.relation.referencesFranco-Becerra, A. C. (2023). Radon concentration in coal mining in Corrales – Boyacá. IMFAS. https://doi.org/10.19053/uptc.01217488.v14.nE.2023.17441
dc.relation.referencesGiraldo-Osorio, A., Ruano-Ravina, A., Pérez-Ríos, M., Varela-Lema, L., Barros-Dios, J. M., & Arias-Ortiz, N. E. (2021). Residential radon in Manizales, Colombia: Results of a pilot study. International Journal of Environmental Research and Public Health, 18(1228). https://doi.org/10.3390/ijerph18031228
dc.relation.referencesInternational Atomic Energy Agency. (2003). International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (IAEA Safety Series 115).
dc.relation.referencesInternational Atomic Energy Agency. (2013). Measurement and calculation of radon releases from NORM residues (Technical Report Series 474).
dc.relation.referencesInternational Commission on Radiological Protection. (1986). Radiation protection of workers in mines (Publication 47).
dc.relation.referencesInternational Commission on Radiological Protection. (1993). Protection against radon-222 at home and at work (Publication 65).
dc.relation.referencesInternational Commission on Radiological Protection. (2006). Human alimentary tract model for radiological protection (Publication 100).
dc.relation.referencesInternational Commission on Radiological Protection. (2007). Recommendations of the International Commission on Radiological Protection (Publication 103).
dc.relation.referencesInternational Commission on Radiological Protection. (2010). Lung cancer risk from radon and progeny and statement on radon (Publication 115).
dc.relation.referencesInternational Commission on Radiological Protection. (2014). Radiological protection against radon exposure (Publication 126).
dc.relation.referencesInternational Commission on Radiological Protection. (2015). Occupational intakes of radionuclides: Part 1 (Publication 130).
dc.relation.referencesInternational Commission on Radiological Protection. (2017). Occupational intakes of radionuclides: Part 3 (Publication 137).
dc.relation.referencesInternational Commission on Radiological Protection. (2021). OIR data Viewer, version 5.27.9.21, electronic annex accompanying the ICRP Occupational Intake of Radionuclides publication series [online]. Available at https://www.icrp.org/publication.asp?id=ICRP%20Publication%20151.
dc.relation.referencesInternational Commission on Radiation Units & Measurements. (2012). Measurement and reporting of radon exposures (ICRU Report 88).
dc.relation.referencesInstituto Colombiano de Geología y Minería. (2010). Mapa geológico de Colombia. Mapa geológico No 117, Plancha Amalfi, XX(2).
dc.relation.referencesLeggett, R. W., Marsh, J. W., Gregoratto, D., & Blanchardon, E. (2013). A generic biokinetic model for noble gases with application to radon. Journal of Radiological Protection, 33, 413–432.
dc.relation.referencesMircea, R. (2019). Radon measurements in underground mines and caves from several European countries. Exotic Nuclei and Nuclear/Particle Astrophysics (VII), AIP Conf. Proc. 2076, 050004. https://doi.org/10.1063/1.5091643
dc.relation.referencesMontañez-Reyes, A., Sajo-Bohus, L., & Martínez-Ovalle, S. (2023). Radon activity concentration (RnCA) and workers’ lung cancer risks in SENA coal mines, Colombia. Applied Radiation and Isotopes, 198, 111158. https://doi.org/10.1016/j.apradiso.2023.111158
dc.relation.referencesNavrátilová Rovenská, K., et al. (2024). Measurement protocol of radon progeny attached and unattached fraction. Project RadoNorm.
dc.relation.referencesNational Council on Radiation Protection and Measurements. (1988). Measurement of radon and radon daughters in air (Report 97).
dc.relation.referencesNational Research Council. (1999). Health effects of exposure to radon. National Academy Press.
dc.relation.referencesOtero, A. (2014). Estudio de la radiactividad ambiental en suelos de la costa norte de A Coruña y Lugo (Tesis doctoral, Universidade Da Coruña).
dc.relation.referencesOtton, J. K. (1992). The geology of radon. US Geological Survey.
dc.relation.referencesOrganismo Internacional de Energía Atómica. (2004). Evaluación de la exposición ocupacional debida a incorporaciones de radionucleídos (Normas de Seguridad Nº RS-G-1.2).
dc.relation.referencesOrganización Mundial de la Salud. (2006). Guías para la calidad del agua potable (Vol. 1, 3ª ed.).
dc.relation.referencesPawell, D. J., et al. (2007). Uncertainties in cancer risk coefficients for environmental exposure to radionuclides. Oak Ridge National Laboratory.
dc.relation.referencesPeña, V. (2011). Método de evaluación de dosis por ingestión de polonio, bismuto y plomo como materiales radiactivos naturales (Tesis de maestría, Universidad Nacional de Colombia). https://repositorio.unal.edu.co/handle/unal/9819
dc.relation.referencesPeña, V., & Puerta, J. A. (2025). Estimation radon exposure in underground gold mines in Colombia. Radiation Protection Dosimetry, 201(2), 122–129. https://doi.org/10.1093/rpd/ncae228
dc.relation.referencesPolig, E. (2001). Modeling the distribution and dosimetry of internal emitters: A review of mathematical procedures using matrix methods.
dc.relation.referencesPuerta, J. A. (1997). Modelo dosimétrico para o radônio e filhos (Tesis doctoral, Universidade do Estado do Rio de Janeiro).
dc.relation.referencesPuerta, N. (2007). Determinación de 210Po en muestras de orina (Tesis de maestría, Universidad Nacional de Colombia).
dc.relation.referencesRadelec Inc. (n.d.). E-PERM system user's manual. https://www.radelec.com/manuals/E-PERM%20System%20User's%20Manual.pdf
dc.relation.referencesSARAD. (2009). DosemanPRO Manual. https://www.sarad.de/cms/media/docs/handbuch/Manual_DOSEman-PRO_EN_09-04-09.pdf
dc.relation.referencesSkubacz, K., Wołoszczuk, K., Grygier, A., & Samolej, K. (2023). Influence of dose conversions, equilibrium factors, and unattached fractions on radon risk assessment in operating and show underground mines. Applied Radiation and Isotopes, 198, 111158. https://doi.org/10.1016/j.apradiso.2023.111158
dc.relation.referencesUnited Nations. (2000). Sources and effects of ionizing radiation. UNSCEAR.
dc.relation.referencesUnited Nations. (2006). Sources and effects of ionizing radiation: Sources-to-effects assessment for radon in homes and workplaces. UNSCEAR.
dc.relation.referencesVillareyes, E. (2023). Caracterización de tres centelladores de 1.5”x1.5”, 2”x2” y 3”x3” para la puesta a punto de una cadena para espectroscopía gamma. Revista de Investigación de Física, 26. https://doi.org/10.15381/rif.v26i1.23902
dc.relation.referencesWorld Health Organization. (2009). WHO handbook on indoor radon.
dc.relation.referencesWei Bo Li, et al. (2008). Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement. Radiation and Environmental Biophysics, 47, 101–110.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.ddc530 - Física::539 - Física moderna
dc.subject.proposalRadiación naturalspa
dc.subject.proposalRadón y su progeniespa
dc.subject.proposalMonitoreo individualspa
dc.subject.proposalModelos biocinéticosspa
dc.subject.proposalNatural radiationeng
dc.subject.proposalRadon and its progenyeng
dc.subject.proposalIndividual monitoringeng
dc.subject.proposalBiokinetic modelseng
dc.subject.wikidataRadón
dc.subject.wikidataRadionucleido
dc.subject.wikidataRadiación ionizante
dc.titleRadón y su progenie: monitoreo individual y ambiental en minas subterráneas en la región de Antioquia, Colombiaspa
dc.title.translatedRadon and its progeny: individual and environmental monitoring in underground mines in the region of Antioquia, Colombiaeng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Doctorado en Ciencias.pdf
Tamaño:
16.38 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: