Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación

dc.contributor.advisorArias Jaramillo, Yhan Paulspa
dc.contributor.authorRomero López, José Miguelspa
dc.contributor.researchgroupGrupo de Investigación en Construcciónspa
dc.coverage.cityMedellín, Colombiaspa
dc.date.accessioned2021-02-15T14:30:41Zspa
dc.date.available2021-02-15T14:30:41Zspa
dc.date.issued2020-09-25spa
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl crecimiento poblacional y la urbanización de las ciudades demanda una gran cantidad de recursos naturales no renovables que ejerce una presión considerable sobre el medio ambiente, asimismo, las actividades de la construcción generan una enorme cantidad de residuos de construcción y demolición (RCD) que en países como Colombia son escasamente aprovechados por lo que terminan dispuestos en rellenos sanitarios. A través de diferentes investigaciones se ha podido conocer el desempeño mecánico y la durabilidad de materiales fabricados a partir de estos residuos, por lo que se ha planteado la posibilidad de incorporar una fracción de material reciclado proveniente de residuos de concreto como reemplazo del árido grueso en la fabricación de nuevos elementos de concreto. Sin embargo, los áridos finos de concretos reciclados (FRCA) no son utilizados en grandes proporciones debido a las características propias de un material poroso y con una alta absorción, de manera que el grado de aprovechamiento es muy reducido. Mediante un estudio de las variables que afectan la durabilidad de los áridos reciclados, junto con un análisis estadístico ligado al desarrollo de la fase experimental de este trabajo de profundización, se obtuvieron datos acerca del desempeño por durabilidad de morteros fabricados a partir de residuos de concreto frente al fenómeno de la carbonatación en muestras expuestas a las condiciones ambientales de la ciudad de Medellín. Como resultado, la resistencia a la carbonatación para estos morteros siguiendo los modelos propuestos por los autores, fue de 41.6 años. Lo que deja abierta la posibilidad de utilizar los FRCA en la fabricación de nuevos morteros con aplicaciones en la construcción (Texto tomado de la fuente)spa
dc.description.abstractPopulation growth and urbanization of cities demand a large amount of non-renewable natural resources, which put considerable pressure on the sources of resources, and construction activities generate a huge amount of construction and demolition waste (RCD), which in countries like Colombia are hardly used, so they end up disposed of in landfills. Through different investigations, it has been possible to know the mechanical performance and durability of materials manufactured from this waste, therefore, the possibility of incorporating a fraction of recycled material from concrete waste as a replacement for coarse aggregate has been raised, in the manufacture of new concrete elements. However, the recycled fine concrete aggregates (FRCA) are not used in large proportions due to their characteristics, typical of a porous material and with a high absorption, so the degree of use is very low. Through a study of the variables that affect the durability of recycled aggregates, together with a statistical analysis linked to the development of the experimental phase of this research work, data were obtained about the durability performance of mortars made from concrete waste against the carbonation phenomenon. The carbonation resistance for these mortars, following the models proposed by the authors, was 41.6 years. This leaves open the possibility of using FRCAs in the manufacture of new mortars with applications in constructioneng
dc.description.curricularareaÁrea Curricular de Construcción y Hábitatspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Construcciónspa
dc.format.extent107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79238
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de construcciónspa
dc.publisher.facultyFacultad de Arquitecturaspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Arquitectura - Maestría en Construcciónspa
dc.relation.referencesAlaejos Gutiérrez, P., Sánchez de Juan, M., Domingo Cabo, A., Lázaro, C., Monleón, S., & Palacios, F. J. (2011). Puente sobre el río Turia entre Manises y Paterna (Valencia). Primera experiencia internacional de empleo de hormigón reciclado estructural en un puente atirantado (Parte II). Cemento Hormigón, 946, 70–87.spa
dc.relation.referencesAmables, O. C. (2019). Construir ciudades amables. 247–262.spa
dc.relation.referencesAMVA. (n.d.). Área Metropolitana del Valle de Aburrá. Retrieved May 21, 2020, from https://www.metropol.gov.co/spa
dc.relation.referencesAnn, K. Y., Moon, H. Y., Kim, Y. B., & Ryou, J. (2008). Durability of recycled aggregate concrete using pozzolanic materials. Waste Management, 28(6), 993–999. https://doi.org/10.1016/j.wasman.2007.03.003spa
dc.relation.referencesArandigoyen, M., & Álvarez, J. . (2006). Proceso de carbonatación en pastas de cal con distinta relación agua/conglomerante. Materiales de Construcción, 56(281), 5–18.spa
dc.relation.referencesBarrera Valdes, H. (2007). Carbonatación en edificios de concreto: dióxido de carbono, el enemigo silencioso. Noticreto, 84, 56–65.spa
dc.relation.referencesBasheer, L., Kropp, J., & Cleland, D. J. (2001). Assessment of the durability of concrete from its permeation properties: A review. Construction and Building Materials, 15(2–3), 93–103. https://doi.org/10.1016/S0950-0618(00)00058-1spa
dc.relation.referencesBedoya, C, & Dzul, L. (2015). Concrete with recycled aggregates as urban sustainability project. Revista Ingenieria de Construccion, 30(2), 99–108. https://doi.org/10.4067/S0718-50732015000200002spa
dc.relation.referencesBedoya, Carlos. (2015). Del residuo al material. Minería a la inversa. 160.spa
dc.relation.referencesBedoya Montoya, C. M. (2011). Construcción sostenible para volver al camino.spa
dc.relation.referencesBlengini, G. A. (2009). Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Building and Environment, 44(2), 319–330. https://doi.org/10.1016/j.buildenv.2008.03.007spa
dc.relation.referencesBunge, M. A. (2004). Emergencia y convergencia. 400.spa
dc.relation.referencesCartuxo, F., De Brito, J., Evangelista, L., Jiménez, J. R., & Ledesma, E. F. (2016). Increased durability of concrete made with fine recycled concrete aggregates using superplasticizers. Materials, 9(2). https://doi.org/10.3390/ma9020098spa
dc.relation.referencesCastaño, J. O., Robayo, E., & Sánchez, É. H. (2013). Materiales de construcción sostenibles: comportamiento mecánico y durabilidad de morteros con cenizas volantes activadas alcalinamente. Tecnura, 17(2), 79–89. https://doi.org/10.14483/22487638.7225spa
dc.relation.referencesCeramitec, leading trade fair for the ceramics industry. (n.d.). Retrieved May 19, 2020, from https://www.ceramitec.com/en/spa
dc.relation.referencesDANE. (2018). Déficit habitacional. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/deficit-habitacionalspa
dc.relation.referencesDe Melo, A. B., Gonalves, A. F., & Martins, I. M. (2011). Construction and demolition waste generation and management in Lisbon (Portugal). Resources, Conservation and Recycling, 55(12), 1252–1264. https://doi.org/10.1016/j.resconrec.2011.06.010spa
dc.relation.referencesDing, T., Xiao, J., Qin, F., & Duan, Z. (2020). Mechanical behavior of 3D printed mortar with recycled sand at early ages. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118654spa
dc.relation.referencesDomingo-Cabo, A., Lázaro, C., López-Gayarre, F., Serrano-López, M. A., Serna, P., & Castaño-Tabares, J. O. (2009). Creep and shrinkage of recycled aggregate concrete. Construction and Building Materials, 23(7), 2545–2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018spa
dc.relation.referencesEmvarias E.S.P. (2018). INDICADORES AMBIENTALES MEDELLÍN 2018.spa
dc.relation.referencesEstanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161spa
dc.relation.referencesEvangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1), 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005spa
dc.relation.referencesEvangelista, L., & De Brito, J. (2014). Concrete with fine recycled aggregates: A review. European Journal of Environmental and Civil Engineering, 18(2), 129–172. https://doi.org/10.1080/19648189.2013.851038spa
dc.relation.referencesFlower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1065/lca2007.05.327spa
dc.relation.referencesGalán García, I., Andrade Perdrix, C., Prieto Rábade, M., Mora Peris, P., López Aguí, J. C., & Sanjuán Barbudo, M. Á. (2010). Estudio del efecto sumidero de CO2 de los materiales de base cemento. Cemento Homigón, 939, 70–83.spa
dc.relation.referencesGarciandía, J. A. (2011). Pensar sistémico.spa
dc.relation.referencesGartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021spa
dc.relation.referencesGe, X. J., Livesey, P., Wang, J., Huang, S., He, X., & Zhang, C. (2017). Deconstruction waste management through 3d reconstruction and bim: a case study. Visualization in Engineering, 5(1). https://doi.org/10.1186/s40327-017-0050-5spa
dc.relation.referencesGlobal Aggregates Information Network. (2016). GLOBAL DEVELOPMENTS IN THE AGGREGATES INDUSTRY Global Aggregates Information Network. 12.spa
dc.relation.referencesGlobal Aggregates Information Network. (2018). UEPG - GAIN – Global Aggregates Information Network. http://www.uepg.eu/media-room/links/gain-global-aggregates-information-networkspa
dc.relation.referencesGonzález-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., & Carro-López, D. (2016). Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Materiales de Construcción, 66(323), e089. https://doi.org/10.3989/mc.2016.06415spa
dc.relation.referencesHeidegger, M. (1995). Construir, habitar, pensar.spa
dc.relation.referencesHendriks, C. A., Worrell, E., Jager, D. De, Blok, K., & Riemer, P. (2003). Emission Reduction of Greenhouse Gases from the Cement Industry. Greenhouse Gas Control Technologies Conference, 1–11.spa
dc.relation.referencesHiguchi, T., Morioka, M., Yoshioka, I., & Yokozeki, K. (2014). Development of a new ecological concrete with CO2 emissions below zero. Construction and Building Materials, 67(PART C), 338–343. https://doi.org/10.1016/j.conbuildmat.2014.01.029spa
dc.relation.referencesHonic, M., Kovacic, I., & Rechberger, H. (2019). Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. Journal of Cleaner Production, 217, 787–797. https://doi.org/10.1016/j.jclepro.2019.01.212spa
dc.relation.referencesIcontec. (2009). NTC 77. 571, 85.spa
dc.relation.referencesICONTEC. (2006). Sello Ambiental Colombiano. Ministerio de Ambiente y Desarrollo Sostenible, 8, 16. https://www.minambiente.gov.co/index.php/component/content/article?id=366:plantilla-asuntos-ambientales-y-sectorial-y-urbana-19#ntcspa
dc.relation.referencesIEA. (2017). Energy Technology Perspectives 2017 Catalysing Energy Technology Transformations Together Secure Sustainable. www.iea.org/etp2017.spa
dc.relation.referencesIEA. (2020). Global Energy Review 2020. Iea. https://www.iea.org/reports/global-energy-review-2020spa
dc.relation.referencesInstituto Nacional de Ecología. (n.d.). Retrieved May 19, 2020, from http://www2.inecc.gob.mx/publicaciones2/libros/265/referencias.htmlspa
dc.relation.referencesIsmail, S., & Ramli, M. (2013). Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Construction and Building Materials, 44, 464–476. https://doi.org/10.1016/j.conbuildmat.2013.03.014spa
dc.relation.referencesJ., Salazar, A. (2002). Síntesis de la tecnología del concreto. Una manera de entender a los materiales compuestos. Corporación Construir, 3 edición, 1–9.spa
dc.relation.referencesJiménez Herrero, L. (1999). Cambio global, desarrollo sostenible y coevolución. In Sostenible ? (Issue 1, pp. 37–63). https://doi.org/10.5821/sostenible.v0i1.1091spa
dc.relation.referencesKou, S C, & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032spa
dc.relation.referencesKou, Shi Cong, & Poon, C. S. (2009). Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Construction and Building Materials, 23(8), 2877–2886. https://doi.org/10.1016/j.conbuildmat.2009.02.009spa
dc.relation.referencesKou, Shi Cong, Poon, C. S., & Dixon, C. (2007). Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. Journal of Materials in Civil Engineering, 19(9), 709–717. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709)spa
dc.relation.referencesKou, Shi Cong, Poon, C. S., & Etxeberria, M. (2014). Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites, 53, 73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001spa
dc.relation.referencesLanger, W., Drew, L., & Sachs, J. (2004). Aggregate and the Environment. http://agris.fao.org/agris-search/search.do?recordID=US201300100395spa
dc.relation.referencesLehne, J., & Preston, F. (2018). Chatham House Report Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs, Chatham House Report Series, www.chathamhouse.org/sites/default/files/publications/research/2018‐06‐13‐makingconcrete‐ c. www.chathamhouse.orgspa
dc.relation.referencesLeng, F., Feng, N., & Lu, X. (2000). Experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989–992. https://doi.org/10.1016/S0008-8846(00)00250-7spa
dc.relation.referencesLiu, C., Zhu, C., Bai, G., Quan, Z., & Wu, J. (2019). Experimental investigation on compressive properties and carbon emission assessment of concrete hollow block masonry incorporating recycled concrete aggregates. Applied Sciences (Switzerland), 9(22). https://doi.org/10.3390/app9224870spa
dc.relation.referencesLyu, W.-Q., & Han, L.-H. (2019). Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. Journal of Constructional Steel Research, 155, 438–459. https://doi.org/10.1016/j.jcsr.2018.12.028spa
dc.relation.referencesMaduabuchukwu Nwakaire, C., Poh Yap, S., Chuen Onn, C., Wah Yuen, C., & Adebayo Ibrahim, H. (2020). Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Construction and Building Materials, 235, 117444. https://doi.org/10.1016/j.conbuildmat.2019.117444spa
dc.relation.referencesMarzouk, M., & Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics Environmental and economic impact assessment Pollutant emissions Waste recycling Global warming potential (GWP) System dynamics modeling. 82, 41–49. https://doi.org/10.1016/j.resconrec.2013.10.015spa
dc.relation.referencesMefteh, H., Kebaïli, O., Oucief, H., Berredjem, L., & Arabi, N. (2013). Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. Journal of Cleaner Production, 54, 282–288. https://doi.org/10.1016/j.jclepro.2013.05.009spa
dc.relation.referencesMinisterio de ambiente y desarrollo. (2012). Criterios ambientales para el diseño y construcción de vivienda urbana. In Articulo. https://www.minambiente.gov.co/index.php/component/content/article/2054-plantilla-asuntos-ambientales-y-sectorial-y-urbana-sin-galeria-88spa
dc.relation.referencesMorin, E. (2008). Introducción al pensamiento complejo.spa
dc.relation.referencesOtsuki, N., Miyazato, S. I., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)spa
dc.relation.referencesPalacios, M., Bowen, P., Kappl, M., Butt, H. J., Stuer, M., Pecharromán, C., Aschauer, U., & Puertas, F. (2012). Fuerzas de repulsión de aditivos superplastificantes en sistemas de escoria granulada de horno alto en medios alcalinos, desde medidas de AFM a propiedades reológicas. Materiales de Construccion, 62(308), 489–513. https://doi.org/10.3989/mc.2012.01612spa
dc.relation.referencesPantini, S., & Rigamonti, L. (2020). Is selective demolition always a sustainable choice? Waste Management, 103, 169–176. https://doi.org/10.1016/j.wasman.2019.12.033spa
dc.relation.referencesPara la Naturaleza | Los depósitos submarinos de arena en Puerto Rico. (2020). https://www.paralanaturaleza.org/los-depositos-submarinos-de-arena-en-puerto-rico/spa
dc.relation.referencesPedro, D., De Brito, J., & Evangelista, L. (2014). Influence of the use of recycled concrete aggregates from different sources on structural concrete. Construction and Building Materials, 71(2014), 141–151. https://doi.org/10.1016/j.conbuildmat.2014.08.030spa
dc.relation.referencesPereira, P., Evangelista, L., & De Brito, J. (2012). The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 34(9), 1044–1052. https://doi.org/10.1016/j.cemconcomp.2012.06.009spa
dc.relation.referencesPoon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34(1), 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8spa
dc.relation.referencesPrensa, C. De, & Colsubsidio, E. C. De. (2020). En CONSTRUVERDE Colombia 2016 se formalizará la Alianza “ Agenda 2030 de Construcción Sostenible ” para combatir el cambio climático y mejorar la calidad de vida. 1–4.spa
dc.relation.referencesPutzmeister. (2016). Plastificantes y superplastificantes: aditivos para la trabajabilidad del hormigón. http://bestsupportunderground.com/plastificantes-hormigon/spa
dc.relation.referencesRakhshan, K., Morel, J. C., Alaka, H., & Charef, R. (2020). Components reuse in the building sector – A systematic review. In Waste Management and Research (Vol. 38, Issue 4, pp. 347–370). SAGE Publications Ltd. https://doi.org/10.1177/0734242X20910463spa
dc.relation.referencesRamirez, C., & Pineda, M. (Ministerio D. A. Y. D. S. (2017). Resolución No. 0472. In Resolución No. 0472 (p. 11). http://www.minambiente.gov.co/images/normativa/app/resoluciones/3a-RESOLUCION-472-DE-2017.pdfspa
dc.relation.referencesShima, H., Tateyashiki, H., Matsuhashi, R., & Yoshida, Y. (2005). An advanced concrete recycling technology and its applicability assessment through input-output analysis. Journal of Advanced Concrete Technology, 3(1), 53–67. https://doi.org/10.3151/jact.3.53spa
dc.relation.referencesSiddique, R. (2003). Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cement and Concrete Research, 33(4), 539–547. https://doi.org/10.1016/S0008-8846(02)01000-1spa
dc.relation.referencesSituación, L. A., Mundo, D. E. L., Gardner, G., Prugh, T., Exner-pirot, H., Hagens, N. J., Loh, E. H., Machalaba, C. C., & Victor, P. A. (2015). Hacer Frente a Las Amenazas a La Sostenibilidad.spa
dc.relation.referencesSostenible, G. D. de C. y C. A. M. de A. y D., & Gobierno. (2019). Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio Estrategia Nacional de Economía Circular Contenido. http://www.andi.com.co/Uploads/Estrategia Nacional de EconÃ3mia Circular-2019 Final.pdf_637176135049017259.pdfspa
dc.relation.referencesTam, V. W. Y., Gao, X. F., Tam, C. M., & Chan, C. H. (2008). New approach in measuring water absorption of recycled aggregates. Construction and Building Materials, 22(3), 364–369. https://doi.org/10.1016/j.conbuildmat.2006.08.009spa
dc.relation.referencesTam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240spa
dc.relation.referencesTam, V. W. Y., & Tam, C. M. (2007). Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. Journal of Materials Science, 42(10), 3592–3602. https://doi.org/10.1007/s10853-006-0379-yspa
dc.relation.referencesTERRITORIO, M. D. V. C. Y. (n.d.). Resolución 0549 de 2015.Pdf.spa
dc.relation.referencesTertre, J., Moreno, A., & 3 Recycling. (2010). Hormigón con árido reciclado. http://www.hormigonespecial.com/~pdfs/MONOGRAFIA_RECICLADO.pdfspa
dc.relation.referencesUN periódico digital. (2020). Una tecnología equivocada, el problema del Relleno Sanitario Doña Juana. https://unperiodico.unal.edu.co/pages/detail/una-tecnologia-equivocada-el-problema-del-relleno-sanitario-dona-juana/spa
dc.relation.referencesUNIDAD DE PLANEACIÓN MINERO ENERGÉTICA - UPME. (2018). Resolución 463 de 2018 (p. 58). http://www1.upme.gov.co/Normatividad/463-2018.pdfspa
dc.relation.referencesUS Energy Information Administration. (2016). International Energy Outlook 2016: Chapter 4 - Coal. 2016, 61–79. https://www.eia.gov/outlooks/ieo/pdf/coal.pdfspa
dc.relation.referencesVallejo Clavijo, A. C. (2012). Pensar el construir, el habitar y la técnica: una reflexión sobre la Cuaternidad: la tierra, el cielo, los divinos y los mortales desde Heidegger. Hallazgos, 9(18), 53–65. https://doi.org/10.15332/s1794-3841.2012.0018.03spa
dc.relation.referencesVieira, C. S. (2020). Valorization of Fine-Grain Construction and Demolition (C&D) Waste in Geosynthetic Reinforced Structures. Waste and Biomass Valorization, 11(4), 1615–1626. https://doi.org/10.1007/s12649-018-0480-xspa
dc.relation.referencesVurlod, C. (2014). Recyclage du béton pour des gabions structurels.spa
dc.relation.referencesWang, C., Xiao, J., Zhang, C., & Xiao, X. (2020). Structural health monitoring and performance analysis of a 12-story recycled aggregate concrete structure. Engineering Structures, 205. https://doi.org/10.1016/j.engstruct.2019.110102spa
dc.relation.referencesWang, L., Wang, J., Xu, Y., Cui, L., Qian, X., Chen, P., & Fang, Y. (2019). Consolidating recycled concrete aggregates using phosphate solution. Construction and Building Materials, 200, 703–712. https://doi.org/10.1016/j.conbuildmat.2018.12.129spa
dc.relation.referencesXiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187–1194. https://doi.org/10.1016/j.cemconres.2004.09.020spa
dc.relation.referencesXiao, J., Li, W., Corr, D. J., & Shah, S. P. (2013). Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cement and Concrete Research, 52, 82–99. https://doi.org/10.1016/j.cemconres.2013.05.004spa
dc.relation.referencesXiao, J., Li, W., Fan, Y., & Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996-2011). Construction and Building Materials, 31, 364–383. https://doi.org/10.1016/j.conbuildmat.2011.12.074spa
dc.relation.referencesXiao, J., Li, W., Sun, Z., Lange, D. A., & Shah, S. P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37(1), 276–292. https://doi.org/10.1016/j.cemconcomp.2013.01.006spa
dc.relation.referencesYang, H., Xia, J., Thompson, J. R., & Flower, R. J. (2017). Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Management, 63, 393–396. https://doi.org/10.1016/j.wasman.2017.01.026spa
dc.relation.referencesZega, C. J., & Di Maio, Á. A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. https://doi.org/10.1016/j.wasman.2011.06.011spa
dc.relation.referencesZolotukhin, S. N., Byndyukova, E. A., & Chigarev, A. G. (2020). Experience of Development and Implementation of a House Project by an Architect. IOP Conference Series: Materials Science and Engineering, 753(4). https://doi.org/10.1088/1757-899X/753/4/042031spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.proposalConcretospa
dc.subject.proposalConcreteeng
dc.subject.proposalMorterosspa
dc.subject.proposalMortarseng
dc.subject.proposalÁridos recicladosspa
dc.subject.proposalRecycled aggregateseng
dc.subject.proposalCarbonataciónspa
dc.subject.proposalCarbonationeng
dc.subject.proposalConstruction materialseng
dc.subject.proposalMateriales de construcciónspa
dc.subject.proposalConstructioneng
dc.subject.proposalConstrucciónspa
dc.titleEstudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonataciónspa
dc.title.translatedStudy of the durability of mortars made with recycled aggregates exposed to the environmental conditions of the city of Medellín against the phenomenon of carbonationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_1843spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032459979.2020.pdf
Tamaño:
2.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: