Algunas caracterizaciones del Proceso Poisson Mixto

dc.contributor.advisorJiménez Moscoso, José Alfredospa
dc.contributor.authorPalomino Velandia, Gerson Yahirspa
dc.contributor.orcidPalomino Velandia, Gerson Yahir [000000018043050X]
dc.contributor.orcidJiménez Moscoso, José Alfredo [0000000223912809]
dc.date.accessioned2025-11-28T13:37:46Z
dc.date.available2025-11-28T13:37:46Z
dc.date.issued2025-08
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEn esta tesis se estudia el Proceso Poisson Mixto (PPM ), mediante un compilado de sus propiedades y caracterizaciones más relevantes. Como caso particular, se analiza el proceso de Hofmann, definido por Hofmann (1955) y estudiado posteriormente por Walhin (2000) y Jiménez-Moscoso (2013), generando una nueva caracterización a través de las intensidades de transición. Como resultado de este trabajo, se obtuvieron diversas recurrencias y propiedades del Proceso Poisson Mixto que permiten, entre otras cosas, recuperar como casos particulares algunos de los procesos de conteo más conocidos en la literatura, así como otros nuevos, entre los cuales se encuentran los procesos Poisson-beta transformado, Poisson-beta exponencial, Poisson-chi cuadrado no central, Poisson-Lévy, Poisson-Nakagami, Poisson-Rayleigh, Poisson-semi-normal y Poisson-Weibull. Asimismo, se obtuvo una expresión para el momento de orden r de las distribuciones de Hadwiger, Riebesell y Riebesell generalizada. Estas expresiones, junto con otras ya conocidas, se utilizaron para encontrar la distribución del Proceso Poisson Mixto (PPM). También se caracteriza al PPM como un proceso de nacimiento puro, a partir del análisis de sus intensidades de transición, lo que permite derivar propiedades relevantes del modelo. Finalmente, se derivaron las distribuciones de los procesos Pólya-Aeppli y Poisson-Pascal como casos particulares del Proceso Poisson Mixto, al considerar variables de estructura continua con distribuciones Riebesell y Riebesell generalizada, respectivamente. Cabe destacar que estos procesos, hasta ahora, solo habían sido presentados en la literatura como procesos Poisson compuestos. (Texto tomado de la fuente).spa
dc.description.abstractThis thesis studies the Mixed Poisson Process (MPP) by compiling its most relevant properties and characterizations. As a particular case, it examines the Hofmann process, originally defined by Hofmann (1955) and later studied by Walhin (2000) and Jiménez-Moscoso (2013), leading to a new characterization based on transition intensities. As a result of this work, several recurrence relations and properties of the Mixed Poisson Process were derived. These results make it possible to recover several well-known counting processes from the literature as particular cases, as well as to introduce new processes, including the Poisson-beta transformed, Poisson-beta exponential, Poisson–non-central chi-squared, Poisson-Lévy, Poisson-Nakagami, Poisson-Rayleigh, Poisson–semi-normal, and Poisson-Weibull processes. In addition, an expression for the r-th moment was obtained for the Hadwiger, Riebesell, and generalized Riebesell distributions. These results, together with existing expressions for other probability distributions, were used to derive the distribution of the MPP. The MPP is also characterized as a pure birth process, based on the analysis of its transition intensities, which allows for the derivation of relevant properties of the model. Finally, the distributions of the Pólya-Aeppli and Poisson-Pascal processes were obtained as particular cases of the Mixed Poisson Process, using continuous structure variables following Riebesell and generalized Riebesell distributions, respectively. Notably, these processes had previously only been presented in the literature as compound Poisson processes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extent160 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89158
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesM. Abramowitz and C. A. Stegun. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Monographs on Statistics and Applied Probability 12. National Bureau of Standards Applied Mathematics, 1972
dc.relation.referencesV. Adamchik. On Stirling numbers and Euler sums. Journal of Computational and Applied Mathematics, 79(1):119–130, 1997. https://doi.org/10.1016/S0377-0427(96)00167-7
dc.relation.referencesS. A. Al-Awadhi and M. E. Ghitany. Statistical properties of Poisson-Lomax distribution and its application to repeated accidents data. Journal of Applied Statistical Science, 10(4):365--372, 2001
dc.relation.referencesP. Albrecht. Laplace transforms, Mellin transforms and mixed Poisson processes. Scandinavian Actuarial Journal, 1984(1):58--64, 1984. https://doi.org/10.1080/03461238.1984.10413753
dc.relation.referencesA. G. Arbous and J. E. Kerrich. Accident statistics and the concept of accident-proneness. Biometrics, 7(4):340--432, 1951. http://doi.org/10.2307/3001656
dc.relation.referencesF. Ball. A note on variation in birth processes. The Mathematical Scientist, 20(1):50--55, 1995. ISSN 0312-3685
dc.relation.referencesM. S. Bartlett. The statistical approach to the study of random noise. Proceedings of the Physical Society, 51(3):359--379, 1938. doi: 10.1088/0959-5309/51/3/308
dc.relation.referencesA. M. Beltrán. Probabilidad de ruina en tiempo infinito modelando la distribución de reclamos mediante un proceso Panjer. Tesis, Facultad de Ciencias, Universidad Nacional de Colombia, Colombia, 2018
dc.relation.referencesS. N. Bernstein. Sur les fonctions absolument monotones. Acta Mathematica, 52:1--66, 1929. ISSN 0370-1646. https://doi.org/10.1007/BF02592679
dc.relation.referencesH. Bühlmann. Mathematical Methods in Risk Theory, volume 172 of Grundlehren der mathe- matischen Wissenschaften. Springer, Berlin, Heidelberg, 1970. ISBN 978-3-540-05117-6. doi: 10.1007/978-3-540-30711-2
dc.relation.referencesR. Consael. Sur les processus de Poisson du type composé. Bulletins de l’Académie Royale de Belgique, 38(1):442--461, 1952. URL https://www.persee.fr/doc/barb_0001-4141_1952_ num_38_1_69634. https://doi.org/10.3406/barb.1952.69634
dc.relation.referencesD. R. Cox and V. Isham. Point processes. Monographs on Statistics and Applied Probability 12. Chapman & Hall, 1980
dc.relation.referencesK. K. Das, I. Ahmed, and S. Bhattacharjee. A new three parameter Poisson Lindley distribution for modelling over dispersed count data. International Journal of Applied Engineering Research, 13(23):16468--16477, 2018. https://doi.org/10.37622/ijaer/13.23.2024.16468-16477
dc.relation.referencesP. Delaporte. Un problème de tarification de l’assurance accidents d’automobiles examiné par la statistique mathématique. In Trans. of the Sixteenth International Congress of Actuaries, volume 2, page 121, 1960
dc.relation.referencesJ. Dubourdieu. Remarques relatives à la théorie mathématique de l’assurance accidents. Bulletin Trimestriel de l’ Institut des Actuaires Français, 44:79--126, 1938
dc.relation.referencesP. Embrechts, R. Frey, and H. Furrer. Stochastic processes in insurance and finance. Handbook of Statistics Vol. 19 ‘‘Stochastic Processes: Theory and Methods’’. Elsevier Science B.V., North- Holland, 2001
dc.relation.referencesA. K. Erlang. The theory of probabilities and telephone conversations. Matematik Tidsskrift B, pages 33--39, 1909
dc.relation.referencesD. A. Evans. Experimental evidence concerning contagious distributions in ecology. Biometrika, 40 (1):186--211, 1953. https://doi.org/10.2307/2333108
dc.relation.referencesM. J. Faddy. On variation in Poisson processes. The Mathematical Scientist Applied probability trust, 19(1):47--51, 1994
dc.relation.referencesW. Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley, 1968
dc.relation.referencesW. Feller. Introducción a la Teoría de Probabilidades y sus Aplicaciones, volume I y II. Editorial Limusa, México, D.F., 2 edition, 1989
dc.relation.referencesWilliam Feller. An Introduction to Probability Theory and Its Applications, Volume I. John Wiley & Sons, New York, 1st edition, 1950
dc.relation.referencesL. M. García and J. A. Jiménez. Inferencia estadística: Curso intermedio. Universidad Nacional de Colombia, Bogotá, Colombia, 2025. ISBN 978-958-505-768-5
dc.relation.referencesH. W. Gould. Some generalizations of vandermonde’s convolution. The American Mathematical Monthly, 63(2):84--91, 1956. doi: 10.1080/00029890.1956.11988763. URL https://doi.org/10. 1080/00029890.1956.11988763
dc.relation.referencesH. W. Gould. Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Morgantown Printing and Binding Co., 1972
dc.relation.referencesJ. Grandell. Mixed Poisson Processes. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1997. ISBN 978-1-118-29440-6
dc.relation.referencesM. Greenwood and G. U. Yule. An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83:255--279, 1920. https: //www.jstor.org/stable/2341080
dc.relation.referencesJ. Gurland. A generalized class of contagious distributions. Biometrics, 14(2):229--249, 1958. https://doi.org/10.2307/2527787
dc.relation.referencesE. Gómez D., J. M. Sarabia, and Balakrishnan N. A multivariate discrete Poisson-Lindley distribution: extensions and actuarial applications. ASTIN Bulletin: The Journal of the IAA, 42 (2):655--678, 2012. https://doi.org/10.2143/AST.42.2.2182812
dc.relation.referencesB. G. Hansen. On log-concave and log-convex infinitely divisible sequences and densities. The Annals of Probability, 16(4):1832--1839, 2008
dc.relation.referencesM. Hofmann. Über zusammengesetzte Poisson-Prozesse und ihre Anwendungen in der Unfallversi- cherung. PhD thesis, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Germany, 1955. https://doi.org/10.3929/ethz-a-000091775
dc.relation.referencesM. S. Holla. On a Poisson–inverse gaussian distribution. Metrika, 11(1):115--121, December 1967. https://doi.org/10.1007/BF02613581
dc.relation.referencesP. W. Iseger, R. Dekker, and M. A. J. Smith. Computing compound distributions faster! Insurance: Mathematics and Economics, 20:23--34, 1997. https://doi.org/10.1016/S0167-6687(97) 00002-4
dc.relation.referencesJ. A. Jiménez-Moscoso. Una relación entre la distribución de Hofmann y distribución de Panjer. Revista Integración, 31(1):59--67, 2013
dc.relation.referencesJ. A. Jiménez-Moscoso. Introducción a la teoría estadística del riesgo. Universidad Nacional de Colombia, 04 2022. ISBN 978-958-794-879-0. http://doi.org/10.36385/FCBOG-13-0
dc.relation.referencesN. L. Johnson, S. Kotz, and N. Kemp. Univariate Discrete Distributions. Wiley-Interscience, New York, 1st edition, 1992. ISBN 978-0471629861
dc.relation.referencesB. Jørgensen. Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics 9. Springer-Verlag, New York, 1 edition, 1982
dc.relation.referencesK. Kandukuri and Bhatra N.Ch. Compound distribution of Poisson-Weibull. International Journal of Mathematics and Statistics Invention, 03 2021. https://doi.org/10.35629/4767-09012934
dc.relation.referencesD. Karlis and E. Xekalaki. Mixed Poisson distributions. International Statistical Review, 73(1): 35--58, 2005. https://doi.org/10.1111/j.1751-5823.2005.tb00250.x
dc.relation.referencesS. K. Katti and J. Gurland. The Poisson Pascal distribution. Biometrics, 17(4):527--538, 1961. https://doi.org/10.2307/2527853
dc.relation.referencesJ. Keilson and H. U. Gerber. Some results for discrete unimodality. Journal of the American Statistical Association, 66(334):386--389, 1971
dc.relation.referencesR. A. Kempton. A generalized form of Fisher’s logarithmic series. Biometrika, 62(1):29--38, 1975. https://doi.org/10.1093/biomet/62.1.29
dc.relation.referencesS. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss Models: From Data to Decisions. Wiley Series in Probability and Statistics. Wiley, 5th edition, 2019. ISBN 9781119523789. URL https://www.oreilly.com/library/view/loss-models-5th/9781119523789/
dc.relation.referencesM. J. Kronenburg. A generalization of the chu-vandermonde convolution and some harmonic number identities, 2021. URL https://arxiv.org/abs/1701.02768
dc.relation.referencesE. F. O. Lundberg. Approximerad framställning af sannolikhetsfunktionen: Återförsäkring af kollektivrisker. Phd thesis, Akademisk afhandling, Upsala, 1903. Almqvist & Wiksells
dc.relation.referencesO. Lundberg. On Random Processes and their Application to Sickness and Accident Statistics. Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series. Almqvist & Wiksells Boktryckeri-A.-B., Uppsala, Sweden, 1940
dc.relation.referencesE. Mahmoudi, H. Zamani, and R. S. Meshkat. Poisson-beta exponential distribution: Properties and applications. Journal of Statistical Research of Iran, 15:119--146, 09 2018. https://doi. org/10.29252/jsri.15.1.119
dc.relation.referencesJ. A. McFadden. The mixed Poisson process. Sankhyã: The Indian Journal of Statistics, 27(1): 83--92, 1965. https://www.jstor.org/stable/25049354
dc.relation.referencesL. Minkova. The pólya-aeppli process and ruin problems. Journal of Applied Mathematics and Stochastic Analysis, 2004, 09 2004. doi: 10.1155/S1048953304309032
dc.relation.referencesJ. Neyman. On a new class of ‘‘contagious’’ distributions, applicable in entomology and bacteriology. The Annals of Mathematical Statistics, 10(1):35--57, 1939. https://doi.org/10.1214/aoms/ 1177732245
dc.relation.referencesG. Palomino and J. A. Jiménez. Some results on the non-homogeneous hofmann process. In Applied Probability Theory - New Perspectives, Recent Advances and Trends, chapter 4, pages 107--124. IntechOpen, 2023. doi: 10.5772/intechopen.106422. URL https://www.intechopen. com/chapters/83171
dc.relation.referencesH. H. Panjer. Operational Risk: Modeling Analytics. Wiley Series in Applied Probability and Statistics Series. Wiley, 2006
dc.relation.referencesS. Rincón. Introducción a los procesos estocásticos. Facultad de Ciencias, UNAM, México, 2012
dc.relation.referencesS. M. Ross. Stochastic processes. Wiley Series in Applied Probability and Statistics Series. Wiley, 1996
dc.relation.referencesW. Rudin. Principles of mathematical analysis. International series in pure and applied mathematics. McGraw-Hill, 3d edition, 1976
dc.relation.referencesM. Sankaran. 275. note: The discrete Poisson-Lindley distribution. Biometrics, 26(1):145--149, 1970. http://doi.org/10.2307/2529053
dc.relation.referencesR. J. Sarguta. Four Routes to Mixed Poisson Distributions. PhD thesis, University of Nairobi, 2017
dc.relation.referencesR. J. Sarguta and J. A. M. Ottieno. Mixed Poisson distributions in terms of special functions. Mathematical Theory and Modeling, 5(6):245--274, 2015
dc.relation.referencesK. D. Schmidt. Lectures on Risk Theory. Teubner Skripten zur Mathematischen Stochastik. Springer, 1996
dc.relation.referencesH. L. Seal. Stochastic theory of a risk business. Wiley Series in Applied Probability and Statistics Series. Wiley, 1969
dc.relation.referencesG. Shyamala, J. Priyadharshini, and V. Saavithri. Homogeneous com-poisson pascal process. International Journal for Research in Engineering Application and Management, 5(2):1--4, 2019. URL https://www.ijream.org/papers/IJREAMV05I0289005.pdf
dc.relation.referencesH. S. Sichel. On a family of discrete distributions particularly suited to represent long-tailed frequency data. In Proceedings of the third symposium on mathematical statistics. SACSIR, 1971
dc.relation.referencesH. S. Sichel. On a distribution representing sentence-length in written prose. Journal of the Royal Statistical Society. Series A (General), 137(1):25--34, 1974. https://doi.org/10.2307/ 2345142
dc.relation.referencesG. Stein, W. Zucchini, and J. Juritz. Parameter estimation for the Sichel distribution and its multivariate extension. Journal of The American Statistical Association - J AMER STATIST ASSN, 82(399):938--944, 09 1987. https://doi.org/10.2307/2288808
dc.relation.referencesF. Steutel and K. Van Harn. Infinite Divisibility of Probability Distributions on the Real Line. Pure and Applied Mathematics. CRC Press, Marcel Dekker, Boca Raton, 2003
dc.relation.referencesP. Thyrion. Contribution a l’etude du bonus pour non sinistre en assurance automobile. ASTIN Bulletin, 1(3):142--162, 1960
dc.relation.referencesG. Venter. Transformed beta and gamma distributions and aggregate losses. Proceedings of the Casualty Actuarial Society, 70(133 & 134):156--193, 1983
dc.relation.referencesJ. F. Walhin. Recursions for actuaries and applications in the field of reinsurance and bonus-malus systems. PhD thesis, Université catholique de Louvain, institut de statistique, Louvain-la-Neuve, 2000
dc.relation.referencesJ. F. Walhin and J. Paris. Using mixed Poisson processes in connection with bonus-malus systems. ASTIN Bulletin, 29(1):81--99, 1999. https://doi.org/10.2143/AST.29.1.504607
dc.relation.referencesJ. F. Walhin and J. Paris. The practical replacement of a bonus-malus system. ASTIN Bulletin, 31 (2):317--335, 2001. https://doi.org/10.2143/AST.31.2.1008
dc.relation.referencesJ. F. Walhin and J. Paris. A general family of overdispersed probability laws. Belgian Actuarial Bulletin, 2(1):1--8, 2002
dc.relation.referencesG. E. Willmot. Mixed compound Poisson distributions. ASTIN Bulletin, 16(S1):S59--S79, 1986. http://doi.org/10.1017/S051503610001165X
dc.relation.referencesG. E. Willmot. On recursive evaluation of mixed Poisson probabilities and related quantities. Scandinavian Actuarial Journal, 1993(2):114--133, 1993. https://www.tandfonline.com/doi/ abs/10.1080/03461238.1993.10413920
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalProceso Poisson Mixtospa
dc.subject.proposalProceso Poissonspa
dc.subject.proposalProceso de Hofmannspa
dc.subject.proposalProceso de conteospa
dc.subject.proposalPoisson processeng
dc.subject.proposalMixed Poisson processeng
dc.subject.proposalHofmann processeng
dc.subject.proposalCounting processeng
dc.subject.wikidatadistribución de probabilidadspa
dc.subject.wikidataprobability distributioneng
dc.subject.wikidataproceso estocásticospa
dc.subject.wikidatastochastic processeng
dc.subject.wikidatateoría de la probabilidadspa
dc.subject.wikidataprobability theoryeng
dc.titleAlgunas caracterizaciones del Proceso Poisson Mixtospa
dc.title.translatedSome characterizations of the Mixed Poisson Processeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Algunas caracterizaciones del Proceso Poisson Mixto.pdf
Tamaño:
1.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: