Algunas caracterizaciones del Proceso Poisson Mixto
| dc.contributor.advisor | Jiménez Moscoso, José Alfredo | spa |
| dc.contributor.author | Palomino Velandia, Gerson Yahir | spa |
| dc.contributor.orcid | Palomino Velandia, Gerson Yahir [000000018043050X] | |
| dc.contributor.orcid | Jiménez Moscoso, José Alfredo [0000000223912809] | |
| dc.date.accessioned | 2025-11-28T13:37:46Z | |
| dc.date.available | 2025-11-28T13:37:46Z | |
| dc.date.issued | 2025-08 | |
| dc.description | ilustraciones, gráficas, tablas | spa |
| dc.description.abstract | En esta tesis se estudia el Proceso Poisson Mixto (PPM ), mediante un compilado de sus propiedades y caracterizaciones más relevantes. Como caso particular, se analiza el proceso de Hofmann, definido por Hofmann (1955) y estudiado posteriormente por Walhin (2000) y Jiménez-Moscoso (2013), generando una nueva caracterización a través de las intensidades de transición. Como resultado de este trabajo, se obtuvieron diversas recurrencias y propiedades del Proceso Poisson Mixto que permiten, entre otras cosas, recuperar como casos particulares algunos de los procesos de conteo más conocidos en la literatura, así como otros nuevos, entre los cuales se encuentran los procesos Poisson-beta transformado, Poisson-beta exponencial, Poisson-chi cuadrado no central, Poisson-Lévy, Poisson-Nakagami, Poisson-Rayleigh, Poisson-semi-normal y Poisson-Weibull. Asimismo, se obtuvo una expresión para el momento de orden r de las distribuciones de Hadwiger, Riebesell y Riebesell generalizada. Estas expresiones, junto con otras ya conocidas, se utilizaron para encontrar la distribución del Proceso Poisson Mixto (PPM). También se caracteriza al PPM como un proceso de nacimiento puro, a partir del análisis de sus intensidades de transición, lo que permite derivar propiedades relevantes del modelo. Finalmente, se derivaron las distribuciones de los procesos Pólya-Aeppli y Poisson-Pascal como casos particulares del Proceso Poisson Mixto, al considerar variables de estructura continua con distribuciones Riebesell y Riebesell generalizada, respectivamente. Cabe destacar que estos procesos, hasta ahora, solo habían sido presentados en la literatura como procesos Poisson compuestos. (Texto tomado de la fuente). | spa |
| dc.description.abstract | This thesis studies the Mixed Poisson Process (MPP) by compiling its most relevant properties and characterizations. As a particular case, it examines the Hofmann process, originally defined by Hofmann (1955) and later studied by Walhin (2000) and Jiménez-Moscoso (2013), leading to a new characterization based on transition intensities. As a result of this work, several recurrence relations and properties of the Mixed Poisson Process were derived. These results make it possible to recover several well-known counting processes from the literature as particular cases, as well as to introduce new processes, including the Poisson-beta transformed, Poisson-beta exponential, Poisson–non-central chi-squared, Poisson-Lévy, Poisson-Nakagami, Poisson-Rayleigh, Poisson–semi-normal, and Poisson-Weibull processes. In addition, an expression for the r-th moment was obtained for the Hadwiger, Riebesell, and generalized Riebesell distributions. These results, together with existing expressions for other probability distributions, were used to derive the distribution of the MPP. The MPP is also characterized as a pure birth process, based on the analysis of its transition intensities, which allows for the derivation of relevant properties of the model. Finally, the distributions of the Pólya-Aeppli and Poisson-Pascal processes were obtained as particular cases of the Mixed Poisson Process, using continuous structure variables following Riebesell and generalized Riebesell distributions, respectively. Notably, these processes had previously only been presented in the literature as compound Poisson processes. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Estadística | spa |
| dc.format.extent | 160 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89158 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Estadística | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
| dc.relation.references | M. Abramowitz and C. A. Stegun. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Monographs on Statistics and Applied Probability 12. National Bureau of Standards Applied Mathematics, 1972 | |
| dc.relation.references | V. Adamchik. On Stirling numbers and Euler sums. Journal of Computational and Applied Mathematics, 79(1):119–130, 1997. https://doi.org/10.1016/S0377-0427(96)00167-7 | |
| dc.relation.references | S. A. Al-Awadhi and M. E. Ghitany. Statistical properties of Poisson-Lomax distribution and its application to repeated accidents data. Journal of Applied Statistical Science, 10(4):365--372, 2001 | |
| dc.relation.references | P. Albrecht. Laplace transforms, Mellin transforms and mixed Poisson processes. Scandinavian Actuarial Journal, 1984(1):58--64, 1984. https://doi.org/10.1080/03461238.1984.10413753 | |
| dc.relation.references | A. G. Arbous and J. E. Kerrich. Accident statistics and the concept of accident-proneness. Biometrics, 7(4):340--432, 1951. http://doi.org/10.2307/3001656 | |
| dc.relation.references | F. Ball. A note on variation in birth processes. The Mathematical Scientist, 20(1):50--55, 1995. ISSN 0312-3685 | |
| dc.relation.references | M. S. Bartlett. The statistical approach to the study of random noise. Proceedings of the Physical Society, 51(3):359--379, 1938. doi: 10.1088/0959-5309/51/3/308 | |
| dc.relation.references | A. M. Beltrán. Probabilidad de ruina en tiempo infinito modelando la distribución de reclamos mediante un proceso Panjer. Tesis, Facultad de Ciencias, Universidad Nacional de Colombia, Colombia, 2018 | |
| dc.relation.references | S. N. Bernstein. Sur les fonctions absolument monotones. Acta Mathematica, 52:1--66, 1929. ISSN 0370-1646. https://doi.org/10.1007/BF02592679 | |
| dc.relation.references | H. Bühlmann. Mathematical Methods in Risk Theory, volume 172 of Grundlehren der mathe- matischen Wissenschaften. Springer, Berlin, Heidelberg, 1970. ISBN 978-3-540-05117-6. doi: 10.1007/978-3-540-30711-2 | |
| dc.relation.references | R. Consael. Sur les processus de Poisson du type composé. Bulletins de l’Académie Royale de Belgique, 38(1):442--461, 1952. URL https://www.persee.fr/doc/barb_0001-4141_1952_ num_38_1_69634. https://doi.org/10.3406/barb.1952.69634 | |
| dc.relation.references | D. R. Cox and V. Isham. Point processes. Monographs on Statistics and Applied Probability 12. Chapman & Hall, 1980 | |
| dc.relation.references | K. K. Das, I. Ahmed, and S. Bhattacharjee. A new three parameter Poisson Lindley distribution for modelling over dispersed count data. International Journal of Applied Engineering Research, 13(23):16468--16477, 2018. https://doi.org/10.37622/ijaer/13.23.2024.16468-16477 | |
| dc.relation.references | P. Delaporte. Un problème de tarification de l’assurance accidents d’automobiles examiné par la statistique mathématique. In Trans. of the Sixteenth International Congress of Actuaries, volume 2, page 121, 1960 | |
| dc.relation.references | J. Dubourdieu. Remarques relatives à la théorie mathématique de l’assurance accidents. Bulletin Trimestriel de l’ Institut des Actuaires Français, 44:79--126, 1938 | |
| dc.relation.references | P. Embrechts, R. Frey, and H. Furrer. Stochastic processes in insurance and finance. Handbook of Statistics Vol. 19 ‘‘Stochastic Processes: Theory and Methods’’. Elsevier Science B.V., North- Holland, 2001 | |
| dc.relation.references | A. K. Erlang. The theory of probabilities and telephone conversations. Matematik Tidsskrift B, pages 33--39, 1909 | |
| dc.relation.references | D. A. Evans. Experimental evidence concerning contagious distributions in ecology. Biometrika, 40 (1):186--211, 1953. https://doi.org/10.2307/2333108 | |
| dc.relation.references | M. J. Faddy. On variation in Poisson processes. The Mathematical Scientist Applied probability trust, 19(1):47--51, 1994 | |
| dc.relation.references | W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley, 1968 | |
| dc.relation.references | W. Feller. Introducción a la Teoría de Probabilidades y sus Aplicaciones, volume I y II. Editorial Limusa, México, D.F., 2 edition, 1989 | |
| dc.relation.references | William Feller. An Introduction to Probability Theory and Its Applications, Volume I. John Wiley & Sons, New York, 1st edition, 1950 | |
| dc.relation.references | L. M. García and J. A. Jiménez. Inferencia estadística: Curso intermedio. Universidad Nacional de Colombia, Bogotá, Colombia, 2025. ISBN 978-958-505-768-5 | |
| dc.relation.references | H. W. Gould. Some generalizations of vandermonde’s convolution. The American Mathematical Monthly, 63(2):84--91, 1956. doi: 10.1080/00029890.1956.11988763. URL https://doi.org/10. 1080/00029890.1956.11988763 | |
| dc.relation.references | H. W. Gould. Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Morgantown Printing and Binding Co., 1972 | |
| dc.relation.references | J. Grandell. Mixed Poisson Processes. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1997. ISBN 978-1-118-29440-6 | |
| dc.relation.references | M. Greenwood and G. U. Yule. An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83:255--279, 1920. https: //www.jstor.org/stable/2341080 | |
| dc.relation.references | J. Gurland. A generalized class of contagious distributions. Biometrics, 14(2):229--249, 1958. https://doi.org/10.2307/2527787 | |
| dc.relation.references | E. Gómez D., J. M. Sarabia, and Balakrishnan N. A multivariate discrete Poisson-Lindley distribution: extensions and actuarial applications. ASTIN Bulletin: The Journal of the IAA, 42 (2):655--678, 2012. https://doi.org/10.2143/AST.42.2.2182812 | |
| dc.relation.references | B. G. Hansen. On log-concave and log-convex infinitely divisible sequences and densities. The Annals of Probability, 16(4):1832--1839, 2008 | |
| dc.relation.references | M. Hofmann. Über zusammengesetzte Poisson-Prozesse und ihre Anwendungen in der Unfallversi- cherung. PhD thesis, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Germany, 1955. https://doi.org/10.3929/ethz-a-000091775 | |
| dc.relation.references | M. S. Holla. On a Poisson–inverse gaussian distribution. Metrika, 11(1):115--121, December 1967. https://doi.org/10.1007/BF02613581 | |
| dc.relation.references | P. W. Iseger, R. Dekker, and M. A. J. Smith. Computing compound distributions faster! Insurance: Mathematics and Economics, 20:23--34, 1997. https://doi.org/10.1016/S0167-6687(97) 00002-4 | |
| dc.relation.references | J. A. Jiménez-Moscoso. Una relación entre la distribución de Hofmann y distribución de Panjer. Revista Integración, 31(1):59--67, 2013 | |
| dc.relation.references | J. A. Jiménez-Moscoso. Introducción a la teoría estadística del riesgo. Universidad Nacional de Colombia, 04 2022. ISBN 978-958-794-879-0. http://doi.org/10.36385/FCBOG-13-0 | |
| dc.relation.references | N. L. Johnson, S. Kotz, and N. Kemp. Univariate Discrete Distributions. Wiley-Interscience, New York, 1st edition, 1992. ISBN 978-0471629861 | |
| dc.relation.references | B. Jørgensen. Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics 9. Springer-Verlag, New York, 1 edition, 1982 | |
| dc.relation.references | K. Kandukuri and Bhatra N.Ch. Compound distribution of Poisson-Weibull. International Journal of Mathematics and Statistics Invention, 03 2021. https://doi.org/10.35629/4767-09012934 | |
| dc.relation.references | D. Karlis and E. Xekalaki. Mixed Poisson distributions. International Statistical Review, 73(1): 35--58, 2005. https://doi.org/10.1111/j.1751-5823.2005.tb00250.x | |
| dc.relation.references | S. K. Katti and J. Gurland. The Poisson Pascal distribution. Biometrics, 17(4):527--538, 1961. https://doi.org/10.2307/2527853 | |
| dc.relation.references | J. Keilson and H. U. Gerber. Some results for discrete unimodality. Journal of the American Statistical Association, 66(334):386--389, 1971 | |
| dc.relation.references | R. A. Kempton. A generalized form of Fisher’s logarithmic series. Biometrika, 62(1):29--38, 1975. https://doi.org/10.1093/biomet/62.1.29 | |
| dc.relation.references | S. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss Models: From Data to Decisions. Wiley Series in Probability and Statistics. Wiley, 5th edition, 2019. ISBN 9781119523789. URL https://www.oreilly.com/library/view/loss-models-5th/9781119523789/ | |
| dc.relation.references | M. J. Kronenburg. A generalization of the chu-vandermonde convolution and some harmonic number identities, 2021. URL https://arxiv.org/abs/1701.02768 | |
| dc.relation.references | E. F. O. Lundberg. Approximerad framställning af sannolikhetsfunktionen: Återförsäkring af kollektivrisker. Phd thesis, Akademisk afhandling, Upsala, 1903. Almqvist & Wiksells | |
| dc.relation.references | O. Lundberg. On Random Processes and their Application to Sickness and Accident Statistics. Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series. Almqvist & Wiksells Boktryckeri-A.-B., Uppsala, Sweden, 1940 | |
| dc.relation.references | E. Mahmoudi, H. Zamani, and R. S. Meshkat. Poisson-beta exponential distribution: Properties and applications. Journal of Statistical Research of Iran, 15:119--146, 09 2018. https://doi. org/10.29252/jsri.15.1.119 | |
| dc.relation.references | J. A. McFadden. The mixed Poisson process. Sankhyã: The Indian Journal of Statistics, 27(1): 83--92, 1965. https://www.jstor.org/stable/25049354 | |
| dc.relation.references | L. Minkova. The pólya-aeppli process and ruin problems. Journal of Applied Mathematics and Stochastic Analysis, 2004, 09 2004. doi: 10.1155/S1048953304309032 | |
| dc.relation.references | J. Neyman. On a new class of ‘‘contagious’’ distributions, applicable in entomology and bacteriology. The Annals of Mathematical Statistics, 10(1):35--57, 1939. https://doi.org/10.1214/aoms/ 1177732245 | |
| dc.relation.references | G. Palomino and J. A. Jiménez. Some results on the non-homogeneous hofmann process. In Applied Probability Theory - New Perspectives, Recent Advances and Trends, chapter 4, pages 107--124. IntechOpen, 2023. doi: 10.5772/intechopen.106422. URL https://www.intechopen. com/chapters/83171 | |
| dc.relation.references | H. H. Panjer. Operational Risk: Modeling Analytics. Wiley Series in Applied Probability and Statistics Series. Wiley, 2006 | |
| dc.relation.references | S. Rincón. Introducción a los procesos estocásticos. Facultad de Ciencias, UNAM, México, 2012 | |
| dc.relation.references | S. M. Ross. Stochastic processes. Wiley Series in Applied Probability and Statistics Series. Wiley, 1996 | |
| dc.relation.references | W. Rudin. Principles of mathematical analysis. International series in pure and applied mathematics. McGraw-Hill, 3d edition, 1976 | |
| dc.relation.references | M. Sankaran. 275. note: The discrete Poisson-Lindley distribution. Biometrics, 26(1):145--149, 1970. http://doi.org/10.2307/2529053 | |
| dc.relation.references | R. J. Sarguta. Four Routes to Mixed Poisson Distributions. PhD thesis, University of Nairobi, 2017 | |
| dc.relation.references | R. J. Sarguta and J. A. M. Ottieno. Mixed Poisson distributions in terms of special functions. Mathematical Theory and Modeling, 5(6):245--274, 2015 | |
| dc.relation.references | K. D. Schmidt. Lectures on Risk Theory. Teubner Skripten zur Mathematischen Stochastik. Springer, 1996 | |
| dc.relation.references | H. L. Seal. Stochastic theory of a risk business. Wiley Series in Applied Probability and Statistics Series. Wiley, 1969 | |
| dc.relation.references | G. Shyamala, J. Priyadharshini, and V. Saavithri. Homogeneous com-poisson pascal process. International Journal for Research in Engineering Application and Management, 5(2):1--4, 2019. URL https://www.ijream.org/papers/IJREAMV05I0289005.pdf | |
| dc.relation.references | H. S. Sichel. On a family of discrete distributions particularly suited to represent long-tailed frequency data. In Proceedings of the third symposium on mathematical statistics. SACSIR, 1971 | |
| dc.relation.references | H. S. Sichel. On a distribution representing sentence-length in written prose. Journal of the Royal Statistical Society. Series A (General), 137(1):25--34, 1974. https://doi.org/10.2307/ 2345142 | |
| dc.relation.references | G. Stein, W. Zucchini, and J. Juritz. Parameter estimation for the Sichel distribution and its multivariate extension. Journal of The American Statistical Association - J AMER STATIST ASSN, 82(399):938--944, 09 1987. https://doi.org/10.2307/2288808 | |
| dc.relation.references | F. Steutel and K. Van Harn. Infinite Divisibility of Probability Distributions on the Real Line. Pure and Applied Mathematics. CRC Press, Marcel Dekker, Boca Raton, 2003 | |
| dc.relation.references | P. Thyrion. Contribution a l’etude du bonus pour non sinistre en assurance automobile. ASTIN Bulletin, 1(3):142--162, 1960 | |
| dc.relation.references | G. Venter. Transformed beta and gamma distributions and aggregate losses. Proceedings of the Casualty Actuarial Society, 70(133 & 134):156--193, 1983 | |
| dc.relation.references | J. F. Walhin. Recursions for actuaries and applications in the field of reinsurance and bonus-malus systems. PhD thesis, Université catholique de Louvain, institut de statistique, Louvain-la-Neuve, 2000 | |
| dc.relation.references | J. F. Walhin and J. Paris. Using mixed Poisson processes in connection with bonus-malus systems. ASTIN Bulletin, 29(1):81--99, 1999. https://doi.org/10.2143/AST.29.1.504607 | |
| dc.relation.references | J. F. Walhin and J. Paris. The practical replacement of a bonus-malus system. ASTIN Bulletin, 31 (2):317--335, 2001. https://doi.org/10.2143/AST.31.2.1008 | |
| dc.relation.references | J. F. Walhin and J. Paris. A general family of overdispersed probability laws. Belgian Actuarial Bulletin, 2(1):1--8, 2002 | |
| dc.relation.references | G. E. Willmot. Mixed compound Poisson distributions. ASTIN Bulletin, 16(S1):S59--S79, 1986. http://doi.org/10.1017/S051503610001165X | |
| dc.relation.references | G. E. Willmot. On recursive evaluation of mixed Poisson probabilities and related quantities. Scandinavian Actuarial Journal, 1993(2):114--133, 1993. https://www.tandfonline.com/doi/ abs/10.1080/03461238.1993.10413920 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 510 - Matemáticas::511 - Principios generales de las matemáticas | spa |
| dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
| dc.subject.proposal | Proceso Poisson Mixto | spa |
| dc.subject.proposal | Proceso Poisson | spa |
| dc.subject.proposal | Proceso de Hofmann | spa |
| dc.subject.proposal | Proceso de conteo | spa |
| dc.subject.proposal | Poisson process | eng |
| dc.subject.proposal | Mixed Poisson process | eng |
| dc.subject.proposal | Hofmann process | eng |
| dc.subject.proposal | Counting process | eng |
| dc.subject.wikidata | distribución de probabilidad | spa |
| dc.subject.wikidata | probability distribution | eng |
| dc.subject.wikidata | proceso estocástico | spa |
| dc.subject.wikidata | stochastic process | eng |
| dc.subject.wikidata | teoría de la probabilidad | spa |
| dc.subject.wikidata | probability theory | eng |
| dc.title | Algunas caracterizaciones del Proceso Poisson Mixto | spa |
| dc.title.translated | Some characterizations of the Mixed Poisson Process | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Algunas caracterizaciones del Proceso Poisson Mixto.pdf
- Tamaño:
- 1.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

