Análisis estadístico de datos multivariados

dc.contributor.authorDíaz Monroy, Luis Guillermo
dc.contributor.authorMorales Rivera, Mario Alfonso
dc.contributor.otherMorales Rivera, Mario Alfonso
dc.contributor.otherLlanos, Willian Javier
dc.date.accessioned2021-08-11T16:25:06Z
dc.date.available2021-08-11T16:25:06Z
dc.date.issued2012
dc.descriptionGráficas y tablasspa
dc.description.abstractLa intención al escribir este texto, es ofrecer un material actualizado de análisis y métodos estadísticos multivariados, de fácil acceso para estadísticos y usuarios de la estadística de diferentes disciplinas y áreas del conocimiento. Aunque existe una buena cantidad de esta literatura, son escasos los textos en el idioma español o los que traten varias temáticas de la estadística multivariada a la vez. El orden, el desarrollo didáctico y la presentación de los temas se ha hecho pensando en un lector que posea algunos elementos básicos de matemáticas y de la estadística exploratoria e inferencial. No obstante, se han anexado algunos tópicos de álgebra lineal (Apéndice A) y de estadística univariada (Apéndice B), con los cuales el interesado puede llenar los posibles vacíos que posea en estas áreas o acudir a ellos cuando requiera para avanzar y aprovechar los tópicos presentados. (Texto tomado de la fuente).spa
dc.description.editionPrimera ediciónspa
dc.description.notesIncluye apéndices e índice analíticospa
dc.description.notesISBN de la versión impresa 9789587613254spa
dc.format.extentxxv, 635 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79916
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.departmentSede Bogotáspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationeditionPrimera ediciónspa
dc.relation.ispartofseriesColección textos;
dc.relation.referencesAlfenderfer, M. S. & Blashfield, R. (1984), Cluster Analysis, Quantitative Applications in the Social Sciences, Sage Publications, Beverly Hills.spa
dc.relation.referencesAnderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, John Wiley and Sons.spa
dc.relation.referencesAndrews, D. F. (1972), ‘Plots of high-dimensional data’, Biometrics 28, 125– 136.spa
dc.relation.referencesAndrews, D. F., Gnanadesikan, R. & Warner, J. L. (1973), Methods for Assessing Multivariate Normality, Vol. 3 of Multivariate Analysis, Academic Press, New York.spa
dc.relation.referencesAnjos, U. et al. (2004), Modelando Depêndencias via Copulas, SINAPE, Caxambu, Minas Gerais.spa
dc.relation.referencesArnold, S. F. (1981), The Theory of Linear Models and Multivariate Analysis, John Wiley and Sons.spa
dc.relation.referencesBartlett, M. S. (1937), ‘Properties of sufficiency and statistical tests’, Proceedings of the Royal Society of London 160, 268–282.spa
dc.relation.referencesBartlett, M. S. (1939), ‘A note on test of significance in multivariate analysis’, Proceedings of the Cambridge Philosophical Society 35, 180–185.spa
dc.relation.referencesBartlett, M. S. (1947), ‘Multivariate analysis’, Journal of the Royal Statistical Society (9), 176–197.spa
dc.relation.referencesBartlett, M. S. (1954), ‘A note on multiplying factors for various chi-squared approximations’, Journal of the Royal Statistical Society 16, 296–298.spa
dc.relation.referencesBenzecri, J. P. (1964), Cours de Linguistique Mathématique, Publication multigraphiée, Faculté des Sciences de Rennes.spa
dc.relation.referencesBiscay, R., Valdes, P. & Pascual, R. (1990), ‘Modified fisher’s linear discriminant function with reduction of dimensionality’, Statistical Computation and simulation 36, 1–8.spa
dc.relation.referencesBorg, I. & Groenen, P. (1997), Modern Multidimensional Scaling, Springer, New York.spa
dc.relation.referencesBox, G. E. P. (1949), ‘A general distribution theory for a class of likelihood criteria’, Biometrika 36, 317–346.spa
dc.relation.referencesBox, G. E. P. & Cox, D. R. (1964), ‘An analysis of transformations’, Journal of the Royal Statistical Society 26, 211–252.spa
dc.relation.referencesBuck, S. F. A. (1960), ‘A method of estimation of missing values in multivariate data suitable for use with an electronic computer’, Journal of the Royal Statistics Society 22, 302–307.spa
dc.relation.referencesButts, C. T. (2009), yacca: Yet Another Canonical Correlation Analysis Package. R package version 1.1.spa
dc.relation.referencesChatfield, C. & Collins, A. J. (1986), Introduction to Multivariate Analysis, Chapman & Hall, New York.spa
dc.relation.referencesCherkassky, V., Friedman, J. & Wechsler, H. (1993), From Statistics to Neural Networks, theory and Pattern Recognition Applications, Springer, Berlin.spa
dc.relation.referencesChernoff, H. (1973), ‘Using faces to represent points in k-dimensional space graphically’, Journal of the American Statistics Association 68, 361–368.spa
dc.relation.referencesClifford, H. & Stephenson, W. (1975), Introduction to Numerical Taxonomic, Academic Press, New York.spa
dc.relation.referencesCox, T. F. & Cox, M. A. (1994), Multidimensional Scaling, Chapman Hall, London.spa
dc.relation.referencesCrisci, J. V. & López, M. F. (1983), Introducción a la Teoría y Práctica de la Taxonomía Numérica, Secretaría General de la OEA, Washington, D. C.spa
dc.relation.referencesD’Agostino, R. B. & Pearson, E. S. (1973), ‘Test for deperture from normality. empirical results for the distributions of b 2 and √ b 1’, Biometrika 60, 60, 613–622.spa
dc.relation.referencesD´ıaz, L. G. & López, L. A. (1992), ‘Tamaño de muestra en diseño experimental’, Memorias III Simposio de Estadística pp. 132–154.spa
dc.relation.referencesDiday, E. (1972), ‘Optimisation en classification automatique et reconnnaisance des formes’, Revue Française de Recherche Opérationnelle 3, 61–96.spa
dc.relation.referencesDillon, W. R. & Goldstein, M. (1984), Multivariate Analysis, Methods and Applications, John Wiley and Sons, New York.spa
dc.relation.referencesEfron, B. & Tibshirani, R. (1993), An Introduction to the Bootstrap, Chapman and Hall, London.spa
dc.relation.referencesEscofier, B. & Pages, J. (1990), Analyses factorielles simples et multiples, Dunod, Paris.spa
dc.relation.referencesEveritt, B. S. (1980), Cluster Analysis, Heineman Educational Books, London.spa
dc.relation.referencesEveritt, B. S. & Dunn, G. (1991), Applied Multivariate Data Analysis, Edward Arnold Books, New York.spa
dc.relation.referencesFrank, M. (1979), ‘On the simultaneous associativity of f(x, y) and x + y − f(x, y)’, Aequationes Math 19(2–3).spa
dc.relation.referencesFreund, R. J., Litell, R. C. & Spector, P. C. (1986), SAS system for linear models, SAS Institute Inc., Cary, NC.spa
dc.relation.referencesGenest, C., Ghoudi, K. & Rivest, L. (1995), ‘A semiparametric estimation procedure of dependence parameters in multivariate families of distributions’, Biometrika 82, 543–552.spa
dc.relation.referencesGenest, C. & Rémillard, B. (2004), ‘Tests of independence and randomness based on the empirical copula process’, Test 2(13), 335–369.spa
dc.relation.referencesGenest, C. & Rémillard, B. (2008), ‘Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models’, Annales de l’Institut Henri Poincaré: Probabilités et Statistiques 44, 1096–1127.spa
dc.relation.referencesGenest, C., Rémillard, B. & Beaudoin, D. (2009), ‘Goodness-of-fit tests for copulas: A review and a power study’, Insurance: Mathematics and Economics 44, 199–213.spa
dc.relation.referencesGiri, N. C. (1977), Multivariate Statistical Inference, Academic Press, New York. Gnanadesikan, R. (1997), Methods for Statistical Analysis of Multivariate Observations, John Wiley and Sons, New York.spa
dc.relation.referencesGnanadesikan, R. & Kattenring, J. R. (1972), ‘Robust stimates, residulas and outlier detection with multiresponse data’, Biometrics pp. 81–124.spa
dc.relation.referencesGordon, A. D. (1937), ‘A review of hierarchical classification gordon, a. d.gordon, a. d.’, Journal of the Royal Statistical Society .spa
dc.relation.referencesGorsuch, R. L. (1983), Factor Analysis, Lawrence Erlbaum Associates, Publishers, London.spa
dc.relation.referencesGraybill, F. (2001), Matrices with Applications in Statistics, Duxbury Press.spa
dc.relation.referencesGupta, A. & Nagar, D. (2000), Matrix Variate Distributions, Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall / CRC, New York.spa
dc.relation.referencesHarville, D. A. (1997), Matrix Algebra from a Statistician’s Perspective, Springer, New York.spa
dc.relation.referencesHogg, R. V., Craig, A. T. & Joseph, W. M. (2004), Introduction to Mathematical Statistics, Macmillan Publishing Co. Inc., New York.spa
dc.relation.referencesHotelling, H. (1931), ‘The generalization of student’s ratio’, Annals of Mathematical Statistics 2, 360–378.spa
dc.relation.referencesHotelling, H. (1947), A generalized T test and measure of multivariate dispersion, Technical report, Berkeley.spa
dc.relation.referencesHotelling, H. (1951), ‘The impact of ra fisher on statistics’, Journal of the American Statistical Association pp. 35–46.spa
dc.relation.referencesJobson, J. D. (1992), Applied Multivariate Data Analysis, Vol. 1, Springer, New York.spa
dc.relation.referencesJoe, H. (1993), ‘Parametric family of multivariate distributions with given margins’, Journal of Multivariate Analysis pp. 262–282.spa
dc.relation.referencesJoe, H. (1997), Multivariate Models and Dependence Concepts, Chapman & Hall CRC, London.spa
dc.relation.referencesJohnson, D. E. (2000), Métodos multivariados aplicados al análisis de datos, Thomson Editores, México.spa
dc.relation.referencesJohnson, R. & Wicher, D. W. (1998), Applied Multivariate Statistical Analysis, Prentice Hall, Inc., New Jersey.spa
dc.relation.referencesJöreskog, K. G. (1967), ‘Some contributions to maximum likelihood factor analysis’, Psychometrika 32, 443–482.spa
dc.relation.referencesKaiser, K. G. (1958), ‘The varimax criteriom for analytic rotation in factor analysis’, Psychometrika 23, 187–200.spa
dc.relation.referencesKaiser, K. G. (1967), ‘Some contributions to maximum likelihood factor analysis’, Psychometrika 32, 443–482.spa
dc.relation.referencesKim, G., Silvapulle, M., J. & Silvapulle, P. (2007), ‘Comparison of semiparametric and parametric methods for estimating copulas.’, Computational Statistics and Data Analysis 6(51), 2836–2850.spa
dc.relation.referencesKojadinovic, I. & Yan, J. (2010), ‘A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems’, Statistics and Computing.spa
dc.relation.referencesKotz, S. & Fang, H. (2002), ‘The meta-elliptical distributions with given marginals.’, Multivar Anal 1(82), 1–16.spa
dc.relation.referencesKotz, S. & Mari, D. (2001), Correlation and Dependence, Imperial College Press, London. Kruskal, J. B. & Wish, M. (1978), Multidimensional Scaling, Sage Publications, Beverly Hills.spa
dc.relation.referencesKrzanowski, W. J. (1995), Recent Advances in Descriptive Multivariate Analysis, Royal Statistical Society Lecture Note, Oxford University Press, USA.spa
dc.relation.referencesKrzanowski, W. J. & Marriot, F. H. C. (1994), Multivariate Analysis. Part 1 Distributions, Ordination and Inference, Edward Arnold, London.spa
dc.relation.referencesKrzanowski, W. J. & Marriot, F. H. C. (1995), Multivariate Analysis. Part 2 Classification, covariance structures and repeated measurements, Edward Arnold, London.spa
dc.relation.referencesLawley, D. N. (1938), ‘A generalization of fisher’s z test’, Biometrika 30, 180– 187.spa
dc.relation.referencesLawley, D. N. (1967), ‘Some new results in maximum likelihood factor analysis’, Proceedings of the Royal Society of Education 67.spa
dc.relation.referencesLebart, L., Morineau, A. & Fénelon, J. P. (1985), Tratamiento Estadístico de Datos, Marcombo-Boixareu Editores, Barcelona.spa
dc.relation.referencesLebart, L., Morineau, A. & Piron, M. (1995), Statistique Exploratoire Multidimensionnelle, Dunod, Paris.spa
dc.relation.referencesLebart, L., Morineau, A. & Warwick, K. M. (1984), Multivariate Descriptive Statistical Analysis, John Wiley and Sons, New York.spa
dc.relation.referencesLee, K. L. (1979), ‘Multivariate test for cluster’, Journal of the American Statistical Association 74, 708–714.spa
dc.relation.referencesLinares, G. (2001), ‘Escalamiento multidimensional: conceptos y enfoques’, Revista investigación operacional 22(2), 173–183.spa
dc.relation.referencesLittle, R. J. & Rubin, D. B. (1987), Statistical Analysis with Missing Data, John Wiley and Sons, New York.spa
dc.relation.referencesMaclachlan, G. J. (1992), Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York.spa
dc.relation.referencesMagnus, J. R. & Neudecker, H. (1999), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, New York.spa
dc.relation.referencesManly, B. F. J. (2000), Multivariate Statistical Methods: A Primer, Chapman and Hall, New York.spa
dc.relation.referencesMantilla, I. (2004), Análisis numérico, Universidad Nacional de Colombia, Bogotá, DC.spa
dc.relation.referencesMardia, K. V. (1970), ‘Measures of multivariate skewness and kurtosis with applications’, Biometrika 57, 519–530.spa
dc.relation.referencesMardia, K. V., Kent, J. T. & Bibby, J. M. (1979), Multivariate Analysis, Academic Press, New York.spa
dc.relation.referencesMason, R. L., Tracy, N. D. & Young, J. C. (1995), ‘Decomposition of t 2 for multivariate control chart interpretation’, Journal of Quality Technology 27(2), 157–158.spa
dc.relation.referencesMijares, T. A. (1990), ‘The normal approximation to the bartlett- nanda-pillai trace test in multivariate analysis’, Biometrika 77, 230–233.spa
dc.relation.referencesMilligan, G. W. & Cooper, M. C. (1985), ‘An examination of procedures for determining the number of cluster’, Psychometrika 50, 159–179.spa
dc.relation.referencesMood, A. M., Graybill, F. A. & Boes, D. C. (1982), Introduction to the Theory of Statistics, Mc Graw Hill Book Company, Singapore.spa
dc.relation.referencesMorrison, D. F. (1990), Multivariate Statistical Methods, Mc Graw Hill Book Company, New York.spa
dc.relation.referencesMuirhead, R. J. (1982), Aspects of Multivariate Statistical Theory, John Wiley and Sons, New York.spa
dc.relation.referencesNagarsenker, B. N. & Pillai, K. C. S. (1974), ‘Distribution of the likelihood ratio for testing Σ = Σ 0, μ = μ 0’, Journal of multivariate analysis 4, 114–122.spa
dc.relation.referencesNanda, D. N. (1950), ‘Distribution of the sum of roots of the determinant equation under a certain condition’, Annals of Mathematical Statistics 21, 432–439.spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. & Wagner, H. (2011), vegan: Community Ecology Package. R package version 1.17-10.spa
dc.relation.referencesO’Sullivan, J. & Mahon, C. (1966), ‘Glucose tolerance test: variability in pregnant and non–pregnant women’, American Journal of Clinical Nutrition 19, 345–351.spa
dc.relation.referencesPan, J.-X. (2002), Growth Curve Models and Statistical Diagnostic, Springer. Pardo, C. E. (1992), Análisis de la aplicación del método de ward de clasificación jerárquica al caso de variables cualitativas, Master’s thesis, Universidad Nacional de Colombia, Santafé de Bogotá, D. C.spa
dc.relation.referencesPeck, R., Fisher, L. & Van, J. (1989), ‘Approximate confidence intervals for the number of cluster’, Journal of the American Statistical Association 84, 184–191.spa
dc.relation.referencesPeña, D. (1998), Estadística modelos y métodos. Fundamentos, Alianza Universitaria Textos, Madrid.spa
dc.relation.referencesPillai, K. C. S. (1955), ‘Some new test criteria in multivariate analysis’, Annals of Mathematical Statistics 26, 117–121.spa
dc.relation.referencesPotthoff, R. & Roy, S. (1964), ‘A generalized multivariate analysis model useful especially for growth curve problems’, Biometrika 51, 313–326.spa
dc.relation.referencesRamsay, J. & Silverman, B. W. (2005), Funcional Data Analysis, Springer.spa
dc.relation.referencesRémillard, B. & Scaillet, O. (2009), ‘Testing for equality between two copulas’, Journal of Multivariate Analysis 100(3), 377–386.spa
dc.relation.referencesRencher, A. C. (1995), Methods of Multivariate Analysis, John Wiley and Sons, New York.spa
dc.relation.referencesRencher, A. C. (1998), Multivariate Statistical Inference and Applications, John Wiley and Sons, New York.spa
dc.relation.referencesRota, G. (1964), ‘On the foundations of combinatorial theory. i. theory of möbius functions’, Zeitschrift f¨ur Wahrscheinlichkeitstheorie und verwandte Gebiete 2, 340–368.spa
dc.relation.referencesRoussas, G. G. (1973), A First Course in Mathematical Statistics, AddisonWesley Publishing Company, Massachusetts.spa
dc.relation.referencesRoy, S. N. (1953), ‘On a heuristic method of test construction and its use in multivariate analysis’, Annals of Mathematical Statistics 24.spa
dc.relation.referencesRoy, S. N. (1957), Some Aspects of multivariate Analysis, John Wiley and Sons, New York.spa
dc.relation.referencesRuiz-Velazco, S. (1991), ‘Asympototic efficiency of logistic regression relative to linear discriminant analysis’, Biometrika 78, 235–243.spa
dc.relation.referencesSaporta, G. (1990), Saporta, Gilbert.Probabilités Analyse des Données et Statistique, Technip, Paris.spa
dc.relation.referencesScaillet, O. (2005), ‘A kolmogorov-smirnov type test for positive quadrant dependence.’, Canadian Journal of Statistics, pp. 415–427.spa
dc.relation.referencesSearle, S. R. (1990), Matrix Algebra Useful for Statistics, John Wiley and Sons, New York.spa
dc.relation.referencesSeber, G. A. F. (1984), Multivariate observations, John Wiley and Sons, New York.spa
dc.relation.referencesSeber, G. A. F. (2007), A Matrix Handbook for Statisticians, Wiley Interscience.spa
dc.relation.referencesShapiro, S. S. & Wilk, M. B. (1965), ‘An analysis of variance test for normality (complete samples)’, Biometrika 52((3-4)), 591–611.spa
dc.relation.referencesSharma, S. (1996), Applied Multivariate TechniquesSharma, Subhash, Jonhn Wiley and Sons, New York.spa
dc.relation.referencesSklar, A. (1959), ‘Fonctions de répartition ´a n dimensions et marges’, Publications de l’Institut de Statistique de l’Université de Paris 8, 229–231.spa
dc.relation.referencesSokal, R. & Michener, C. D. (1958), A statistical method for evaluating systematic relationship, University of Kansas Scientific Bulletin.spa
dc.relation.referencesTakane, Y., Young, F. W. & Leeuw, J. (1977), ‘Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features’, Psychometrika 42, 7–67.spa
dc.relation.referencesTeam, R. D. C. (2009), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.spa
dc.relation.referencesThompson, P. A. (1995), ‘Correspondence analysis in statistical package programs’, The American Statistician 49, 310–316.spa
dc.relation.referencesTorres, L. G., Niño, L. F. & Hernández, G. (1993), ‘Redes neuronales’, Memorias, X Coloquio Distrital de Matemáticas y Estadística .spa
dc.relation.referencesTukey, J. W. (1957), ‘On the comparative anatomy of transformations’, Annals of Mathematical Statistics 28, 602–632.spa
dc.relation.referencesVelilla, S. & Barrio, J. A. (1994), ‘A discriminant rule under transformation’, Technometrics 36, 348–353.spa
dc.relation.referencesVenables, W. N. & Ripley, B. D. (2002), Modern Applied Statistics with S, Springer.spa
dc.relation.referencesWard, J. (1963), ‘Approximate confidence intervals for the number of cluster’, Journal of the American Statistical Association 58, 236–224.spa
dc.relation.referencesWelch, B. L. (1937), ‘The significance of the difference between two means when the population variances are unequal’, Biometrika 29, 350–360.spa
dc.relation.referencesWelch, B. L. (1947), ‘The generalization of “student” problem when several different population variances are involved’, Biometrika 34, 28–35.spa
dc.relation.referencesWilcox, R. R. (1997), Introduction to Robust Stimation and Hipothesis Testing Wilcox, Rand R., Academic Press, New York.spa
dc.relation.referencesXu, J. J. (1996), Statistical Modelling and Inference for Multivariate and Longitudinal Discrete Response Data, PhD thesis, Departament of Statistics, University of British Columbia.spa
dc.relation.referencesYager, R. R., Ovchinnikov, S., Togn, R. M. & Nguyen, H. T. (1987), Fuzzy Sets and Applications. Selected Papers by L. A. Zadeh, John Wiley and Sons, New York.spa
dc.relation.referencesYan, J. (2007), ‘Enjoy the joy of copulas: With a package copula’, Journal of Statistical Software 4(21), 1–21.spa
dc.relation.referencesYan, S. S. & Lee, Y. (1987), ‘Identification of a multivariate outlier’, Annual Meeting of the American Statistical Association.spa
dc.relation.referencesYeo, I. & Johnson, R. A. (2000), ‘A new family of power transformations to improve normality or symemtry’, Biometrika .spa
dc.relation.referencesZadeh, L. A. (1965), ‘Fuzzy sets’, Information and Control pp. 338–353.spa
dc.rightsDerechos Reservados al Autor, 2012spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembAnálisis multivariantespa
dc.subject.lembEstadística matemáticaspa
dc.subject.lembAnálisis de varianzaspa
dc.subject.proposalAnálisis de conglomeradosspa
dc.subject.proposalAnálisis estadísticospa
dc.subject.proposalInferencia multivariadaspa
dc.titleAnálisis estadístico de datos multivariadosspa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttp://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Análisis Estadístico de Datos Multivariados 9789587751062.pdf
Tamaño:
4.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro del Departamento de Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones