Uso de Erythrina edulis en dietas como fuente de lectinas inhibidoras de adherencia de Streptococcus agalactiae al intestino de tilapias (Oreochromis niloticus)

dc.contributor.advisorMuñoz Ramirez, Adriana Patriciaspa
dc.contributor.advisorBarato Gómez, Paola Andreaspa
dc.contributor.authorVela Melo, Hernán Albertospa
dc.contributor.researchgroupUn Acuictiospa
dc.date.accessioned2024-10-28T17:04:50Z
dc.date.available2024-10-28T17:04:50Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractLa estreptococosis es la enfermedad bacteriana más importante de la tilapia (Oreochromis sp.), que es la segunda especie de peces de aleta más producida mundialmente y primera en Colombia. Aún no es posible controlar los brotes a pesar del uso de antibióticos, vacunas y manejo de factores ambientales de riesgo. Es por ello que se ha propuesto el uso de glicoinhibidores de adherencia del Streptococcus agalactiae al intestino de tilapia, como parte de la patente concedida a la Universidad Nacional de Colombia. Basado en este desarrollo, el objetivo de esta investigación fue estudiar la incorporación de harina de Erythrina edulis en dietas prácticas para tilapia nilótica (O. niloticus) como fuente de lectinas glicoinhibidoras de adherencia a S. agalactiae. Se caracterizó taxonómica y bromatológicamente la E. edulis proveniente de San Agustín, Huila, Colombia. Las lectinas de la harina de semillas de E. edulis fueron suficientes y funcionales pre y post extrusión para ser incluidas en dietas prácticas. Las dietas prácticas fueron inocuas para los alevinos, no se presentaron lesiones ni reducción de su crecimiento. A la infección experimental intragástrica con S. agalactiae Ib en tilapias alimentadas con la dieta práctica no se desarrolló enfermedad y se encontró un patrón lectinohistoquímico diferencial entre los grupos experimentales. En conclusión, se comprobó disponibilidad, inocuidad y funcionalidad de lectinas de harina de semillas de E. edulis, para ser incluida en dietas funcionales de tilapia con el objetivo de reducir la adherencia de S. agalactiae. Se requieren posteriores ensayos in vivo para evaluar su efecto ante la estreptococosis experimental y natural (Texto tomado de la fuente).spa
dc.description.abstractStreptococcosis is the most important bacterial disease of tilapia (Oreochromis sp.), which is the second most produced species of finfish worldwide and first in Colombia. It is not yet possible to control outbreaks despite the use of antibiotics, vaccines, and management of environmental risk factors. Glycoinhibitors of adhesion of Streptococcus agalactiae to the tilapia intestine have been proposed, as part of the patent granted to the Universidad Nacional de Colombia. Based on this development, the objective of this research was to study the incorporation of Erythrina edulis flour in practical diets for Nilotic tilapia (O. niloticus) as a source of glycoinhibitory lectins of adherence to S. agalactiae. E. edulis from San Agustín, Huila, Colombia, was taxonomically and bromatologically characterized. The lectins of E. edulis seed flour were sufficient and functional pre- and post-extrusion to be included in practical diets. The practical diets were harmless for the fry, there were no lesions or reduction of their growth. Experimental intragastric infection with S. agalactiae Ib in tilapias fed the practical diet did not develop disease and a differential lectin histochemical pattern was found between the experimental groups. In conclusion, the availability, safety and functionality of lectins from E. edulis seed meal were verified to be included in functional tilapia diets with the aim of reducing the adherence of S. agalactiae. Further in vivo tests are required to evaluate its effect on experimental and natural streptococcosis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Salud y Producción Animalspa
dc.description.researchareaNutrición y alimentación animalspa
dc.format.extent203 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87078
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAlYahya, S. A., Ameen, F., Al-Niaeem, K. S., Al-Sa’adi, B. A., Hadi, S., & Mostafa, A. A. (2018). Histopathological studies of experimental Aeromonas hydrophila infection in blue tilapia, (Oreochromis aureus) Saudi Journal of Biological Sciences, 25(1), 182-185. https://doi.org/10.1016/j.sjbs.2017.10.019spa
dc.relation.referencesAbdel-Latif, Mahmoud A. O. Dawood, Simon Menanteau-Ledouble, & Mansour El-Matbouli. (2020). The nature and consequences of co‐infections in tilapia: A review. Journal of Fish Diseases. https://sci-hub.ru/10.1111/jfd.13164spa
dc.relation.referencesAustin, B., & Austin, D. A. (2007). Bacterial fish pathogens: Disease of farmed and wild fish (4th ed). Springer ; Published in association with Praxis Pub.spa
dc.relation.referencesBarato, P., Martins, E. R., Melo‐Cristino, J., Iregui, C. A., & Ramirez, M. (2015). Persistence of a single clone of Streptococcus agalactiae causing disease in tilapia (Oreochromis sp.) cultured in Colombia over 8 years. Journal of Fish Diseases, 38(12), 1083-1087. https://doi.org/10.1111/jfd.12337spa
dc.relation.referencesBarato, P. (2023). Identificado origen del problema sanitario en Betania. Acuicultores, 1(9), 8-13. https://fedeacua.org/files/acuicultores_9_compressed.pdfspa
dc.relation.referencesBarkham, T., Zadoks, R. N., Azmai, M. N. A., & Baker, S. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLOS Neglected Tropical Diseases, 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421spa
dc.relation.referencesBarraza, F., Montero, R., Wong-Benito, V., Valenzuela, H., Godoy-Guzmán, C., Guzmán, F., Köllner, B., Wang, T., Secombes, C. J., Maisey, K., & Imarai, M. (2021). Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. Biology, 10(1), Article 1. https://doi.org/10.3390/biology10010008spa
dc.relation.referencesBøgwald, J., & Dalmo, R. A. (2019). Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms, 7(12), 627. https://doi.org/10.3390/microorganisms7120627spa
dc.relation.referencesBoyd, C. E. (2020). Water Quality: An Introduction. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8spa
dc.relation.referencesCavalcante, R. B., Telli, G. S., Tachibana, L., Dias, D. D. C., Oshiro, E., Natori, M. M., Silva, W. F. D., & Ranzani-Paiva, M. J. (2020). Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17, 100343. https://doi.org/10.1016/j.aqrep.2020.100343spa
dc.relation.referencesChen, S. L. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLOS Neglected Tropical Diseases, 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421spa
dc.relation.referencesContreras, H., Vallejo, A., Mattar, S., Ruiz, L., Guzmán, C., & Calderón, A. (2021). First report of tilapia lake virus emergence in fish farms in the department of Córdoba, Colombia. Veterinary World, 14(4), 865-872. https://doi.org/10.14202/vetworld.2021.865-872spa
dc.relation.referencesCortés-Sánchez, A. D. J., Díaz-Ramírez, M., Cruz-Monterrosa, R. G., Rayas-Amor, A., Miranda-De La Lama, G., García-Garibay, M., & Salgado-Cruz, M. P. (2019). Edwardsiella tarda Ewing y McWhorter 1965: Alimentos y pescado. Agro Productividad, 12(11). https://doi.org/10.32854/agrop.vi0.1501spa
dc.relation.referencesDebnath, S. C., McMurtrie, J., Temperton, B., Delamare-Deboutteville, J., Mohan, C. V., & Tyler, C. R. (2023). Tilapia aquaculture, emerging diseases, and the roles of the skin microbiomes in health and disease. Aquaculture International, 31(5), 2945- 2976. https://doi.org/10.1007/s10499-023-01117-4spa
dc.relation.referencesDelgado, J. G., Ruiz, W. K., Fernández, N. G. N., Domínguez-Odio, A., & Cala-Delgado, D. L. (2024). Antimicrobianos en la salmonicultura global: Resistencia, efecto en la salud humana y medio ambiente, y perspectivas futuras. Scientia Agropecuaria, 15(1), Article 1. https://doi.org/10.17268/sci.agropecu.2024.007spa
dc.relation.referencesDelgado, D. L. C., Caceres, L. L. C., Gómez, S. A. C., & Odio, A. D. (2023). Effect of dietary garlic (Allium sativum) on the zootechnical performance and health indicators of aquatic animals: A mini-review. Veterinary World, 965-976. https://doi.org/10.14202/vetworld.2023.965-976spa
dc.relation.referencesDong, H. T., Chaijarasphong, T., Barnes, A. C., Delamare‐Deboutteville, J., Lee, P. A., Senapin, S., Mohan, C. V., Tang, K. F. J., McGladdery, S. E., & Bondad‐Reantaso, M. G. (2023). From the basics to emerging diagnostic technologies: What is on the horizon for tilapia disease diagnostics? Reviews in Aquaculture, 15(S1), 186-212. https://doi.org/10.1111/raq.12734spa
dc.relation.referencesDong, H. T., LaFrentz, B., Pirarat, N., & Rodkhum, C. (2015). Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp., in T hailand. Journal of Fish Diseases, 38(10), 901-913. https://doi.org/10.1111/jfd.12304spa
dc.relation.referencesDong, H. T., Sangpo, P., Dien, L. T., Mai, T. T., Linh, N. V., Del-Pozo, J., Salin, K. R., & Senapin, S. (2022). Usefulness of the pancreas as a prime target for histopathological diagnosis of Tilapia parvovirus (TiPV) infection in Nile tilapia, Oreochromis niloticus. Journal of Fish Diseases, 45(9), 1323-1331. https://doi.org/10.1111/jfd.13663spa
dc.relation.referencesDong, H. T., Techatanakitarnan, C., Jindakittikul, P., Thaiprayoon, A., Taengphu, S., Charoensapsri, W., Khunrae, P., Rattanarojpong, T., & Senapin, S. (2017). Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, (Oreochromis niloticus) (L.). Journal of Fish Diseases, 40 (10), 1395-1403. https://doi.org/10.1111/jfd.12617spa
dc.relation.referencesDramsi, S., Caliot, E., Bonne, I., Guadagnini, S., Prévost, M.-C., Kojadinovic, M., Lalioui, L., Poyart, C., & Trieu-Cuot, P. (2006). Assembly and role of pili in group B streptococci. Molecular Microbiology, 60(6), 1401-1413. https://doi.org/10.1111/j.1365-2958.2006.05190.xspa
dc.relation.referencesEvans, J. J., Shoemaker, C. A., & Klesius, P. H. (2000). Experimental Streptococcus iniae infection of hybrid striped bass (Morone chrysops×Morone saxatilis) and tilapia (Oreochromis niloticus) by nares inoculation. Aquaculture, 189(3-4), 197-210. https://doi.org/10.1016/S0044-8486(00)00376-8spa
dc.relation.referencesEgger, R., Camara, J., Benites, S., & Oliveira, F. (2023). Emerging fish pathogens Lactococcus petauri and L. garvieae in Nile tilapia (Oreochromis niloticus) farmed in Brazil. Aquaculture, 565(739093). https://doi.org/10.1016/j.aquaculture.2022.739093spa
dc.relation.referencesEyngor, M., Zamostiano, R., Kembou Tsofack, J. E., Berkowitz, A., Bercovier, H., Tinman, S., Lev, M., Hurvitz, A., Galeotti, M., Bacharach, E., & Eldar, A. (2014). Identification of a novel RNA virus lethal to tilapia. Journal of Clinical Microbiology, 52(12), 4137- 4146. https://doi.org/10.1128/JCM.00827-14spa
dc.relation.referencesFAO. (2021). Risk profile—Group B Streptococcus (GBS) – Streptococcus agalactiae sequence type (ST) 283 in freshwater fish. FAO. https://doi.org/10.4060/cb5067enspa
dc.relation.referencesFAO, 2022. (2022). FAO. 2022. El estado mundial de la pesca y la acuicultura. FAO. https://doi.org/10.4060/cc0461esspa
dc.relation.referencesFerguson, H. W., Kabuusu, R., Beltran, S., Reyes, E., Lince, J. A., & Del Pozo, J. (2014). Syncytial hepatitis of farmed tilapia, Oreochromis niloticus ( L .): A case report. Journal of Fish Diseases, 37(6), 583-589. https://doi.org/10.1111/jfd.12142spa
dc.relation.referencesFlajnik, M. F. (1996). The immune system of ectothermic vertebrates. Veterinary Immunology and Immunopathology, 54(1), 145-150. https://doi.org/10.1016/S0165- 2427(96)05685-1spa
dc.relation.referencesGonzalez, X. (2018). Aquavac Strep Sa, la primera vacuna para tilapia que msd salud animal trajo al país. https://www.agronegocios.co/ganaderia/aquavac-strep-sa-la- primera-vacuna-para-tilapia-que-msd-salud-animal-trajo-al-pais-2753075spa
dc.relation.referencesGrayfer, L., Kerimoglu, B., Yaparla, A., Hodgkinson, J. W., Xie, J., & Belosevic, M. (2018). Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 9. https://www.frontiersin.org/articles/10.3389/fimmu.2018.01105spa
dc.relation.referencesHaenen, O. L. M., Dong, H. T., Hoai, T. D., Crumlish, M., Karunasagar, I., Barkham, T., Chen, S. L., Zadoks, R., Kiermeier, A., Wang, B., Gamarro, E. G., Takeuchi, M., Azmai, M. N. A., Fouz, B., Pakingking, R., Wei, Z. W., & Bondad‐Reantaso, M. G. (2023). Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Reviews in Aquaculture, 15(S1), 154-185. https://doi.org/10.1111/raq.12743spa
dc.relation.referencesHernández, J., Casstillo, M., Garay, V., Mora, A., Caamaño, J., & Urbina, A. (2010). Efecto de la harina de chachafruto (Erythrina edulis triana ex micheli) como suplemento en la alimentación de truchas arco iris (Oncorhynchus mykiss). 2010, 18, 13-15.spa
dc.relation.referencesHoward, J. (2019). Fish Biology and Fisheries. Scientific e-Resources.spa
dc.relation.referencesHussain, M. M., Tuhin, M. T. H., Akter, F., & Rashid, M. A. (2016). Constituents of Erythrina - a Potential Source of Secondary Metabolities: A Review. Bangladesh Pharmaceutical Journal, 19(2), 237-253. https://doi.org/10.3329/bpj.v19i2.29287spa
dc.relation.referencesImberty, A., & Varrot, A. (2008). Microbial recognition of human cell surface glycoconjugates. Current Opinion in Structural Biology, 18(5), 567-576. https://doi.org/10.1016/j.sbi.2008.08.001spa
dc.relation.referencesIPCC. (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on a https://doi.org/10.1017/9781009157896spa
dc.relation.referencesIregui, C. A., Comas, J., Vásquez, G. M., & Verján, N. (2016). Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia (Oreochromis sp). Journal of Fish Diseases, 39(2), 205-215. https://doi.org/10.1111/jfd.12347spa
dc.relation.referencesIwashita, M. K. P., Nakandakare, I. B., Terhune, J. S., Wood, T., & Ranzani-Paiva, M. J. T. (2015). Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish & Shellfish Immunology, 43(1), 60-66. https://doi.org/10.1016/j.fsi.2014.12.008spa
dc.relation.referencesKlesius, P. H., Shoemaker, C., & Evans, J. J. (2008). Streptococcosis: A worldwide fish health problem. Streptococcosis: A Worldwide Fish Health Problem, 1, 83-107. https://www.ars.usda.gov/research/publications/publication/?seqNo115=233226spa
dc.relation.referencesLiamnimitr, P., Thammatorn, W., U-thoomporn, S., Tattiyapong, P., & Surachetpong, W. (2018). Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture. Aquaculture, 486, 75-80. https://doi.org/10.1016/j.aquaculture.2017.12.015spa
dc.relation.referencesLindahl, G., Stålhammar-Carlemalm, M., & Areschoug, T. (2005). Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens. Clinical Microbiology Reviews, 18(1), 102-127. https://doi.org/10.1128/CMR.18.1.102-127.2005spa
dc.relation.referencesLio-Po, G., Subasinghe, R. P., & Tien, N. (Eds.). (2023). Climate Change on Diseases and Disorders of Finfish in Cage Culture (3. https://doi.org/10.1079/9781800621640.0000 a ed.). CABI.spa
dc.relation.referencesMa, J., Bruce, T. J., Jones, E. M., & Caín, K. D. (2019). A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms, 7(11), 569. https://doi.org/10.3390/microorganisms7110569spa
dc.relation.referencesMacKinnon, B., Debnath, P. P., Bondad‐Reantaso, M. G., Fridman, S., Bin, H., & Nekouei, O. (2023). Improving tilapia biosecurity through a value chain approach. Reviews in Aquaculture, 15(S1), 57-91. https://doi.org/10.1111/raq.12776spa
dc.relation.referencesMartos-Sitcha, J. A., Mancera, J. M., Prunet, P., & Magnoni, L. J. (2020). Editorial: Welfare and Stressors in Fish: Challenges Facing Aquaculture. Frontiers in Physiology, 11, 162. https://doi.org/10.3389/fphys.2020.00162spa
dc.relation.referencesMaulu, S., Hasimuna, O. J., Haambiya, L. H., Monde, C., Musuka, C. G., Makorwa, T. H., Munganga, B. P., Phiri, K. J., & Nsekanabo, J. D. (2021). Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Frontiers in Sustainable Food Systems, 5, 609097. https://doi.org/10.3389/fsufs.2021.609097spa
dc.relation.referencesMDR, & DANE. (2023). Bullets Acuicultura Cuarto Trimestre 2023. Ministerio de Agricultura y Desarrollo Rural.spa
dc.relation.referencesMiño, J., Gorzalczany, S., Moscatelli, V., Ferraro, G., Acevedo, C., & Hnatyszyn, O. (2002). Actividad Antinociceptiva y Antiinflamatoria de Erythrina crista-galli L. (“Ceibo”). acta farmacéutica bonaerense, 21.spa
dc.relation.referencesMunang’andu, H. M., Mutoloki, S., & Evensen, Ø. (2015). An Overview of Challenges Limiting the Design of Protective Mucosal Vaccines for Finfish. Frontiers in Immunology, 6. https://doi.org/10.3389/fimmu.2015.00542spa
dc.relation.referencesNguyen, V. V., Dong, H. T., Senapin, S., Pirarat, N., & Rodkhum, C. (2016). Francisella noatunensis subsp. Orientalis , an emerging bacterial pathogen affecting cultured red tilapia ( Oreochromis sp.) in Thailand. Aquaculture Research, 47(11), 3697- 3702. https://doi.org/10.1111/are.12802spa
dc.relation.referencesPáez, D. J., Powers, R. L., Jia, P., Ballesteros, N., Kurath, G., Naish, K. A., & Purcell, M. K. (2021). Temperature Variation and Host Immunity Regulate Viral Persistence in a Salmonid Host. Pathogens, 10(7), Article 7. https://doi.org/10.3390/pathogens10070855spa
dc.relation.referencesPark, S. B., Aoki, T., & Jung, T. S. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary Research, 43(1), 67. https://doi.org/10.1186/1297-9716-43-67spa
dc.relation.referencesPathovet. (2023). Boletim Sanitário da Tilápia Edição 01.spa
dc.relation.referencesPérez G. (1984). Isolation and characterization of a lectin from the seeds of Erythrina Edulis. Phytochemistry, 23(6), 1229-1232. https://doi.org/10.1016/S0031- 9422(00)80431-8spa
dc.relation.referencesPérez G., Martínez, C., & Diaz, E. (1979). Evaluación de la calidad de la proteína de la Erythrina edulis (BALU). 1979, 1.spa
dc.relation.referencesPérez, T., Balcázar, J. L., Ruiz-Zarzuela, I., Halaihel, N., Vendrell, D., De Blas, I., & Múzquiz, J. L. (2010). Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunology, 3(4), 355-360. https://doi.org/10.1038/mi.2010.12spa
dc.relation.referencesPumchan, A., Sae-Ueng, U., Prasittichai, C., Sirisuay, S., Areechon, N., & Unajak, S. (2022). A Novel Efficient Piscine Oral Nano-Vaccine Delivery System: Modified Halloysite Nanotubes (HNTs) Preventing Streptococcosis Disease in Tilapia (Oreochromis sp.). Vaccines, 10(8), Article 8. https://doi.org/10.3390/vaccines10081180spa
dc.relation.referencesRaman, R. P. (2017). Applicability, Feasibility and Efficacy of Phytotherapy in Aquatic Animal Health Management. American Journal of Plant Sciences, 08(02), 257-287. https://doi.org/10.4236/ajps.2017.82019spa
dc.relation.referencesRodriguez D. (2023). Portafolio Línea Acuicultura con Inclusión de Ajo (Allium sativum).spa
dc.relation.referencesScharsack, J. P., & Franke, F. (2022). Temperature effects on teleost immunity in the light of climate change. Journal of Fish Biology, 101(4), 780-796. https://doi.org/10.1111/jfb.15163spa
dc.relation.referencesShinn, A. P., Avenant-Oldewage, A., Bondad-Reantaso, M. G., Cruz-Laufer, A. J., García- Vásquez, A., Hernández-Orts, J. S., Kuchta, R., Longshaw, M., Metselaar, M., Pariselle, A., Pérez-Ponce de León, G., Pradhan, P. K., Rubio-Godoy, M., Sood, N., Vanhove, M. P. M., & Deveney, M. R. (2023). A global review of problematic and pathogenic parasites of farmed tilapia. Reviews in Aquaculture, 15(S1), 92-153. https://doi.org/10.1111/raq.12742spa
dc.relation.referencesShinn, A., Pratoomyot, J., Metselaar, M., & Gomes, G. (2018). Diseases in aquaculture— Counting the costs of the top 100.spa
dc.relation.referencesSoto, E., Griffin, M., Arauz, M., Riofrio, A., Martinez, A., & Cabrejos, M. E. (2012). Edwardsiella ictaluri as the Causative Agent of Mortality in Cultured Nile Tilapia. Journal of Aquatic Animal Health, 24(2), 81-90. https://doi.org/10.1080/08997659.2012.675931spa
dc.relation.referencesSurachetpong, W., Roy, S. R. K., & Nicholson, P. (2020). Tilapia lake virus: The story so far. Journal of Fish Diseases, 43(10), 1115-1132. https://doi.org/10.1111/jfd.13237spa
dc.relation.referencesTacon, A. G. (2023). Sustainable Aquaculture Feeds. LACQUA23, Panamá.spa
dc.relation.referencesTelli, G. S., Ranzani-Paiva, M. J. T., Días, D. D. C., Sussel, F. R., Ishikawa, C. M., & Tachibana, L. (2014). Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & Shellfish Immunology, 39(2), 305-311. https://doi.org/10.1016/j.fsi.2014.05.025spa
dc.relation.referencesTechnavio. (2023). Tamaño del mercado de acuicultura, participación, crecimiento, tendencias, pronóstico de análisis de la industria 2027. https://www.technavio.com/report/aquaculture-market-industry-analysisspa
dc.relation.referencesThompson, K. D. (2017). Immunology. En Fish Diseases (pp. 1-17). Elsevier. https://doi.org/10.1016/B978-0-12-804564-0.00001-6spa
dc.relation.referencesValladão, G. M. R., Gallani, S. U., & Pilarski, F. (2018). South American fish for continental aquaculture. Reviews in Aquaculture, 10(2), 351-369. https://doi.org/10.1111/raq.12164spa
dc.relation.referencesVásquez‐Machado, G., Barato‐Gómez, P., & Iregui‐Castro, C. (2019). Morphological characterization of the adherence and invasion of Streptococcus agalactiae to the intestinal mucosa of tilapia (Oreochromis sp.): An in vitro model. Journal of Fish Diseases, 42(9), 1223-1231. https://doi.org/10.1111/jfd.13042spa
dc.relation.referencesWang, B., Thompson, K. D., Wangkahart, E., Yamkasem, J., Bondad-Reantaso, M. G., Tattiyapong, P., Jian, J., & Surachetpong, W. (2022). Strategies to enhance tilapia immunity to improve their health in aquaculture. Reviews in Aquaculture, 15(S1), 41-56. https://doi.org/10.1111/raq.12731spa
dc.relation.referencesWang, B., Thompson, K. D., Wangkahart, E., Yamkasem, J., Bondad-Reantaso, M. G., Tattiyapong, P., Jian, J., & Surachetpong, W. (2023). Strategies to enhance tilapia immunity to improve their health in aquaculture. Reviews in Aquaculture, 15(S1), 41-56. https://doi.org/10.1111/raq.12731spa
dc.relation.referencesWhite, C. (2018). Technavio report: Global aquaculture market’s growth accelerating through 2022. https://www.seafoodsource.com/features/technavio-report-global- aquaculture-markets-growth-accelerating-through-2022spa
dc.relation.referencesWoo, P. T. K., & Subasinghe, R. P. (Eds.). (2023). Climate Change on Diseases and Disorders of Finfish in Cage Culture (3. https://doi.org/10.1079/9781800621640.0000 aed.). CABI.spa
dc.relation.referencesWoo, P. T. K. (Ed.). (2002). Diseases and disorders of finfish in cage culture. CABI Publ.spa
dc.relation.referencesXia, Y., Wang, M., Gao, F., Lu, M., & Chen, G. (2020). Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition, 6(1), 69-79. https://doi.org/10.1016/j.aninu.2019.07.002spa
dc.relation.referencesYamkasem, J., Tattiyapong, P., Kamlangdee, A., & Surachetpong, W. (2019). Evidence of potential vertical transmission of tilapia lake virus. Journal of Fish Diseases, 42(9), 1293-1300. https://doi.org/10.1111/jfd.13050spa
dc.relation.referencesZhao, Z., Zou, Q., Han, S., Shi, J., Yan, H., Hu, D., & Yi, Y. (2023). Omics analysis revealed the possible mechanism of streptococcus disease outbreak in tilapia under high temperature. Fish & Shellfish Immunology, 134, 108639. https://doi.org/10.1016/j.fsi.2023.108639spa
dc.relation.referencesZhu, F. (2020). A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture, 526, 735422. https://doi.org/10.1016/j.aquaculture.2020.735422spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc590 - Animales::597 - Vertebrados de sangre fríaspa
dc.subject.lembPRODUCCION PESQUERAspa
dc.subject.lembFishery productioneng
dc.subject.lembENFERMEDADES BACTERIANAS EN ANIMALESspa
dc.subject.lembBacterial diseases in animalseng
dc.subject.lembLECTINASspa
dc.subject.lembLectinseng
dc.subject.lembALIMENTOS PARA ANIMALESspa
dc.subject.lembFeedseng
dc.subject.proposalAdherenciaspa
dc.subject.proposalErythrinaspa
dc.subject.proposalEstreptococosisspa
dc.subject.proposalGlicoinhibidoresspa
dc.subject.proposalOreochromis sp.spa
dc.subject.proposalStreptococcus agalactiaespa
dc.subject.proposalAdherenceeng
dc.subject.proposalErythrinaeng
dc.subject.proposalGlicoinhibitorseng
dc.subject.proposalOreochromis sp.eng
dc.subject.proposalStreptococcosiseng
dc.subject.proposalStreptococcus agalactiaeeng
dc.titleUso de Erythrina edulis en dietas como fuente de lectinas inhibidoras de adherencia de Streptococcus agalactiae al intestino de tilapias (Oreochromis niloticus)spa
dc.title.translatedUse of Erythrina edulis in diets as a source of lectins inhibiting adherence of Streptococcus Agalactiae to the intestine of tilapias (Oreochromis niloticus)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
12262877.2024.pdf
Tamaño:
4.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: