Uso de Erythrina edulis en dietas como fuente de lectinas inhibidoras de adherencia de Streptococcus agalactiae al intestino de tilapias (Oreochromis niloticus)
dc.contributor.advisor | Muñoz Ramirez, Adriana Patricia | spa |
dc.contributor.advisor | Barato Gómez, Paola Andrea | spa |
dc.contributor.author | Vela Melo, Hernán Alberto | spa |
dc.contributor.researchgroup | Un Acuictio | spa |
dc.date.accessioned | 2024-10-28T17:04:50Z | |
dc.date.available | 2024-10-28T17:04:50Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | La estreptococosis es la enfermedad bacteriana más importante de la tilapia (Oreochromis sp.), que es la segunda especie de peces de aleta más producida mundialmente y primera en Colombia. Aún no es posible controlar los brotes a pesar del uso de antibióticos, vacunas y manejo de factores ambientales de riesgo. Es por ello que se ha propuesto el uso de glicoinhibidores de adherencia del Streptococcus agalactiae al intestino de tilapia, como parte de la patente concedida a la Universidad Nacional de Colombia. Basado en este desarrollo, el objetivo de esta investigación fue estudiar la incorporación de harina de Erythrina edulis en dietas prácticas para tilapia nilótica (O. niloticus) como fuente de lectinas glicoinhibidoras de adherencia a S. agalactiae. Se caracterizó taxonómica y bromatológicamente la E. edulis proveniente de San Agustín, Huila, Colombia. Las lectinas de la harina de semillas de E. edulis fueron suficientes y funcionales pre y post extrusión para ser incluidas en dietas prácticas. Las dietas prácticas fueron inocuas para los alevinos, no se presentaron lesiones ni reducción de su crecimiento. A la infección experimental intragástrica con S. agalactiae Ib en tilapias alimentadas con la dieta práctica no se desarrolló enfermedad y se encontró un patrón lectinohistoquímico diferencial entre los grupos experimentales. En conclusión, se comprobó disponibilidad, inocuidad y funcionalidad de lectinas de harina de semillas de E. edulis, para ser incluida en dietas funcionales de tilapia con el objetivo de reducir la adherencia de S. agalactiae. Se requieren posteriores ensayos in vivo para evaluar su efecto ante la estreptococosis experimental y natural (Texto tomado de la fuente). | spa |
dc.description.abstract | Streptococcosis is the most important bacterial disease of tilapia (Oreochromis sp.), which is the second most produced species of finfish worldwide and first in Colombia. It is not yet possible to control outbreaks despite the use of antibiotics, vaccines, and management of environmental risk factors. Glycoinhibitors of adhesion of Streptococcus agalactiae to the tilapia intestine have been proposed, as part of the patent granted to the Universidad Nacional de Colombia. Based on this development, the objective of this research was to study the incorporation of Erythrina edulis flour in practical diets for Nilotic tilapia (O. niloticus) as a source of glycoinhibitory lectins of adherence to S. agalactiae. E. edulis from San Agustín, Huila, Colombia, was taxonomically and bromatologically characterized. The lectins of E. edulis seed flour were sufficient and functional pre- and post-extrusion to be included in practical diets. The practical diets were harmless for the fry, there were no lesions or reduction of their growth. Experimental intragastric infection with S. agalactiae Ib in tilapias fed the practical diet did not develop disease and a differential lectin histochemical pattern was found between the experimental groups. In conclusion, the availability, safety and functionality of lectins from E. edulis seed meal were verified to be included in functional tilapia diets with the aim of reducing the adherence of S. agalactiae. Further in vivo tests are required to evaluate its effect on experimental and natural streptococcosis. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Salud y Producción Animal | spa |
dc.description.researcharea | Nutrición y alimentación animal | spa |
dc.format.extent | 203 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87078 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y de Zootecnia | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal | spa |
dc.relation.references | AlYahya, S. A., Ameen, F., Al-Niaeem, K. S., Al-Sa’adi, B. A., Hadi, S., & Mostafa, A. A. (2018). Histopathological studies of experimental Aeromonas hydrophila infection in blue tilapia, (Oreochromis aureus) Saudi Journal of Biological Sciences, 25(1), 182-185. https://doi.org/10.1016/j.sjbs.2017.10.019 | spa |
dc.relation.references | Abdel-Latif, Mahmoud A. O. Dawood, Simon Menanteau-Ledouble, & Mansour El-Matbouli. (2020). The nature and consequences of co‐infections in tilapia: A review. Journal of Fish Diseases. https://sci-hub.ru/10.1111/jfd.13164 | spa |
dc.relation.references | Austin, B., & Austin, D. A. (2007). Bacterial fish pathogens: Disease of farmed and wild fish (4th ed). Springer ; Published in association with Praxis Pub. | spa |
dc.relation.references | Barato, P., Martins, E. R., Melo‐Cristino, J., Iregui, C. A., & Ramirez, M. (2015). Persistence of a single clone of Streptococcus agalactiae causing disease in tilapia (Oreochromis sp.) cultured in Colombia over 8 years. Journal of Fish Diseases, 38(12), 1083-1087. https://doi.org/10.1111/jfd.12337 | spa |
dc.relation.references | Barato, P. (2023). Identificado origen del problema sanitario en Betania. Acuicultores, 1(9), 8-13. https://fedeacua.org/files/acuicultores_9_compressed.pdf | spa |
dc.relation.references | Barkham, T., Zadoks, R. N., Azmai, M. N. A., & Baker, S. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLOS Neglected Tropical Diseases, 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421 | spa |
dc.relation.references | Barraza, F., Montero, R., Wong-Benito, V., Valenzuela, H., Godoy-Guzmán, C., Guzmán, F., Köllner, B., Wang, T., Secombes, C. J., Maisey, K., & Imarai, M. (2021). Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. Biology, 10(1), Article 1. https://doi.org/10.3390/biology10010008 | spa |
dc.relation.references | Bøgwald, J., & Dalmo, R. A. (2019). Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms, 7(12), 627. https://doi.org/10.3390/microorganisms7120627 | spa |
dc.relation.references | Boyd, C. E. (2020). Water Quality: An Introduction. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8 | spa |
dc.relation.references | Cavalcante, R. B., Telli, G. S., Tachibana, L., Dias, D. D. C., Oshiro, E., Natori, M. M., Silva, W. F. D., & Ranzani-Paiva, M. J. (2020). Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17, 100343. https://doi.org/10.1016/j.aqrep.2020.100343 | spa |
dc.relation.references | Chen, S. L. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLOS Neglected Tropical Diseases, 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421 | spa |
dc.relation.references | Contreras, H., Vallejo, A., Mattar, S., Ruiz, L., Guzmán, C., & Calderón, A. (2021). First report of tilapia lake virus emergence in fish farms in the department of Córdoba, Colombia. Veterinary World, 14(4), 865-872. https://doi.org/10.14202/vetworld.2021.865-872 | spa |
dc.relation.references | Cortés-Sánchez, A. D. J., Díaz-Ramírez, M., Cruz-Monterrosa, R. G., Rayas-Amor, A., Miranda-De La Lama, G., García-Garibay, M., & Salgado-Cruz, M. P. (2019). Edwardsiella tarda Ewing y McWhorter 1965: Alimentos y pescado. Agro Productividad, 12(11). https://doi.org/10.32854/agrop.vi0.1501 | spa |
dc.relation.references | Debnath, S. C., McMurtrie, J., Temperton, B., Delamare-Deboutteville, J., Mohan, C. V., & Tyler, C. R. (2023). Tilapia aquaculture, emerging diseases, and the roles of the skin microbiomes in health and disease. Aquaculture International, 31(5), 2945- 2976. https://doi.org/10.1007/s10499-023-01117-4 | spa |
dc.relation.references | Delgado, J. G., Ruiz, W. K., Fernández, N. G. N., Domínguez-Odio, A., & Cala-Delgado, D. L. (2024). Antimicrobianos en la salmonicultura global: Resistencia, efecto en la salud humana y medio ambiente, y perspectivas futuras. Scientia Agropecuaria, 15(1), Article 1. https://doi.org/10.17268/sci.agropecu.2024.007 | spa |
dc.relation.references | Delgado, D. L. C., Caceres, L. L. C., Gómez, S. A. C., & Odio, A. D. (2023). Effect of dietary garlic (Allium sativum) on the zootechnical performance and health indicators of aquatic animals: A mini-review. Veterinary World, 965-976. https://doi.org/10.14202/vetworld.2023.965-976 | spa |
dc.relation.references | Dong, H. T., Chaijarasphong, T., Barnes, A. C., Delamare‐Deboutteville, J., Lee, P. A., Senapin, S., Mohan, C. V., Tang, K. F. J., McGladdery, S. E., & Bondad‐Reantaso, M. G. (2023). From the basics to emerging diagnostic technologies: What is on the horizon for tilapia disease diagnostics? Reviews in Aquaculture, 15(S1), 186-212. https://doi.org/10.1111/raq.12734 | spa |
dc.relation.references | Dong, H. T., LaFrentz, B., Pirarat, N., & Rodkhum, C. (2015). Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp., in T hailand. Journal of Fish Diseases, 38(10), 901-913. https://doi.org/10.1111/jfd.12304 | spa |
dc.relation.references | Dong, H. T., Sangpo, P., Dien, L. T., Mai, T. T., Linh, N. V., Del-Pozo, J., Salin, K. R., & Senapin, S. (2022). Usefulness of the pancreas as a prime target for histopathological diagnosis of Tilapia parvovirus (TiPV) infection in Nile tilapia, Oreochromis niloticus. Journal of Fish Diseases, 45(9), 1323-1331. https://doi.org/10.1111/jfd.13663 | spa |
dc.relation.references | Dong, H. T., Techatanakitarnan, C., Jindakittikul, P., Thaiprayoon, A., Taengphu, S., Charoensapsri, W., Khunrae, P., Rattanarojpong, T., & Senapin, S. (2017). Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, (Oreochromis niloticus) (L.). Journal of Fish Diseases, 40 (10), 1395-1403. https://doi.org/10.1111/jfd.12617 | spa |
dc.relation.references | Dramsi, S., Caliot, E., Bonne, I., Guadagnini, S., Prévost, M.-C., Kojadinovic, M., Lalioui, L., Poyart, C., & Trieu-Cuot, P. (2006). Assembly and role of pili in group B streptococci. Molecular Microbiology, 60(6), 1401-1413. https://doi.org/10.1111/j.1365-2958.2006.05190.x | spa |
dc.relation.references | Evans, J. J., Shoemaker, C. A., & Klesius, P. H. (2000). Experimental Streptococcus iniae infection of hybrid striped bass (Morone chrysops×Morone saxatilis) and tilapia (Oreochromis niloticus) by nares inoculation. Aquaculture, 189(3-4), 197-210. https://doi.org/10.1016/S0044-8486(00)00376-8 | spa |
dc.relation.references | Egger, R., Camara, J., Benites, S., & Oliveira, F. (2023). Emerging fish pathogens Lactococcus petauri and L. garvieae in Nile tilapia (Oreochromis niloticus) farmed in Brazil. Aquaculture, 565(739093). https://doi.org/10.1016/j.aquaculture.2022.739093 | spa |
dc.relation.references | Eyngor, M., Zamostiano, R., Kembou Tsofack, J. E., Berkowitz, A., Bercovier, H., Tinman, S., Lev, M., Hurvitz, A., Galeotti, M., Bacharach, E., & Eldar, A. (2014). Identification of a novel RNA virus lethal to tilapia. Journal of Clinical Microbiology, 52(12), 4137- 4146. https://doi.org/10.1128/JCM.00827-14 | spa |
dc.relation.references | FAO. (2021). Risk profile—Group B Streptococcus (GBS) – Streptococcus agalactiae sequence type (ST) 283 in freshwater fish. FAO. https://doi.org/10.4060/cb5067en | spa |
dc.relation.references | FAO, 2022. (2022). FAO. 2022. El estado mundial de la pesca y la acuicultura. FAO. https://doi.org/10.4060/cc0461es | spa |
dc.relation.references | Ferguson, H. W., Kabuusu, R., Beltran, S., Reyes, E., Lince, J. A., & Del Pozo, J. (2014). Syncytial hepatitis of farmed tilapia, Oreochromis niloticus ( L .): A case report. Journal of Fish Diseases, 37(6), 583-589. https://doi.org/10.1111/jfd.12142 | spa |
dc.relation.references | Flajnik, M. F. (1996). The immune system of ectothermic vertebrates. Veterinary Immunology and Immunopathology, 54(1), 145-150. https://doi.org/10.1016/S0165- 2427(96)05685-1 | spa |
dc.relation.references | Gonzalez, X. (2018). Aquavac Strep Sa, la primera vacuna para tilapia que msd salud animal trajo al país. https://www.agronegocios.co/ganaderia/aquavac-strep-sa-la- primera-vacuna-para-tilapia-que-msd-salud-animal-trajo-al-pais-2753075 | spa |
dc.relation.references | Grayfer, L., Kerimoglu, B., Yaparla, A., Hodgkinson, J. W., Xie, J., & Belosevic, M. (2018). Mechanisms of Fish Macrophage Antimicrobial Immunity. Frontiers in Immunology, 9. https://www.frontiersin.org/articles/10.3389/fimmu.2018.01105 | spa |
dc.relation.references | Haenen, O. L. M., Dong, H. T., Hoai, T. D., Crumlish, M., Karunasagar, I., Barkham, T., Chen, S. L., Zadoks, R., Kiermeier, A., Wang, B., Gamarro, E. G., Takeuchi, M., Azmai, M. N. A., Fouz, B., Pakingking, R., Wei, Z. W., & Bondad‐Reantaso, M. G. (2023). Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Reviews in Aquaculture, 15(S1), 154-185. https://doi.org/10.1111/raq.12743 | spa |
dc.relation.references | Hernández, J., Casstillo, M., Garay, V., Mora, A., Caamaño, J., & Urbina, A. (2010). Efecto de la harina de chachafruto (Erythrina edulis triana ex micheli) como suplemento en la alimentación de truchas arco iris (Oncorhynchus mykiss). 2010, 18, 13-15. | spa |
dc.relation.references | Howard, J. (2019). Fish Biology and Fisheries. Scientific e-Resources. | spa |
dc.relation.references | Hussain, M. M., Tuhin, M. T. H., Akter, F., & Rashid, M. A. (2016). Constituents of Erythrina - a Potential Source of Secondary Metabolities: A Review. Bangladesh Pharmaceutical Journal, 19(2), 237-253. https://doi.org/10.3329/bpj.v19i2.29287 | spa |
dc.relation.references | Imberty, A., & Varrot, A. (2008). Microbial recognition of human cell surface glycoconjugates. Current Opinion in Structural Biology, 18(5), 567-576. https://doi.org/10.1016/j.sbi.2008.08.001 | spa |
dc.relation.references | IPCC. (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on a https://doi.org/10.1017/9781009157896 | spa |
dc.relation.references | Iregui, C. A., Comas, J., Vásquez, G. M., & Verján, N. (2016). Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia (Oreochromis sp). Journal of Fish Diseases, 39(2), 205-215. https://doi.org/10.1111/jfd.12347 | spa |
dc.relation.references | Iwashita, M. K. P., Nakandakare, I. B., Terhune, J. S., Wood, T., & Ranzani-Paiva, M. J. T. (2015). Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish & Shellfish Immunology, 43(1), 60-66. https://doi.org/10.1016/j.fsi.2014.12.008 | spa |
dc.relation.references | Klesius, P. H., Shoemaker, C., & Evans, J. J. (2008). Streptococcosis: A worldwide fish health problem. Streptococcosis: A Worldwide Fish Health Problem, 1, 83-107. https://www.ars.usda.gov/research/publications/publication/?seqNo115=233226 | spa |
dc.relation.references | Liamnimitr, P., Thammatorn, W., U-thoomporn, S., Tattiyapong, P., & Surachetpong, W. (2018). Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture. Aquaculture, 486, 75-80. https://doi.org/10.1016/j.aquaculture.2017.12.015 | spa |
dc.relation.references | Lindahl, G., Stålhammar-Carlemalm, M., & Areschoug, T. (2005). Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens. Clinical Microbiology Reviews, 18(1), 102-127. https://doi.org/10.1128/CMR.18.1.102-127.2005 | spa |
dc.relation.references | Lio-Po, G., Subasinghe, R. P., & Tien, N. (Eds.). (2023). Climate Change on Diseases and Disorders of Finfish in Cage Culture (3. https://doi.org/10.1079/9781800621640.0000 a ed.). CABI. | spa |
dc.relation.references | Ma, J., Bruce, T. J., Jones, E. M., & Caín, K. D. (2019). A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms, 7(11), 569. https://doi.org/10.3390/microorganisms7110569 | spa |
dc.relation.references | MacKinnon, B., Debnath, P. P., Bondad‐Reantaso, M. G., Fridman, S., Bin, H., & Nekouei, O. (2023). Improving tilapia biosecurity through a value chain approach. Reviews in Aquaculture, 15(S1), 57-91. https://doi.org/10.1111/raq.12776 | spa |
dc.relation.references | Martos-Sitcha, J. A., Mancera, J. M., Prunet, P., & Magnoni, L. J. (2020). Editorial: Welfare and Stressors in Fish: Challenges Facing Aquaculture. Frontiers in Physiology, 11, 162. https://doi.org/10.3389/fphys.2020.00162 | spa |
dc.relation.references | Maulu, S., Hasimuna, O. J., Haambiya, L. H., Monde, C., Musuka, C. G., Makorwa, T. H., Munganga, B. P., Phiri, K. J., & Nsekanabo, J. D. (2021). Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Frontiers in Sustainable Food Systems, 5, 609097. https://doi.org/10.3389/fsufs.2021.609097 | spa |
dc.relation.references | MDR, & DANE. (2023). Bullets Acuicultura Cuarto Trimestre 2023. Ministerio de Agricultura y Desarrollo Rural. | spa |
dc.relation.references | Miño, J., Gorzalczany, S., Moscatelli, V., Ferraro, G., Acevedo, C., & Hnatyszyn, O. (2002). Actividad Antinociceptiva y Antiinflamatoria de Erythrina crista-galli L. (“Ceibo”). acta farmacéutica bonaerense, 21. | spa |
dc.relation.references | Munang’andu, H. M., Mutoloki, S., & Evensen, Ø. (2015). An Overview of Challenges Limiting the Design of Protective Mucosal Vaccines for Finfish. Frontiers in Immunology, 6. https://doi.org/10.3389/fimmu.2015.00542 | spa |
dc.relation.references | Nguyen, V. V., Dong, H. T., Senapin, S., Pirarat, N., & Rodkhum, C. (2016). Francisella noatunensis subsp. Orientalis , an emerging bacterial pathogen affecting cultured red tilapia ( Oreochromis sp.) in Thailand. Aquaculture Research, 47(11), 3697- 3702. https://doi.org/10.1111/are.12802 | spa |
dc.relation.references | Páez, D. J., Powers, R. L., Jia, P., Ballesteros, N., Kurath, G., Naish, K. A., & Purcell, M. K. (2021). Temperature Variation and Host Immunity Regulate Viral Persistence in a Salmonid Host. Pathogens, 10(7), Article 7. https://doi.org/10.3390/pathogens10070855 | spa |
dc.relation.references | Park, S. B., Aoki, T., & Jung, T. S. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary Research, 43(1), 67. https://doi.org/10.1186/1297-9716-43-67 | spa |
dc.relation.references | Pathovet. (2023). Boletim Sanitário da Tilápia Edição 01. | spa |
dc.relation.references | Pérez G. (1984). Isolation and characterization of a lectin from the seeds of Erythrina Edulis. Phytochemistry, 23(6), 1229-1232. https://doi.org/10.1016/S0031- 9422(00)80431-8 | spa |
dc.relation.references | Pérez G., Martínez, C., & Diaz, E. (1979). Evaluación de la calidad de la proteína de la Erythrina edulis (BALU). 1979, 1. | spa |
dc.relation.references | Pérez, T., Balcázar, J. L., Ruiz-Zarzuela, I., Halaihel, N., Vendrell, D., De Blas, I., & Múzquiz, J. L. (2010). Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunology, 3(4), 355-360. https://doi.org/10.1038/mi.2010.12 | spa |
dc.relation.references | Pumchan, A., Sae-Ueng, U., Prasittichai, C., Sirisuay, S., Areechon, N., & Unajak, S. (2022). A Novel Efficient Piscine Oral Nano-Vaccine Delivery System: Modified Halloysite Nanotubes (HNTs) Preventing Streptococcosis Disease in Tilapia (Oreochromis sp.). Vaccines, 10(8), Article 8. https://doi.org/10.3390/vaccines10081180 | spa |
dc.relation.references | Raman, R. P. (2017). Applicability, Feasibility and Efficacy of Phytotherapy in Aquatic Animal Health Management. American Journal of Plant Sciences, 08(02), 257-287. https://doi.org/10.4236/ajps.2017.82019 | spa |
dc.relation.references | Rodriguez D. (2023). Portafolio Línea Acuicultura con Inclusión de Ajo (Allium sativum). | spa |
dc.relation.references | Scharsack, J. P., & Franke, F. (2022). Temperature effects on teleost immunity in the light of climate change. Journal of Fish Biology, 101(4), 780-796. https://doi.org/10.1111/jfb.15163 | spa |
dc.relation.references | Shinn, A. P., Avenant-Oldewage, A., Bondad-Reantaso, M. G., Cruz-Laufer, A. J., García- Vásquez, A., Hernández-Orts, J. S., Kuchta, R., Longshaw, M., Metselaar, M., Pariselle, A., Pérez-Ponce de León, G., Pradhan, P. K., Rubio-Godoy, M., Sood, N., Vanhove, M. P. M., & Deveney, M. R. (2023). A global review of problematic and pathogenic parasites of farmed tilapia. Reviews in Aquaculture, 15(S1), 92-153. https://doi.org/10.1111/raq.12742 | spa |
dc.relation.references | Shinn, A., Pratoomyot, J., Metselaar, M., & Gomes, G. (2018). Diseases in aquaculture— Counting the costs of the top 100. | spa |
dc.relation.references | Soto, E., Griffin, M., Arauz, M., Riofrio, A., Martinez, A., & Cabrejos, M. E. (2012). Edwardsiella ictaluri as the Causative Agent of Mortality in Cultured Nile Tilapia. Journal of Aquatic Animal Health, 24(2), 81-90. https://doi.org/10.1080/08997659.2012.675931 | spa |
dc.relation.references | Surachetpong, W., Roy, S. R. K., & Nicholson, P. (2020). Tilapia lake virus: The story so far. Journal of Fish Diseases, 43(10), 1115-1132. https://doi.org/10.1111/jfd.13237 | spa |
dc.relation.references | Tacon, A. G. (2023). Sustainable Aquaculture Feeds. LACQUA23, Panamá. | spa |
dc.relation.references | Telli, G. S., Ranzani-Paiva, M. J. T., Días, D. D. C., Sussel, F. R., Ishikawa, C. M., & Tachibana, L. (2014). Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & Shellfish Immunology, 39(2), 305-311. https://doi.org/10.1016/j.fsi.2014.05.025 | spa |
dc.relation.references | Technavio. (2023). Tamaño del mercado de acuicultura, participación, crecimiento, tendencias, pronóstico de análisis de la industria 2027. https://www.technavio.com/report/aquaculture-market-industry-analysis | spa |
dc.relation.references | Thompson, K. D. (2017). Immunology. En Fish Diseases (pp. 1-17). Elsevier. https://doi.org/10.1016/B978-0-12-804564-0.00001-6 | spa |
dc.relation.references | Valladão, G. M. R., Gallani, S. U., & Pilarski, F. (2018). South American fish for continental aquaculture. Reviews in Aquaculture, 10(2), 351-369. https://doi.org/10.1111/raq.12164 | spa |
dc.relation.references | Vásquez‐Machado, G., Barato‐Gómez, P., & Iregui‐Castro, C. (2019). Morphological characterization of the adherence and invasion of Streptococcus agalactiae to the intestinal mucosa of tilapia (Oreochromis sp.): An in vitro model. Journal of Fish Diseases, 42(9), 1223-1231. https://doi.org/10.1111/jfd.13042 | spa |
dc.relation.references | Wang, B., Thompson, K. D., Wangkahart, E., Yamkasem, J., Bondad-Reantaso, M. G., Tattiyapong, P., Jian, J., & Surachetpong, W. (2022). Strategies to enhance tilapia immunity to improve their health in aquaculture. Reviews in Aquaculture, 15(S1), 41-56. https://doi.org/10.1111/raq.12731 | spa |
dc.relation.references | Wang, B., Thompson, K. D., Wangkahart, E., Yamkasem, J., Bondad-Reantaso, M. G., Tattiyapong, P., Jian, J., & Surachetpong, W. (2023). Strategies to enhance tilapia immunity to improve their health in aquaculture. Reviews in Aquaculture, 15(S1), 41-56. https://doi.org/10.1111/raq.12731 | spa |
dc.relation.references | White, C. (2018). Technavio report: Global aquaculture market’s growth accelerating through 2022. https://www.seafoodsource.com/features/technavio-report-global- aquaculture-markets-growth-accelerating-through-2022 | spa |
dc.relation.references | Woo, P. T. K., & Subasinghe, R. P. (Eds.). (2023). Climate Change on Diseases and Disorders of Finfish in Cage Culture (3. https://doi.org/10.1079/9781800621640.0000 aed.). CABI. | spa |
dc.relation.references | Woo, P. T. K. (Ed.). (2002). Diseases and disorders of finfish in cage culture. CABI Publ. | spa |
dc.relation.references | Xia, Y., Wang, M., Gao, F., Lu, M., & Chen, G. (2020). Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition, 6(1), 69-79. https://doi.org/10.1016/j.aninu.2019.07.002 | spa |
dc.relation.references | Yamkasem, J., Tattiyapong, P., Kamlangdee, A., & Surachetpong, W. (2019). Evidence of potential vertical transmission of tilapia lake virus. Journal of Fish Diseases, 42(9), 1293-1300. https://doi.org/10.1111/jfd.13050 | spa |
dc.relation.references | Zhao, Z., Zou, Q., Han, S., Shi, J., Yan, H., Hu, D., & Yi, Y. (2023). Omics analysis revealed the possible mechanism of streptococcus disease outbreak in tilapia under high temperature. Fish & Shellfish Immunology, 134, 108639. https://doi.org/10.1016/j.fsi.2023.108639 | spa |
dc.relation.references | Zhu, F. (2020). A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture, 526, 735422. https://doi.org/10.1016/j.aquaculture.2020.735422 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 590 - Animales::597 - Vertebrados de sangre fría | spa |
dc.subject.lemb | PRODUCCION PESQUERA | spa |
dc.subject.lemb | Fishery production | eng |
dc.subject.lemb | ENFERMEDADES BACTERIANAS EN ANIMALES | spa |
dc.subject.lemb | Bacterial diseases in animals | eng |
dc.subject.lemb | LECTINAS | spa |
dc.subject.lemb | Lectins | eng |
dc.subject.lemb | ALIMENTOS PARA ANIMALES | spa |
dc.subject.lemb | Feeds | eng |
dc.subject.proposal | Adherencia | spa |
dc.subject.proposal | Erythrina | spa |
dc.subject.proposal | Estreptococosis | spa |
dc.subject.proposal | Glicoinhibidores | spa |
dc.subject.proposal | Oreochromis sp. | spa |
dc.subject.proposal | Streptococcus agalactiae | spa |
dc.subject.proposal | Adherence | eng |
dc.subject.proposal | Erythrina | eng |
dc.subject.proposal | Glicoinhibitors | eng |
dc.subject.proposal | Oreochromis sp. | eng |
dc.subject.proposal | Streptococcosis | eng |
dc.subject.proposal | Streptococcus agalactiae | eng |
dc.title | Uso de Erythrina edulis en dietas como fuente de lectinas inhibidoras de adherencia de Streptococcus agalactiae al intestino de tilapias (Oreochromis niloticus) | spa |
dc.title.translated | Use of Erythrina edulis in diets as a source of lectins inhibiting adherence of Streptococcus Agalactiae to the intestine of tilapias (Oreochromis niloticus) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 12262877.2024.pdf
- Tamaño:
- 4.77 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Salud y Producción Animal
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: