Comparación de dos metodologías estadísticas para un problema de clasificación binaria de imágenes bidimensionales
| dc.contributor.advisor | Calderón-Villanueva, Sergio Alejandro | spa |
| dc.contributor.advisor | Guevara Gonzalez, Rubén Darío | spa |
| dc.contributor.author | Sánchez Segura, Deniz Andrea | spa |
| dc.date.accessioned | 2020-12-14T14:00:21Z | spa |
| dc.date.available | 2020-12-14T14:00:21Z | spa |
| dc.date.issued | 2020-07 | spa |
| dc.description.abstract | A common problem that appears in the analysis of medical images is the identification of regions of interest in the body that are relevant to certain clinical responses. This corresponds to a regression problem with the use of anatomical images as independent variables and the patient’s state as the response, which is generally a categorical variable. In this way, the coefficients to be estimated correspond to certain signals that are activated in specific parts of the body and it is desired to estimate the response variable, which represents the classification status of the individual. In the present work, within the existing methodologies to solve the categorization problem associated with the patient's condition, two methods will be used, in order to contrast them, since they have not been compared under the context of classification and use of images. The first procedure that is implemented is based on the exploration of a mathematical-statistical model from multidimensional arrangements, often known as tensors. The second methodology is located in the field of functional data analysis, even more, in those functions that have the finite total variation measure. | spa |
| dc.description.abstract | Un problema frecuente en el análisis de imágenes médicas es la identificación de regiones de interés en el organismo que son relevantes a ciertas respuestas clínicas. Esto corresponde a un problema de regresión con el uso de las imágenes anatómicas como variables explicativas y el estado del paciente como respuesta, que generalmente es una variable categórica. De esta manera, los coeficientes a estimar corresponden a ciertas señales que se activan en partes específicas del cuerpo y se desea estimar la variable respuesta, que representa el estado de clasificación del individuo. En el presente trabajo, dentro de las metodologías existentes para resolver el problema de categorización asociado a la condición del paciente se hace uso de dos métodos, con el fin de contrastarlos, debido a que no han sido comparados bajo el contexto de clasificación y uso de imágenes. El primer procedimiento que se implementa está basado en la exploración de un modelo matemático-estadístico a partir de arreglos multidimensionales, frecuentemente conocidos como tensores, y se fundamenta en el marco teórico del modelo lineal generalizado de alta dimensionalidad. La segunda metodología se sitúa en el campo del análisis de datos funcionales, más aún, en aquellas funciones que poseen la medida de variación total finita. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 75 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78703 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Estadística | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
| dc.relation.references | Chambolle, A.: An algorithm for total variation minimization and application. En:Comput. Imaging Vision.20 (2004), Nr. 1, p. 89–97 | spa |
| dc.relation.references | Chen, C. ;He, L. ;Li, H. ;Huang, J.: Fast Iteratively Reweighted Least SquaresAlgorithms for Analysis-Based Sparsity Reconstruction. En:Med. Image Anal.49(2018), Nr. 1, p. 141–151 | spa |
| dc.relation.references | Dobson, A.:An Introduction to Generalized Linear Models 2nd ed.Boca Raton :Chapman Hall-CRC, 2002 | spa |
| dc.relation.references | Eckley, I. ;G., Nason: LS2W: Implementing the Locally Stationary 2D WaveletProcess Approach in R. En:J. Stat. Softw.43 (2011), Nr. 3, p. 1–23 | spa |
| dc.relation.references | Horváth, L. ;Kokoszka, P.:Inference for Functional Data with Applications. NewYork : Springer, 2012 | spa |
| dc.relation.references | Hsing, T. ;Eubank, R.:Theoretical Foundations of Functional Data Analysis, with anIntroduction to Linear Operators. Chennai : Wiley Series in Probability and Statistics,2015 | spa |
| dc.relation.references | Kokoszka, P. ;Reimherr, M.:Introduction to Functional Data Analysis. New York: Chapman and Hall-CRC, 2017 | spa |
| dc.relation.references | Lazar, N.:The Statistical Analysis of Functional MRI Data. New York : Springer,2008 | spa |
| dc.relation.references | Li, C. ;Yin, W. ;Jiang, H. ;Zhang, Y.: An Efficient Augmented Lagrangian Met-hodwith Applications to Total Variation Minimization. En:Comput. Optim. Appl.56(2013), Nr. 3, p. 507–530 | spa |
| dc.relation.references | Metz, C.: Basic principles of ROC analysis. En:Semin. Nucl. Med.8 (1978), Nr. 4,p. 283–298 | spa |
| dc.relation.references | Nason, G.:Wavelet Methods in Statistics with R. New York : Springer, 2011 | spa |
| dc.relation.references | Qin, Z. ;Ma, S. ;Goldfarb, D.: An Alternating Direction Method for Total VariationDenoising. En:Optim. Methods Softw.30 (2015), Nr. 3, p. 594–615 | spa |
| dc.relation.references | Ramsay, J. ;Silverman, B.:Functional Data Analysis. New York : Springer, 2005 | spa |
| dc.relation.references | Reiss, PT. ;Ogden, RT.: Fuctional Principal Component Regression and FunctionalPartial Least Squares. En:J. Amer. Statist. Assoc.102 (2007), Nr. 479, p. 984–996 | spa |
| dc.relation.references | Reiss, PT. ;Ogden, RT.: Fuctional generalized Linear Models with Images as Predic-tors. En:Biometrics66 (2010), Nr. 1, p. 61–69 | spa |
| dc.relation.references | Reiss, T. ;Todd, R.: Functional Principal Component Regression and FunctionalPartial Least Squares. En:J. Amer. Statist. Assoc.102 (2007), p. 984–996 | spa |
| dc.relation.references | Rudin, L. ;Osher, S. ;Fatemi, E.: Nonlinear total variation based noise removalalgorithms. En:Physica D60 (1992), Nr. 1, p. 259–268 | spa |
| dc.relation.references | Rudin, W.:Principles of Mathematical Analysis. New York : McGraw-Hill, 1976 | spa |
| dc.relation.references | Toshio, S.:Applied Matrix and Tensor Variate Data Analysis. Tokyo : Springer, 2016 | spa |
| dc.relation.references | Wang, X. ;Zhu, H.: Generalized Scalar-on-Image Regression Models via Total Varia-tion. En:J. Amer. Statist. Assoc.112 (2017), Nr. 519, p. 1156–1168 | spa |
| dc.relation.references | Wang, Y. ;Yang, J. ;Yin, W. ;Zhang, Y.: A new alternating minimization algorithmfor totalvariation image reconstruction. En:SIAM J. Imaging Sci.1 (2008), Nr. 3, p.248–272 | spa |
| dc.relation.references | Worsley, K.: Developments in Random Field Theory. En:Human Brain Function:Second Edition2 (2004) | spa |
| dc.relation.references | Zhou, H.: Matlab TensorReg Toolbox Version 1.0, Available online. (2017) | spa |
| dc.relation.references | Zhou, H. ;Li, L. ;Zhu, H.: Tensor Regression with Applications in NeuroimagingData Analysis. En:J. Amer. Statist. Assoc.108 (2013), Nr. 502, p. 540–552 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 519 - Probabilidades y matemáticas aplicadas | spa |
| dc.subject.proposal | Modelos lineales generalizados | spa |
| dc.subject.proposal | Generalized linear model | eng |
| dc.subject.proposal | Multidimensional array | eng |
| dc.subject.proposal | Arreglos multidimensionales | spa |
| dc.subject.proposal | Tensor regression | eng |
| dc.subject.proposal | Regresión tensor | spa |
| dc.subject.proposal | Functional regression | eng |
| dc.subject.proposal | Regresión funcional | spa |
| dc.subject.proposal | Total variation | eng |
| dc.subject.proposal | Variación total | spa |
| dc.subject.proposal | Regresión generalizada escalar-imagen | spa |
| dc.subject.proposal | Generalized scalar-on-image regression | eng |
| dc.subject.proposal | Clasificación | spa |
| dc.subject.proposal | Classification | eng |
| dc.title | Comparación de dos metodologías estadísticas para un problema de clasificación binaria de imágenes bidimensionales | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado Deniz Andre Sánchez Segura.pdf
- Tamaño:
- 1.71 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

