Evaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.

dc.contributor.advisorBarato Gómez, Paola Andrea
dc.contributor.advisorPardo Carrasco, Sandra Clemencia
dc.contributor.authorGutiérrez Arboleda, Jesed
dc.contributor.researchgroupBiodiversidad y Génetica Molecular \'BIOGEM\'spa
dc.date.accessioned2021-10-19T18:48:25Z
dc.date.available2021-10-19T18:48:25Z
dc.date.issued2020
dc.description.abstractLa salud de la tilapia es un tema primordial para conseguir buenos resultados productivos y el ambiente donde residen los peces influye sustancialmente en ello. El RAS (sistema de recirculación acuícola) y BFT (tecnología biofloc) son dos sistemas de producción intensiva y biotecnológicos por beneficiarse de microorganismos para su buen funcionamiento, pero esta microbiota puede estar en contacto con los peces (especialmente en el BFT) produciendo cierta incertidumbre en cuanto a la bioseguridad. Por eso el objetivo de esta investigación fue evaluar el efecto de los sistemas de producción RAS y BFT sobre parámetros productivos y sanitarios (recuento leucocitario y evaluación histológica de branquias e intestino) y la microbiota intestinal en tilapia roja Oreochromis spp. Para ejecutarlo se realizó un diseño completamente al azar en el laboratorio LAMA de la Universidad Nacional de Colombia, Sede Medellín, con seis tanques de 500 L (tres por tratamiento), donde fueron distribuidos 360 juveniles de tilapia roja (12,4 ± 1,2 g), que fueron muestreados los días de recepción, 15, 30, 45 y 60 del experimento. La biomasa fue mayor (P<0,05) en BFT y el factor de conversión alimenticia fue 40 % menor en el BFT con respecto al RAS. Los monocitos fueron mayores (P<0,05) en BFT sin salir del rango normal. Fue mejor la salud branquial en el BFT y no hubo diferencia significativa en el microbioma intestinal entre tratamientos. En conclusión, la tilapia mostró mejores parámetros zootécnicos y condiciones sanitarias aceptables para su producción en el BFT. (Texto tomado de la fuente)spa
dc.description.abstractThe health of tilapia is a primary issue to achieve good productive results and the environment where the fish reside has a substantial influence on this. The RAS (aquaculture recirculation system) and BFT (biofloc technology) are two intensive and biotechnological production systems because they benefit from microorganisms for their proper functioning, but this microbiota may be in contact with the fish (especially in the BFT) producing some uncertainty in terms of biosecurity. Therefore, the objective of this research was to evaluate the effect of the RAS and BFT production systems on productive and health parameters (leukocyte count and histological evaluation of gills and intestine) and the intestinal microbiota in red tilapia Oreochromis spp. To execute it, a completely randomized design was carried out in the LAMA laboratory of the National University of Colombia, Medellín campus, with six 500 L tanks (three per treatment), where 360 juvenile red tilapia (12.4 ± 1, 2 g), which were sampled on reception day, 15, 30, 45 and 60 of the experiment. The biomass was higher (P <0.05) and the feed conversion factor was 40% lower in the BFT concerning the RAS respectively. Monocytes were higher (P <0.05) in BFT without leaving the normal range. Gill health was better in BFT, and there was no significant difference in gut microbiome between treatments. In conclusion, tilapia showed better zootechnical performance and acceptable sanitary conditions for its production in the BFT.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaAcuicultura responsablespa
dc.format.extentxiii, 84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80579
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAdeoye, A. A., Yomla, R., Merrifield, D. L., Jaramillo-Torres, A., Rodiles, A., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiom. Aquaculture, 463, 61-70. doi:http://dx.doi.org/10.1016/j.aquaculture.2016.05.028spa
dc.relation.referencesAguilera, E., Yany, G., & Romero, J. (2013). Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin american journal of aquatic research, 41 (3), 395-403. doi: 103856/vol41-issue3-fulltext-3spa
dc.relation.referencesAhmad, Verma, Babitha, Rathore, Saharan, & Gora. (20 de Abril de 2016). Growth, nonspecific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61-67. doi:10.1016/j.aquaculture.2016.02.011spa
dc.relation.referencesAvnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235.spa
dc.relation.referencesAvnimelech, Y., De-Shryver, P., Emmerenciano, M., Dave, K., Andrew, R., & Nyan, T. (2015). Biofloc Technology - A Practical Guidebook (Vol. 3rd Edition). Louisiana, United States: The World Aquaculture Society.spa
dc.relation.referencesBailone, Bailone, R., ML Martins, J. M., Vieira, F., Pedrotti, F., Nunes, G., & Silva, B. (2010). Hematology and agglutination titer after polyvalent immunization and subsequent challenge with Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Arch Med Vet, 42, 221- 227.spa
dc.relation.referencesBebak-Williams, J., & Noble, A. (2009). Manejo Sanitario de Peces. En M. Timmons, J. Ebeling, & R. Piedrahita, acuicultura en sistemas de recirculación. Cayuga Aqua Ventures, Llc, 640-688.spa
dc.relation.referencesBirg, A., Ritz, N. L., & Lin, H. C. (2019). Chapter 20 - The Unknown Effect of AntibioticInduced Dysbiosis on the Gut Microbiota. En J. Faintuch, & S. Faintuch, Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications (págs. 195-200). Academic Press.spa
dc.relation.referencesBoutin, S., Bernatchez, L., Audet, C., & Derôme, N. (2013). Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota. PLOS ONE, 8(12), e84772. doi:https://doi.org/10.1371/journal.pone.0084772spa
dc.relation.referencesBryan Wilson & Bret, D. &. (April de 2008). The Diversity of Bacterial Communities Associated with Atlantic Cod Gadus morhua. Microbial Ecology, 55(3), 425–434. doi: 10.1007/s00248-007-9288-0spa
dc.relation.referencesCampisano, A., Ometto, L., Compant, S., Pancher, M., Antonielli, L., Yousa, S., . . . RotaStabelli, O. ( 2014). Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine. Molecular biology and evolution, 31(5), 1059-1065. doi:10.1093/molbev/msu075spa
dc.relation.referencesCavalcante, R. B., Telli, G. S., Tachibana, L., Dias, D. C., Oshiro, E., Natori, M. M., . . . Ranzani-Paiva, M. J. (2020). Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17(100343). doi:https://doi.org/10.1016/j.aqrep.2020.100343spa
dc.relation.referencesClaesson, M. J., Cusack, S., O'Sullivan, O., Greene-Diniz, R., Weerd, H. d., Flannery, E., . . . O', K. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of sciences, 108 (1), 4586-4591. doi:https://doi.org/10.1073/pnas.1000097107spa
dc.relation.referencesDawood, M. A., Zommara, M., Eweedah, N. M., & Helal, A. I. (2020). The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture, 515(15), 734571. doi:https://doi.org/10.1016/j.aquaculture.2019.734571spa
dc.relation.referencesEichmiller, J. J., Hamilton, M. J., Staley, C., Sadowsky, M. J., & Sorensen, P. W. (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome, 4(44), 1- 13. doi: 10.1186/s40168-016-0190-1spa
dc.relation.referencesElsabagh, M., Mohamed, R., Moustafa, E. M., Hamza, A., Farrag, F., Decamp, O., . . . Eltholth, M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24, 1613-1622. doi:https://doi.org/10.1111/anu.12797 24:6 1613-1622spa
dc.relation.referencesEspinosa, & Bermúdez. (2011). La acuicultura y su impacto al medio ambiente. México. Fan, L., Chen, J., Meng, S., Song, C., Qiu, L., Hu, G., & Xu, P. (2015). Characterization of microbial communities in intensive GIFT tilapia (Oreochromis niloticus) pond systems during the peak period of breeding. Aquaculture Research, 1-14. doi:10.1111/are.12894spa
dc.relation.referencesFranciscoVargas-Albores, Martínez-Córdova, L. R., Gollas-Galván, T., Garibay-Valdez, E., Coelho-Emerenciano, M., Lago-Leston, A., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi:https://doi.org/10.1016/j.aquaculture.2018.10.005spa
dc.relation.referencesGaikwad, S. S., Shouche, Y. S., & Gade, W. N. (2017). Deep Sequencing Reveals Highly Variable Gut Microbial Composition of Invasive Fish Mossambicus Tilapia (Oreochromis mossambicus) Collected from Two Different Habitats. Indian Journal of Microbiology, 57, 235–240. doi:https://doiorg.ezproxy.unal.edu.co/10.1007/s12088-017-0641-9spa
dc.relation.referencesGiatsis, C., Abernathy, J., Sipkema, D., Ramiro-Garcia, J., Bacanu, G. M., Verreth, J., . . . Verdegem, M. (2016). Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific RepoRts, 6:33965, 1-11. doi: 10.1038/srep33965spa
dc.relation.referencesGibson, L., Woodworth, J., & George, A. (1998). Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture, 169 (1–2), 111-120. doi:https://doi.org/10.1016/S0044-8486(98)00369-Xspa
dc.relation.referencesGomez, D., Sunye, O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:https://doi.org/10.1016/j.fsi.2013.09.032spa
dc.relation.referencesGunanti, M., Wulansari, P., & Kinzella, K. (2019). The erythrocyte and leucocyte profile of saline tilapia (Oreochromis Niloticus) in a cultivation system with nanobubbles. OP Conf. Series: Earth and Environmental Science 236 012089, 1-7. doi:10.1088/1755- 1315/236/1/012089Ispa
dc.relation.referencesHahn-von-Hessberg, C., Quiroz-Bucheli, A., & Grajales-Quintero, A. (2014). Caracteres hematológicos en individuos de tilapia nilótica (Oreochromis niloticus, trewavas 1983) con pesos entre 50-150 g y 150-250 g, estación piscícola, Universidad de Caldas, Colombia. 18(1), 142-157.spa
dc.relation.referencesHan, S., Liu, Y., Zhou, Z., He, S., Cao, Y., Shi, P., . . . Ringø, E. (2010). Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquaculture Research, 42(1), 47-56. doi: https://doi.org/10.1111/j.1365- 2109.2010.02543.xspa
dc.relation.referencesHaridas, H., Verma, A. K., Rathore, G., Prakash, C., Sawant, P. B., & Rani, A. M. (Agosto de 2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquaculture Research, 48(8), 4346–4355. doi:10.1111/are.13256spa
dc.relation.referencesgerslev, H., Jørgensen, L. v., Strube, M. L., Larsen, N., Dalsgaard, I., M.Boye, & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424-425, 24-34. doi: http://dx.doi.org/10.1016/j.aquaculture.2013.12.032spa
dc.relation.referencesJiménez, A., Rey, A., Penagos, L., Ariza, M., Figueroa, J., & CA, I. (2007). Streptococcus agalactiae: up to date the only pathogenous Streptococcus of cultured tilapias in Colombia. Rev. Med. Vet. Zoo, 54, 285-294. Obtenido de http://bdigital.unal.edu.co/15896/1/10628- 38445-1-PB.pdfspa
dc.relation.referencesKnief, C., Ramette, A., Frances, L., Alonso-Blanco, C., & Vorholt, J. A. (2010). Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. The ISME journal, 4(6), 719-728. doi: 10.1038/ismej.2010.9spa
dc.relation.referencesLarsen, A. M., Mohammed, H. H., & Arias., C. R. (2014). Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol, 116(6), 1396-1404. doi: 10.1111/jam.12475spa
dc.relation.referencesLlewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers Mycrobiology, 5 (207). doi: 10.3389/fmicb.2014.00207spa
dc.relation.referenceschallenge with Aeromonas salmonicida ssp. Salmonicida. Aquaculture Research, 32(12), 935-945. doi:https://doi.org/10.1046/j.1365-2109.2001.00621.xLoh, J.-Y. (20 de March de 2017). The Role of Probiotics and Their Mechanisms of Action: An Aquaculture Perspective. WORLD AQUACULTURE, 19-23.spa
dc.relation.referencesLowrey, L., Woodhams, D. C., Tacchi, L., & Salinas, I. (2015). Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Applied and Environmental Microbiology, 81(19), 6915-6925. doi: 10.1128/AEM.01826-15spa
dc.relation.referencesMakarenkov, V., & Lapointe, F.-J. (2004). A weighted least-squares approach for inferring phylogenies from incomplete distance matrices. Bioinformatics, 20(13), 2113-2121. doi.org/10.1093/bioinformatics/bth211spa
dc.relation.referencesMartin-Gallausiaux, C., Béguet-Crespel, F., Marinelli, L., Jamet, A., Ledue, F., Blottière, H. M., & Lapaque., N. (2018). Butyrate produced by gut commensal bacteria activates TGFbeta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Scientific Reports, 8(9742). doi: https://doi.org/10.1038/s41598-018-28048-yspa
dc.relation.referencesMelo-Bolívar, J., Pardo, R., Hume, N., Nisbet, D., Rodriguez-Villamizar, F., Alzate, J., . . . Diaz, L. (2019). Establishment and characterization of a competitive exclusion bacterial culture derived from Nile tilapia (Oreochromis niloticus) gut microbiomes showing antibacterial activity against pathogenic Streptococcus agalactiae. PloS one, 14(5), 215375. doi:https://doi.org/10.1371/journal.pone.0215375spa
dc.relation.referencesMu, L., Yin, X., Bian, X., Wu, L., Yang, Y., Wei, X., & Ye, Z. G. (2018). Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Molecular Immunology, 103, 21-34. doi:https://doi.org/10.1016/j.molimm.2018.08.012spa
dc.relation.referencesMuiswinkel, W. V., & Nakao, M. (2014). A short history of research on immunity to infectious diseases in fish. Developmental and Comparative Immunology, 43, 130–150. doi:http://dx.doi.org/10.1016/j.dci.2013.08.016spa
dc.relation.referencesNutsch, K., & Hsieh, C.-S. (2012). T cell tolerance and immunity to commensal bacteria. Current Opinion in Immunology, 24, 385–391. doi:http://dx.doi.org/10.1016/j.coi.2012.04.009spa
dc.relation.referencesOttman, N., Smidt, H., Vos, W. M., & Belzer, C. (2012). The function of our microbiota: who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2, 104. doi: https://doi.org/10.3389/fcimb.2012.00104spa
dc.relation.referencesRawls, S. G. (March de 2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596-4601. doi:DOI:10.1073/pnas.0400706101spa
dc.relation.referencesRhodes, L., Johnson, R., & Myers, M. (2016). Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture, 464, 683-691. doi: http://dx.doi.org/10.1016/j.aquaculture.2016.05.010spa
dc.relation.referencesRocha, C. M., Pascuas, A. J., & Pianeta, A. (2017). Respuestas hematológicas, hepáticas y esplénicas al estrés de tilapias en jaulas y libres en el embalse de Betania, Colombia. Revista científica de la Sociedad Española de Acuicultura, 49, 8-20. Obtenido de http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/305/304spa
dc.relation.referencesRomano, N., Caccia, E., Piergentili, R., Rossi, F., Ficca, A., Ceccariglia, S., & Mastrolia, L. (2011). Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). Fish Shellfish Immunology, 30(3), 773-82. doi: 10.1016/j.fsi.2010.12.032.spa
dc.relation.referencesSakyi, M. E., Cai, J., Tang, J., Abarike, E. D., Xia, L., Li, P., . . . Jian, J. (2020). Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia, Oreochromis niloticus. Aquaculture Reports, 17(100370). doi:https://doi.org/10.1016/j.aqrep.2020.100370spa
dc.relation.referencesShizuo, M., Alves, G. F., Cardoso, L., Martins, N. B., & Mouriño, J. P. (2020). Can histology and haematology explain inapparent Streptococcus agalactiae infections and asymptomatic mortalities on Nile tilapia farms? Research in Veterinary Science, 129, 13- 20. doi:https://doi.org/10.1016/j.rvsc.2019.12.018spa
dc.relation.referencesSmith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (QPCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67(1), 6–20. doi:https://doi.org/10.1111/j.1574-6941.2008.00629.x Smriga, S., Sandin, S. A., & Azam, F. (2010). Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiol Ecol. , 1, 31- 42. doi: 10.1111/j.1574-6941.2010.00879.x.spa
dc.relation.referencesTseng, D.-Y., Ho, P.-L., Huang, S.-Y., Cheng, S.-C., Shiu, Y.-L., Chiu, C.-S., & Liu, C.-H. (2009). Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish & Shellfish Immunology, 26(2), 339- 344. doi:https://doi.org/10.1016/j.fsi.2008.12.003spa
dc.relation.referencesUribe, C., Folch, H., Enriquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), 486–503.spa
dc.relation.referencesVargas-Albores, F., Garibay-Valdez, E., Martínez-Córdova, L. R., Gollas-Galván, T., Mazorra-Manzano, M., Emerenciano, M. C., . . . Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimpculture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117. doi: https://doi.org/10.1016/j.aquaculture.2018.10.005spa
dc.relation.referencesVentura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & Sinderen., D. v. (2007). Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. doi: 10.1128/MMBR.00005-07spa
dc.relation.referencesVillegas-Plazas, M., Wos-Oxley, M. L., Sanchez, J. A., Pieper, D. H., Thomas, O. P., & Junca, H. (2019). Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth. Microbial Ecology, 78, 243- 256. doi:https://doi.org/10.1007/s00248-018-1285-yspa
dc.relation.referencesVine, L. K. (2004). Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases, 27, 319–326. Obtenido de https://doi-org.ezproxy.unal.edu.co/10.1111/j.1365-2761.2004.00542.xspa
dc.relation.referencesWang, L., Liu, L., Liu, X., Xiang, M., Zhou, L., Huang, C., . . . Miao, L. (2020). The gut microbes, Enterococcus and Escherichia-Shigella, affect the responses of heart valve replacement patients to the anticoagulant warfarin Author links open overlay panel. Pharmacological Research, 159(104979). doi:https://doi.org/10.1016/j.phrs.2020.104979spa
dc.relation.referencesWidanarni, Ekasari, J., & Maryam, S. (2012). Evaluation of Biofloc Technology Application on Water Quality and Production Performance of Red Tilapia Oreochromis sp. Cultured at Different Stocking Densities. HAYATI Journal of Biosciences, 19(2), 73-80. doi: 10.4308/hjb.19.2.73spa
dc.relation.referencesWu, S.-G., Tian, J.-Y., Gatesoupe, F.-J., W.-X. L., Zou, H., Yang, B.-J., & Wang, G.-T. (2013). Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol, 29(9), 1585-1595. doi: 10.1007/s11274-013-1322-4.spa
dc.relation.referencesZhang, X., Ding, L., Yu, Y., Kong, W., Yin, Y., Huang, Z., . . . Xu, Z. (2018). The Change of Teleost Skin Commensal Microbiota Is Associated With Skin Mucosal Transcriptomic Responses During Parasitic Infection by Ichthyophthirius multifillis. Frontiers in Immunology, 9(2972). doi: 10.3389/fimmu.2018.02972spa
dc.relation.referencesZhu, L.-y., Nie, L., Zhu, G., Xiang, L.-x., & Shao, J.-z. (2013). Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Developmental and Comparative Immunology, 39-62. doi:http://dx.doi.org/10.1016/j.dci.2012.04.001spa
dc.relation.referencesZühlke, D., López-Mondéjar, R., Becher, D., Riedel, K., & Baldrian, P. (2016). Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 6(25279).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembAquacultureeng
dc.subject.lembBacteriasspa
dc.subject.proposalAcuiculturaspa
dc.subject.proposalTilapia roja (Oreochromis spp.)spa
dc.subject.proposalMicrobioma intestinaspa
dc.subject.proposalParámetros zootécnicosspa
dc.subject.proposalSanidad piscícolaspa
dc.subject.proposalAquacultureeng
dc.subject.proposalRed tilapia (Oreochromis spp.eng
dc.subject.proposalIntestinal microbiomeeng
dc.subject.proposalZootechnical parameterseng
dc.subject.proposalFish healtheng
dc.titleEvaluación de la microbiota intestinal, parámetros productivos y sanitarios de tilapia Oreochromis spp. cultivada en sistemas biofloc y recirculación acuícola.spa
dc.title.translatedEvaluation of the intestinal microbiota, productive and health parameters of tilapia Oreochromis spp. cultured in biofloc and recirculation aquaculture systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017152747.2020.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: