Desarrollo tecnológico basado en un sistema de deshidratación solar para la generación de valor en alimentos producidos por una comunidad vulnerable de Santander
dc.contributor.advisor | Zuluaga Domínguez, Carlos Mario | spa |
dc.contributor.advisor | Nieto Veloza, Cindy Andrea | spa |
dc.contributor.author | Fajardo Ariza, Erika Tatiana | spa |
dc.contributor.researchgroup | Ayni - Grupo de Investigación en Procesos Agroindustriales | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Santander | spa |
dc.date.accessioned | 2025-04-21T18:10:30Z | |
dc.date.available | 2025-04-21T18:10:30Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías a color, mapas | spa |
dc.description.abstract | La Asociación de Apicultores de la Serranía de los Yariguíes (APISY) es una comunidad localizada en la vereda de las Clavellinas, en el municipio de Galán, Santander, cuya subsistencia se fundamenta en la comercialización de los productos hortofrutícolas producidos en sus predios. No obstante, ellos enfrentan problemas derivados de la alta perecibilidad de sus productos debido a su alto contenido de humedad que, sumado a la dificultad de transporte en fresco a los cascos urbanos más cercanos, y la poca accesibilidad a mecanismos de conservación, provoca un volumen significativo de pérdidas que afecta su economía y, consecuentemente, su bienestar. Con el objetivo de abordar este problema, el presente trabajo se desarrolló un sistema de deshidratación solar pasivo como alternativa de conservación y de generación de valor agregado a los alimentos de origen vegetal producidos por dicha comunidad. Esta investigación fue realizada en cuatro etapas. En la primera se realizó un proceso de reconocimiento de los actores y el territorio, en el cual se identificación de las necesidades específicas de la comunidad mediante la aplicación de encuestas, reuniones y la realización de visitas al lugar. Se evaluaron las condiciones de temperatura y humedad relativa en la zona, y se realizó el reconocimiento de un secador solar en funcionamiento en el departamento de Boyacá, buscando sentar las bases de diseño y oportunidades de mejora a implementar en el diseño del secador a construir en Santander. En la segunda etapa, se llevó a cabo el diseño y la construcción del deshidratador solar. El diseño fue resultado de un proceso co-creativo en el que participaron representantes de la comunidad acorde a sus necesidades y criterios técnicos. Así mismo, se realizaron pruebas de distintos materiales para la instalación de la cobertura de la estructura con la finalidad de establecer aquel que permitiera el mejor aprovechamiento de las condiciones climáticas locales y la captación de energía solar para lograr un proceso de deshidratación eficiente. Luego de finalizada la construcción, se logró contar con un secador solar que posee un área de 22.6 m2 y capacidad para 20 bandejas de 1 m2 cada una. En la tercera etapa se realizó la caracterización del proceso de secado empleando dos productos típicos de la región: plátano verde (Musa Paradisiaca) y banano bocadillo (Musa Acuminata). Se realizaron pruebas en el secador solar construido en el territorio y en un secador eléctrico convencional de aire forzado localizado en el Instituto de Ciencia y Tecnología de Alimentos de la Universidad Nacional de Colombia. Para cada proceso se realizó el modelamiento matemático de los datos experimentales, en el cual un modelo de Page fue suficientemente robusto para establecer el comportamiento de la deshidratación, se calculó el tiempo de secado para cada producto y se estimó la eficiencia energética global siendo cercana al 49%. En la cuarta etapa se propusieron formulaciones de galletas con sustitución de harina de trigo por harina de plátano verde en diferentes proporciones del 0 % al 100 %. Las galletas obtenidas fueron caracterizadas mediante parámetros fisicoquímicos y un análisis sensorial con consumidores, cuyos resultados permitieron identificar la galleta con sustitución del 50 % de harina de trigo como la formulación con mayor aceptación y, por ende, la de mejor potencial de aprovechamiento tecnológico tiene para ser adoptada por la comunidad. Los resultados de la presente investigación demuestran que la implementación de un sistema de deshidratación solar en la vereda Clavellinas es una solución viable para reducir las pérdidas postcosecha y conservar productos vegetales, generando valor agregado y fortaleciendo el desarrollo económico local. Además, se promueve la seguridad alimentaria y fomenta la innovación a través de la integración de tecnologías sostenibles, saberes locales y apoyo institucional (Texto tomado de la fuente). | spa |
dc.description.abstract | The Association of Beekeepers of the Serranía de los Yariguíes (APISY) is a community located in the Clavellinas area, in the municipality of Galán, Santander, whose livelihood is based on the commercialization of horticultural products grown on their land. However, they face challenges stemming from the high perishability of their products due to their high moisture content, combined with the difficulty of transporting fresh produce to nearby urban centers and the limited access to preservation methods. This results in a significant volume of losses that affects their economy and, consequently, their well-being. To address this issue, this work developed a passive solar dehydration system as a conservation alternative and a means of adding value to the plant-based foods produced by this community. This research was conducted in four stages. In the first stage, a process of identifying the stakeholders and the territory was carried out, during which the specific needs of the community were identified through surveys, meetings, and on-site visits. The temperature and relative humidity conditions in the area were assessed, and a working solar dryer in the department of Boyacá was reviewed, seeking to lay the foundation for the design and identify improvement opportunities for the dryer to be built in Santander. In the second stage, the design and construction of the solar dehydrator were completed. The design resulted from a co-creative process involving community representatives based on their needs and technical criteria. In addition, tests were conducted on different materials for the structure’s covering to determine the one (which one) that would best take advantage of the local climatic (climate. Climactic is the adjective of climax) conditions and capture solar energy for an efficient dehydration process. Upon completion, the solar dryer had an area of 22.6 m2 and a capacity for 20 trays, each measuring 1 m2. In the third stage, the drying process was characterized by using two typical products from the region: green plantains (Musa paradisiaca) and baby bananas (Musa acuminata). Tests were conducted in the solar dryer that was built on-site and in a conventional electric forced-air dryer located at the Institute of Food Science and Technology of the National University of Colombia. For each process, the experimental data was mathematically modeled with a Page model proving sufficiently robust to determine the dehydration behavior. The drying time for each product was calculated, and the overall energy efficiency was estimated at around 49%. In the fourth stage, cookie formulations were proposed by substituting wheat flour with green plantain flour in varying proportions, from 0% to 100%. The cookies were characterized by physicochemical parameters and a sensory analysis with consumers, whose results identified the cookie with 50% wheat flour substitution as the formulation with the highest acceptance and, therefore, the greatest technological potential for adoption by the community. The results of this research demonstrate that implementing a solar dehydration system in the Clavellinas area is a viable solution to reduce post-harvest losses and preserve plant-based products, generating added value and strengthening local economic development. Additionally, it promotes food security and fosters innovation through the integration of sustainable technologies, local knowledge and institutional support. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Procesamiento de alimentos | spa |
dc.format.extent | 170 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87982 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Ade, A. R., Olayemi, F. F., Adebiyi, A. O., Zubair, O. M., Adeiza, O. A., & Achime, K. C. (2018). RECENT ADVANCES IN SOLAR DRYING OF AGRICULTURAL PRODUCE IN NIGERIA: NSPRI EXPERIENCE. Food Sufficiency AZOJETE, 14, 86–94. www.azojete.com.ng | spa |
dc.relation.references | Adubofuor, J., Amoah, I., Batsa, V., Boamah Agyekum, P., & Akuba Buah, J. (2016). Nutrient Composition and Sensory Evaluation of Ripe Banana Slices and Bread Prepared from Ripe Banana and Wheat Composite Flours. American Journal of Food and Nutrition, 4(4), 103–111. https://doi.org/10.12691/ajfn-4-4-3 | spa |
dc.relation.references | Agama-Acevedo, E., Islas-Hernández, J. J., Pacheco-Vargas, G., Osorio-Díaz, P., & Bello-Pérez, L. A. (2012). Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT Food Science and Technology, 46(1), 177–182. https://doi.org/10.1016/j.lwt.2011.10.010 | spa |
dc.relation.references | Al-Dujaili, A. Q., Shallal, A. H., Sabry, A. H., Dallal bashi, O. I., Alkubaisi, Y. M., & Humaidi, A. J. (2024). Maximizing solar energy utilization and controlling electrical consumption in domestic water heaters by integrating with aluminum reflector. Measurement: Journal of the International Measurement Confederation, 230. https://doi.org/10.1016/j.measurement.2024.114558 | spa |
dc.relation.references | Al-Mahdouri, A., Baneshi, M., Gonome, H., Okajima, J., & Maruyama, S. (2013). Evaluation of optical properties and thermal performances of different greenhouse covering materials. Solar Energy, 96, 21–32. https://doi.org/10.1016/j.solener.2013.06.029 | spa |
dc.relation.references | Anajekwu, E. O., Maziya-Dixon, B., Akinoso, R., Awoyale, W., & Alamu, E. O. (2020a). Physicochemical Properties and Total Carotenoid Content of High-Quality Unripe Plantain Flour from Varieties of Hybrid Plantain Cultivars. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/5960346 | spa |
dc.relation.references | AOAC International. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists (18a ed.). | spa |
dc.relation.references | Association of Official Analytical Chemists. (2006). Official Methods of Analysis (18th ed.). MD. | spa |
dc.relation.references | Babar, O. A., Tarafdar, A., Malakar, S., Arora, V. K., & Nema, P. K. (2020). Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. Journal of Food Process Engineering, 43(10). https://doi.org/10.1111/jfpe.13484 | spa |
dc.relation.references | Badaoui, O., Hanini, S., Djebli, A., Haddad, B., & Benhamou, A. (2019). Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy, 133, 144–155. https://doi.org/10.1016/j.renene.2018.10.020 | spa |
dc.relation.references | Badui Dergal, Salvador. (2006). Química de los Alimentos. Pearson Educación. | spa |
dc.relation.references | Barbosa-Cánovas, G. V, Fontana, A. J., Schmidt, S. J., Fontana, B.-C., & Labuza, S. (2007). Water Activity in Foods Fundamentals and Applications Editors Water Activity in Foods. | spa |
dc.relation.references | Bawa, M., Dzigbor, A., Gobe, V. A. Dela, Opoku, G. F., Barima, A. A. T., & Donkor, A. K. L. (2023). Nutritional, Sensory, and Microbial Quality of Cookies Produced by Partial Replacement of Wheat Flour with Plantain (Musa paradisiaca) and Cocoyam (Colocasia esculenta) Flours. Journal of Food Processing and Preservation, 2023, 1–9. https://doi.org/10.1155/2023/6762289 | spa |
dc.relation.references | Bawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020a). Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. Journal of Food Processing and Preservation, 44(8). https://doi.org/10.1111/jfpp.14601 | spa |
dc.relation.references | Bawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020b). Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. Journal of Food Processing and Preservation, 44(8). https://doi.org/10.1111/jfpp.14601 | spa |
dc.relation.references | Berk, Z. (2018a). Dehydration. En Food Process Engineering and Technology (pp. 513–566). Elsevier. https://doi.org/10.1016/B978-0-12-812018-7.00022-1 | spa |
dc.relation.references | Berk, Z. (2018b). Food Process Engineering and Technology (Third Edition). Academic Press. | spa |
dc.relation.references | Boateng, I. D. (2023). A review of solar and solar-assisted drying of fresh produce: state of the art, drying kinetics, and product qualities. En Journal of the Science of Food and Agriculture. John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.12660 | spa |
dc.relation.references | Borah, A., Hazarika, K., & Khayer, S. M. (2015). Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Information Processing in Agriculture, 2(2), 85–92. https://doi.org/10.1016/j.inpa.2015.06.002 | spa |
dc.relation.references | Bradley, R. L. (2010). Moisture and Total Solids Analysis. En S. Nielsen (Ed.), Food Analysis (4a ed., pp. 85–104). Springer. https://doi.org/10.1007/978-1-4419-1478-1_6 | spa |
dc.relation.references | Cauvain, S. P. (2016). Bread and other bakery products. En The Stability and Shelf Life of Food (pp. 431–459). Elsevier. https://doi.org/10.1016/B978-0-08-100435-7.00015-0 | spa |
dc.relation.references | Cengel, Y. (2007). Transferencia de calor y masa: un enfoque práctico (3a ed.). Mc Graw Hill. | spa |
dc.relation.references | Ceylan, I., & Gürel, A. E. (2016). Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves. Applied Thermal Engineering, 106, 899–905. https://doi.org/10.1016/j.applthermaleng.2016.06.077 | spa |
dc.relation.references | Chabane, F., Moummi, N., & Brima, A. (2019). An experimental study and mathematical modeling of solar drying of moisture content of the mint, apricot, and green pepper. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1670755 | spa |
dc.relation.references | Chauhan, A., Saxena, D. C., & Singh, S. (2016). Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food and Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1125773 | spa |
dc.relation.references | Chinma, C. E., Igbadul, B. D., & Omotayo, O. O. (2012). Quality characteristics of cookies prepared from unripe plantain. American Journal of Food Technology, 7(7), 398408. | spa |
dc.relation.references | Departamento Nacional de Planeación (DNP) República de Colombia. (2016). Pérdida y Desperdicio de Alimentos en Colombia. Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. https://mrv.dnp.gov.co/Documentos%20de%20Interes/ Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdf | spa |
dc.relation.references | Desai, M. A., Vallabhbhai, S., Kapadiya, S., & Desai, M. A. (2014). Solar drying of natural and food products: a review. En International Journal of Agriculture and Food Science Technology (Vol. 5, Número 6). http://www.ripublication.com/ijafst.htm | spa |
dc.relation.references | Djebli, A., Hanini, S., Badaoui, O., Haddad, B., & Benhamou, A. (2020a). Modeling and comparative analysis of solar drying behavior of potatoes. Renewable Energy, 145, 1494–1506. https://doi.org/10.1016/j.renene.2019.07.083 | spa |
dc.relation.references | Durán Jiménez, A. (2014). Diseño de un sistema de secado y separación de impurezas para polen apícola en Colombia. | spa |
dc.relation.references | El Hage, H., Herez, A., Ramadan, M., Bazzi, H., & Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157, 815–829. https://doi.org/10.1016/j.energy.2018.05.197 | spa |
dc.relation.references | Erick César, L. V., Ana Lilia, C. M., Octavio, G. V., Isaac, P. F., & Rogelio, B. O. (2020a). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy, 147, 845–855. https://doi.org/10.1016/j.renene.2019.09.018 | spa |
dc.relation.references | Fennema, O. R. (2000). Química de los alimentos (Acribia, Ed.; Tercera). | spa |
dc.relation.references | Fröhlich, C. L., & London, J. (1986). Revised Instruction Manual on Radiation Instruments and Measurements. | spa |
dc.relation.references | Gallagher, E., Gormley, T. R., & Arendt, E. K. (2003). Crust and crumb characteristics of gluten free breads. Journal of Food Engineering, 56(2–3), 153–161. https://doi.org/10.1016/S0260-8774(02)00244-3 | spa |
dc.relation.references | García-Moreira, D. P., Hernández-Guzmán, H., Pacheco, N., Cuevas-Bernardino, J. C., Herrera-Pool, E., Moreno, I., & López-Vidaña, E. C. (2023). Solar and Convective Drying: Modeling, Color, Texture, Total Phenolic Content, and Antioxidant Activity of Peach (Prunus persica (L.) Batsch) Slices. Processes, 11(4). https://doi.org/10.3390/pr11041280 | spa |
dc.relation.references | Garwood, A. (2005). Energía solar: The rising solar solution in rural Latin America. Refocus, 6(3), 32–34. https://doi.org/10.1016/S1471-0846(05)70397-8 | spa |
dc.relation.references | Guiné, R. P. F. (2022). Textural Properties of Bakery Products: A Review of Instrumental and Sensory Evaluation Studies. En Applied Sciences (Switzerland) (Vol. 12, Número 17). MDPI. https://doi.org/10.3390/app12178628 | spa |
dc.relation.references | Guiné, R. P. F., & Florença, S. G. (2024). Development and Characterization of Functional Bakery Products. Physchem, 4(3), 234–257. https://doi.org/10.3390/physchem4030017 | spa |
dc.relation.references | Haque, A. (2016). 3 - Solar energy. En Electric Renewable Energy Systems (pp. 40–59). https://doi.org/10.1016/B978-0-12-804448-3/00003-7 | spa |
dc.relation.references | Harper, C. A., & Petrie, E. M. (2003). Plastic Materials and Processes. www.copyright.com. | spa |
dc.relation.references | Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. En Journal of Food Processing and Preservation (Vol. 43, Número 12). Blackwell Publishing Ltd. https://doi.org/10.1111/jfpp.14280 | spa |
dc.relation.references | Heldman, D. R., & Hartel, R. W. (1998). Principles of food processing. Aspen Publishers, Inc. | spa |
dc.relation.references | Hempattarasuwan, P., Somsong, P., Duangmal, K., Jaskulski, M., Adamiec, J., & Srzednicki, G. (2020). Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Drying Technology, 38(1–2), 48–54. https://doi.org/10.1080/07373937.2019.1609495 | spa |
dc.relation.references | Holman, J. P. (1998). Transferencia de calor (8a ed.). | spa |
dc.relation.references | Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Farhana, Z. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 18, 1402–1412. https://doi.org/10.1016/j.egypro.2012.05.156 | spa |
dc.relation.references | Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Razliana, A. R. N. (2012). An estimation of solar radiation using robust linear regression method. Energy Procedia, 18, 1413–1420. https://doi.org/10.1016/j.egypro.2012.05.157 | spa |
dc.relation.references | ICONTEC. (1991). Norma Técnica Colombiana NTC 2799: Industrias alimentarias. Harina de Plátano. ICONTEC. | spa |
dc.relation.references | IDEAM, & UPME. (2017). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia. | spa |
dc.relation.references | Igbabul, B., Ogunleye, R., & Amove, J. (2018). Quality Characteristics of Cookies Prepared from Wheat and Fermented Afzelia Africana Flour. American Journal of Food Science and Technology, 6(6), 247–252. https://doi.org/10.12691/ajfst-6-6-3 | spa |
dc.relation.references | Incropera, F. P., & DeWitt David P. (1999). Fundamentos de transferencia de calor (4a ed.). Prentice Hall Hispanoamericana S.A. | spa |
dc.relation.references | Joardder, M. U. H., Masud, M. H., Nasif, S., Plabon, J. A., & Chaklader, S. H. (2019). Development and performance test of an innovative solar derived intermittent microwave convective food dryer. AIP Conference Proceedings, 2121. https://doi.org/10.1063/1.5115881 | spa |
dc.relation.references | Kant, K., Shukla, A., Sharma, A., Kumar, A., & Jain, A. (2016). Thermal energy storage based solar drying systems: A review. En Innovative Food Science and Emerging Technologies (Vol. 34, pp. 86–99). Elsevier Ltd. https://doi.org/10.1016/j.ifset.2016.01.007 | spa |
dc.relation.references | Kirkham, M. B. (2014). Solar Radiation, Black Bodies, Heat Budget, and Radiation Balance. En Principles of Soil and Plant Water Relations (pp. 453–472). Elsevier. https://doi.org/10.1016/b978-0-12-420022-7.00025-2 | spa |
dc.relation.references | Koua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), 72–82. https://doi.org/10.1016/j.jssas.2017.01.002 | spa |
dc.relation.references | Kouchakzadeh, A. (2016). The hybrid drying of pistachios by solar energy and high electric field (Vol. 18, Número 1). http://www.cigrjournal.org | spa |
dc.relation.references | Lakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2018). Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renewable Energy, 120, 23–34. https://doi.org/10.1016/j.renene.2017.12.053 | spa |
dc.relation.references | Lakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2019). Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Solar Energy, 188, 507–518. https://doi.org/10.1016/J.SOLENER.2019.06.009 | spa |
dc.relation.references | Liu, X., Huang, Z., Wang, Y., Su, H., Lin, P., Yu, W., & Chen, Y. (2022). Thermal energy storage and solar energy utilization enabled by novel composite sodium acetate trihydrate/sodium dihydrogen phosphate dihydrate phase change materials. Solar Energy Materials and Solar Cells, 247. https://doi.org/10.1016/j.solmat.2022.111938 | spa |
dc.relation.references | Maka, A. O. M., Ghalut, T., & Elsaye, E. (2024). The pathway toward decarbonisation and net-zero emissions by 2050: The role of solar energy technology. Green Technologies and Sustainability, 100107. https://doi.org/10.1016/j.grets.2024.100107 | spa |
dc.relation.references | Maraveas, C. (2019). Environmental sustainability of greenhouse covering materials. En Sustainability (Switzerland) (Vol. 11, Número 21). MDPI. https://doi.org/10.3390/su11216129 | spa |
dc.relation.references | Mehediihasannmasud, M. (2019). Chapter 2: Water in foods. En State of Bound Water: Measurement ans Significance in Food Processing. | spa |
dc.relation.references | Mghazli, S., Ouhammou, M., Hidar, N., Lahnine, L., Idlimam, A., & Mahrouz, M. (2017). Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 108, 303–310. https://doi.org/10.1016/j.renene.2017.02.022 | spa |
dc.relation.references | Minciencias, M. de C. T. e Innovación. R. de Colombia. (2020). Convocatoria A Ciencia Cierta 2020. Experiencias ganadoras: Los Yariguíes con abejas, ciencia, tecnología e innovación. En Convocatoria A Ciencia Cierta 2020. https://acienciacierta.minciencias.gov.co/index.php/experiencias-ganadoras-desarrollo-local/126-2020-desarrollo-local-para-transformarrealidades/ experiencia-ganadoras/652-los-yariguies-con-abejas-ciencia-tecnologia-e-innovacion | spa |
dc.relation.references | Ministerio de Ambiente. (2022, septiembre 29). Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos. Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos. https://www.minambiente.gov.co/cambio-climatico/minambiente-interesado-en-ayudar-a-disminuir-el-desperdicio-de-alimentos/#:~:text=Seg%C3%BAn%20el%20Departamento%20Nacional%20de,responsable%20de%20la%20p%C3%A9rdida%20de | spa |
dc.relation.references | MINSALUD. (2022a). Resolución 1407 de 2022 del Ministerio de Salud y Protección Social. | spa |
dc.relation.references | MINSALUD. (2022b). Resolución 2492 de 2022 del Ministerio de Salud y Protección Social. | spa |
dc.relation.references | Mohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Solar dryers for food applications: Concepts, designs, and recent advances. En Solar Energy (Vol. 208, pp. 321–344). Elsevier Ltd. https://doi.org/10.1016/j.solener.2020.07.098 | spa |
dc.relation.references | Moradi, M., Fallahi, M. A., & Mousavi Khaneghah, A. (2020). Kinetics and mathematical modeling of thin layer drying of mint leaves by a hot water recirculating solar dryer. Journal of Food Process Engineering, 43(1). https://doi.org/10.1111/jfpe.13181 | spa |
dc.relation.references | Mustayen, A. G. M. B., Mekhilef, S., & Saidur, R. (2014). Performance study of different solar dryers: A review. En Renewable and Sustainable Energy Reviews (Vol. 34, pp. 463–470). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.03.020 | spa |
dc.relation.references | Najjar, Z., Alkaabi, M., Alketbi, K., Stathopoulos, C., & Ranasinghe, M. (2022). Physical Chemical and Textural Characteristics and Sensory Evaluation of Cookies Formulated with Date Seed Powder. Foods, 11(3). https://doi.org/10.3390/foods11030305 | spa |
dc.relation.references | Noorfarahzilah, M., Lee, J. S., Sharifudin, M. S., Mohd Fadzelly, A. B., & Hasmadi, M. (2014). Applications of composite flour in development of food products. International Food Research Journal, 21(6), 2061–2074. | spa |
dc.relation.references | Okpala, L., Okoli, E., & Udensi, E. (2013). Physico‐chemical and sensory properties of cookies made from blends of germinated pigeon pea, fermented sorghum, and cocoyam flours. Food Science & Nutrition, 1(1), 8–14. https://doi.org/10.1002/fsn3.2 | spa |
dc.relation.references | Oluwamukomi, O., & Akinsola, O. (2015). Thermal and Physicochemical Properties of Some Starchy Foods: Yam (Dioscorea rotundata), Cocoyam (Xanthosoma sagittifolium) and Plantain (Musa paradisiaca). Food Science and Technology, 3(1), 9–17. https://doi.org/10.13189/fst.2015.030102 | spa |
dc.relation.references | Onwurafor, E. U., Uzodinma, E. O., Chikwendu, J. N., & Nwankfor, O. F. (2019). Effect of incorporation of unripe plantain and mung bean malt flours on wheat flour on the chemical, physical and sensory properties of cookies. International Food Research Journal, 3(26), 959–967. | spa |
dc.relation.references | Ovando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113(1), 121–126. https://doi.org/10.1016/j.foodchem.2008.07.035 | spa |
dc.relation.references | Paul Singh, R., & Heldman, D. R. (2009). Introduction to Food Engineering (Fourth). Elsevier. | spa |
dc.relation.references | Pavan, M., & Worth, A. (2008). A set of case studies to illustrate the applicability of DART (Decision Analysis by Ranking Techniques) in the ranking of chemicals. http://ecb.jrc.it/QSAR | spa |
dc.relation.references | Poonia, S., Singh, A. K., & Jain, D. (2018). Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Engineering, 5(1), 1–18. https://doi.org/10.1080/23311916.2018.1507084 | spa |
dc.relation.references | Prakash, O., & Kumar, A. (2013). Historical review and recent trends in solar drying systems. En International Journal of Green Energy (Vol. 10, Número 7, pp. 690–738). Taylor and Francis Inc. https://doi.org/10.1080/15435075.2012.727113 | spa |
dc.relation.references | Prakash, O., & Kumar, A. (2014). Solar greenhouse drying: A review. En Renewable and Sustainable Energy Reviews (Vol. 29, pp. 905–910). Elsevier Ltd. https://doi.org/10.1016/j.rser.2013.08.084 | spa |
dc.relation.references | Prakash, O., & Kumar, A. (2017). Solar Drying Technology. Springer. https://doi.org/10.1007/978-981-10-3833-4 | spa |
dc.relation.references | Qolipour, M., Zarezade, M., Rezaei, M., Golmohammadi, A.-M., Hadian, H., & Soltani, M. (2018). Identifying the effective factors for implementing solar water heaters (SWH) for Yazd, Iran. | spa |
dc.relation.references | Rahaman, S. M., Bhattarai, A., Kumar, D., Singh, B., & Saha, B. (2023). Application of biosurfactants as emulsifiers in the processing of food products with diverse utilization in the baked goods. Applications of Next Generation Biosurfactants in the Food Sector, 203–237. https://doi.org/10.1016/B978-0-12-824283-4.00021-6 | spa |
dc.relation.references | Reyes, A., Mahn, A., & Vásquez, F. (2014). Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Conversion and Management, 83, 241–248. https://doi.org/10.1016/j.enconman.2014.03.077 | spa |
dc.relation.references | Sánchez-Rivera, M. M., Bello-Pérez, L. A., Tovar, J., Martinez, M. M., & Agama-Acevedo, E. (2019). Esterified plantain flour for the production of cookies rich in indigestible carbohydrates. Food Chemistry, 292, 1–5. https://doi.org/10.1016/j.foodchem.2019.04.007 | spa |
dc.relation.references | Şevik, S., Aktaş, M., Dolgun, E. C., Arslan, E., & Tuncer, A. D. (2019). Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology. Solar Energy, 180, 537–549. https://doi.org/10.1016/j.solener.2019.01.049 | spa |
dc.relation.references | Shimpy, Kumar, M., & Kumar, A. (2023). Designs, Performance and Economic Feasibility of Domestic Solar Dryers. En Food Engineering Reviews (Vol. 15, Número 1, pp. 156–186). Springer. https://doi.org/10.1007/s12393-022-09323-1 | spa |
dc.relation.references | Solar Energy Office. (2024). Solar Radiation Basics. Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/solar/solar-radiation-basics | spa |
dc.relation.references | Sontakke, M. S., & Salve, S. P. (2015). Solar Drying Technologies: A review. En International Refereed Journal of Engineering and Science (Vol. 4, Número 4). www.irjes.com | spa |
dc.relation.references | Šumić, Z., Tepić, A., Vidović, S., Jokić, S., & Malbaša, R. (2013). Optimization of frozen sour cherries vacuum drying process. Food Chemistry, 136(1), 55–63. https://doi.org/10.1016/j.foodchem.2012.07.102 | spa |
dc.relation.references | Suresh Kumar, S. V. R. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. En Mysore J Food Sci Technol (Vol. 47, Número 1). | spa |
dc.relation.references | The American Institute of Architects. (2017). Arquitectural Graphic Standards (K. R. Hedges, Ed.). Wiley. | spa |
dc.relation.references | Tosniwal, U., & Karale, S. R. (2013). A review paper on Solar Dryer. International Journal of Engineering Research and Applications (IJERA), 3(2). www.ijera.com | spa |
dc.relation.references | Treybal, R. E. (1968). Operaciones de transferencia de masa (A. García Rodríguez, Trad.; 2a ed.). Mc Graw-Hill. | spa |
dc.relation.references | Universidad Nacional de Colombia. (2018). Proyecto de Extensión Solidaria: Escalamiento de un prototipo piloto de secador solar pasivo en el Altiplano Cundiboyacense aplicable a productos de origen vegetal. | spa |
dc.relation.references | Van den Berg, C., & Bruin, S. (1981). WATER ACTIVITY AND ITS ESTIMATION IN FOOD SYSTEMS: THEORETICAL ASPECTS. En Water Activity: Influences on Food Quality (pp. 1–61). Elsevier. https://doi.org/10.1016/b978-0-12-591350-8.50007-3 | spa |
dc.relation.references | Vergara-Barrios, P., Rey-López, J. M., Osma-Pinto, G. A., & Ordoñez-Plata, G. (2014). Evaluación del potencial solar y eólico del campus central de la Universidad Industrial de Santander y la ciudad de Bucaramanga, Colombia. Revista UIS Ingenierías, 113(2), 49–57. https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/49-57 | spa |
dc.relation.references | Walke, P., Phadke, P., & Kriplani, V. (2015). A review on indirect solar dryers. https://www.researchgate.net/publication/281952016 | spa |
dc.relation.references | Wang, G., Zhang, Z., & Lin, J. (2024). Multi-energy complementary power systems based on solar energy: A review. En Renewable and Sustainable Energy Reviews (Vol. 199). Elsevier Ltd. https://doi.org/10.1016/j.rser.2024.114464 | spa |
dc.relation.references | Yahya, M., Fudholi, A., & Sopian, K. (2017). Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renewable Energy, 105, 22–29. https://doi.org/10.1016/j.renene.2016.12.049 | spa |
dc.relation.references | Ziaforoughi, A., & Esfahani, J. A. (2016). A salient reduction of energy consumption and drying time in a novel PV-solar collector-assisted intermittent infrared dryer. Solar Energy, 136, 428–436. https://doi.org/10.1016/j.solener.2016.07.025 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.ddc | 664.02842 | spa |
dc.subject.lemb | DESHIDRATACION DE ALIMENTOS | spa |
dc.subject.lemb | Food - drying | eng |
dc.subject.lemb | CONSERVACION DE ALIMENTOS | spa |
dc.subject.lemb | Food - Preservation | eng |
dc.subject.lemb | APICULTORES | spa |
dc.subject.lemb | Beekeepers | eng |
dc.subject.lemb | PRODUCTOS PERECEDEROS | spa |
dc.subject.lemb | Perishable products | eng |
dc.subject.lemb | PRODUCTOS AGRICOLAS-TRANSPORTE | spa |
dc.subject.lemb | Farm produce - transportation | eng |
dc.subject.lemb | ALIMENTOS-DESHIDRATACION, SECADO, ETC. | spa |
dc.subject.lemb | Food - Drying | eng |
dc.subject.proposal | Conservación | spa |
dc.subject.proposal | Deshidratación | spa |
dc.subject.proposal | Energía solar | spa |
dc.subject.proposal | Procesamiento de alimentos | spa |
dc.subject.proposal | Secado | spa |
dc.subject.proposal | Preservation | eng |
dc.subject.proposal | Dehydration | eng |
dc.subject.proposal | Solar energy | eng |
dc.subject.proposal | Food processing | eng |
dc.subject.proposal | Drying | eng |
dc.title | Desarrollo tecnológico basado en un sistema de deshidratación solar para la generación de valor en alimentos producidos por una comunidad vulnerable de Santander | spa |
dc.title.translated | Technological development based on a solar dehydration system to generate value in foods produced by a vulnerable community in Santander | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Vinculación de una comunidad vulnerable del departamento de Santander al ciclo de desarrollo tecnológico de un sistema de deshidratación solar pasivo de matrices alimentarias de origen vegetal | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1033740079.2024.pdf
- Tamaño:
- 3.99 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: