Desarrollo tecnológico basado en un sistema de deshidratación solar para la generación de valor en alimentos producidos por una comunidad vulnerable de Santander

dc.contributor.advisorZuluaga Domínguez, Carlos Mariospa
dc.contributor.advisorNieto Veloza, Cindy Andreaspa
dc.contributor.authorFajardo Ariza, Erika Tatianaspa
dc.contributor.researchgroupAyni - Grupo de Investigación en Procesos Agroindustrialesspa
dc.coverage.countryColombiaspa
dc.coverage.regionSantanderspa
dc.date.accessioned2025-04-21T18:10:30Z
dc.date.available2025-04-21T18:10:30Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías a color, mapasspa
dc.description.abstractLa Asociación de Apicultores de la Serranía de los Yariguíes (APISY) es una comunidad localizada en la vereda de las Clavellinas, en el municipio de Galán, Santander, cuya subsistencia se fundamenta en la comercialización de los productos hortofrutícolas producidos en sus predios. No obstante, ellos enfrentan problemas derivados de la alta perecibilidad de sus productos debido a su alto contenido de humedad que, sumado a la dificultad de transporte en fresco a los cascos urbanos más cercanos, y la poca accesibilidad a mecanismos de conservación, provoca un volumen significativo de pérdidas que afecta su economía y, consecuentemente, su bienestar. Con el objetivo de abordar este problema, el presente trabajo se desarrolló un sistema de deshidratación solar pasivo como alternativa de conservación y de generación de valor agregado a los alimentos de origen vegetal producidos por dicha comunidad. Esta investigación fue realizada en cuatro etapas. En la primera se realizó un proceso de reconocimiento de los actores y el territorio, en el cual se identificación de las necesidades específicas de la comunidad mediante la aplicación de encuestas, reuniones y la realización de visitas al lugar. Se evaluaron las condiciones de temperatura y humedad relativa en la zona, y se realizó el reconocimiento de un secador solar en funcionamiento en el departamento de Boyacá, buscando sentar las bases de diseño y oportunidades de mejora a implementar en el diseño del secador a construir en Santander. En la segunda etapa, se llevó a cabo el diseño y la construcción del deshidratador solar. El diseño fue resultado de un proceso co-creativo en el que participaron representantes de la comunidad acorde a sus necesidades y criterios técnicos. Así mismo, se realizaron pruebas de distintos materiales para la instalación de la cobertura de la estructura con la finalidad de establecer aquel que permitiera el mejor aprovechamiento de las condiciones climáticas locales y la captación de energía solar para lograr un proceso de deshidratación eficiente. Luego de finalizada la construcción, se logró contar con un secador solar que posee un área de 22.6 m2 y capacidad para 20 bandejas de 1 m2 cada una. En la tercera etapa se realizó la caracterización del proceso de secado empleando dos productos típicos de la región: plátano verde (Musa Paradisiaca) y banano bocadillo (Musa Acuminata). Se realizaron pruebas en el secador solar construido en el territorio y en un secador eléctrico convencional de aire forzado localizado en el Instituto de Ciencia y Tecnología de Alimentos de la Universidad Nacional de Colombia. Para cada proceso se realizó el modelamiento matemático de los datos experimentales, en el cual un modelo de Page fue suficientemente robusto para establecer el comportamiento de la deshidratación, se calculó el tiempo de secado para cada producto y se estimó la eficiencia energética global siendo cercana al 49%. En la cuarta etapa se propusieron formulaciones de galletas con sustitución de harina de trigo por harina de plátano verde en diferentes proporciones del 0 % al 100 %. Las galletas obtenidas fueron caracterizadas mediante parámetros fisicoquímicos y un análisis sensorial con consumidores, cuyos resultados permitieron identificar la galleta con sustitución del 50 % de harina de trigo como la formulación con mayor aceptación y, por ende, la de mejor potencial de aprovechamiento tecnológico tiene para ser adoptada por la comunidad. Los resultados de la presente investigación demuestran que la implementación de un sistema de deshidratación solar en la vereda Clavellinas es una solución viable para reducir las pérdidas postcosecha y conservar productos vegetales, generando valor agregado y fortaleciendo el desarrollo económico local. Además, se promueve la seguridad alimentaria y fomenta la innovación a través de la integración de tecnologías sostenibles, saberes locales y apoyo institucional (Texto tomado de la fuente).spa
dc.description.abstractThe Association of Beekeepers of the Serranía de los Yariguíes (APISY) is a community located in the Clavellinas area, in the municipality of Galán, Santander, whose livelihood is based on the commercialization of horticultural products grown on their land. However, they face challenges stemming from the high perishability of their products due to their high moisture content, combined with the difficulty of transporting fresh produce to nearby urban centers and the limited access to preservation methods. This results in a significant volume of losses that affects their economy and, consequently, their well-being. To address this issue, this work developed a passive solar dehydration system as a conservation alternative and a means of adding value to the plant-based foods produced by this community. This research was conducted in four stages. In the first stage, a process of identifying the stakeholders and the territory was carried out, during which the specific needs of the community were identified through surveys, meetings, and on-site visits. The temperature and relative humidity conditions in the area were assessed, and a working solar dryer in the department of Boyacá was reviewed, seeking to lay the foundation for the design and identify improvement opportunities for the dryer to be built in Santander. In the second stage, the design and construction of the solar dehydrator were completed. The design resulted from a co-creative process involving community representatives based on their needs and technical criteria. In addition, tests were conducted on different materials for the structure’s covering to determine the one (which one) that would best take advantage of the local climatic (climate. Climactic is the adjective of climax) conditions and capture solar energy for an efficient dehydration process. Upon completion, the solar dryer had an area of 22.6 m2 and a capacity for 20 trays, each measuring 1 m2. In the third stage, the drying process was characterized by using two typical products from the region: green plantains (Musa paradisiaca) and baby bananas (Musa acuminata). Tests were conducted in the solar dryer that was built on-site and in a conventional electric forced-air dryer located at the Institute of Food Science and Technology of the National University of Colombia. For each process, the experimental data was mathematically modeled with a Page model proving sufficiently robust to determine the dehydration behavior. The drying time for each product was calculated, and the overall energy efficiency was estimated at around 49%. In the fourth stage, cookie formulations were proposed by substituting wheat flour with green plantain flour in varying proportions, from 0% to 100%. The cookies were characterized by physicochemical parameters and a sensory analysis with consumers, whose results identified the cookie with 50% wheat flour substitution as the formulation with the highest acceptance and, therefore, the greatest technological potential for adoption by the community. The results of this research demonstrate that implementing a solar dehydration system in the Clavellinas area is a viable solution to reduce post-harvest losses and preserve plant-based products, generating added value and strengthening local economic development. Additionally, it promotes food security and fosters innovation through the integration of sustainable technologies, local knowledge and institutional support.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaProcesamiento de alimentosspa
dc.format.extent170 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87982
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAde, A. R., Olayemi, F. F., Adebiyi, A. O., Zubair, O. M., Adeiza, O. A., & Achime, K. C. (2018). RECENT ADVANCES IN SOLAR DRYING OF AGRICULTURAL PRODUCE IN NIGERIA: NSPRI EXPERIENCE. Food Sufficiency AZOJETE, 14, 86–94. www.azojete.com.ngspa
dc.relation.referencesAdubofuor, J., Amoah, I., Batsa, V., Boamah Agyekum, P., & Akuba Buah, J. (2016). Nutrient Composition and Sensory Evaluation of Ripe Banana Slices and Bread Prepared from Ripe Banana and Wheat Composite Flours. American Journal of Food and Nutrition, 4(4), 103–111. https://doi.org/10.12691/ajfn-4-4-3spa
dc.relation.referencesAgama-Acevedo, E., Islas-Hernández, J. J., Pacheco-Vargas, G., Osorio-Díaz, P., & Bello-Pérez, L. A. (2012). Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT Food Science and Technology, 46(1), 177–182. https://doi.org/10.1016/j.lwt.2011.10.010spa
dc.relation.referencesAl-Dujaili, A. Q., Shallal, A. H., Sabry, A. H., Dallal bashi, O. I., Alkubaisi, Y. M., & Humaidi, A. J. (2024). Maximizing solar energy utilization and controlling electrical consumption in domestic water heaters by integrating with aluminum reflector. Measurement: Journal of the International Measurement Confederation, 230. https://doi.org/10.1016/j.measurement.2024.114558spa
dc.relation.referencesAl-Mahdouri, A., Baneshi, M., Gonome, H., Okajima, J., & Maruyama, S. (2013). Evaluation of optical properties and thermal performances of different greenhouse covering materials. Solar Energy, 96, 21–32. https://doi.org/10.1016/j.solener.2013.06.029spa
dc.relation.referencesAnajekwu, E. O., Maziya-Dixon, B., Akinoso, R., Awoyale, W., & Alamu, E. O. (2020a). Physicochemical Properties and Total Carotenoid Content of High-Quality Unripe Plantain Flour from Varieties of Hybrid Plantain Cultivars. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/5960346spa
dc.relation.referencesAOAC International. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists (18a ed.).spa
dc.relation.referencesAssociation of Official Analytical Chemists. (2006). Official Methods of Analysis (18th ed.). MD.spa
dc.relation.referencesBabar, O. A., Tarafdar, A., Malakar, S., Arora, V. K., & Nema, P. K. (2020). Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. Journal of Food Process Engineering, 43(10). https://doi.org/10.1111/jfpe.13484spa
dc.relation.referencesBadaoui, O., Hanini, S., Djebli, A., Haddad, B., & Benhamou, A. (2019). Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy, 133, 144–155. https://doi.org/10.1016/j.renene.2018.10.020spa
dc.relation.referencesBadui Dergal, Salvador. (2006). Química de los Alimentos. Pearson Educación.spa
dc.relation.referencesBarbosa-Cánovas, G. V, Fontana, A. J., Schmidt, S. J., Fontana, B.-C., & Labuza, S. (2007). Water Activity in Foods Fundamentals and Applications Editors Water Activity in Foods.spa
dc.relation.referencesBawa, M., Dzigbor, A., Gobe, V. A. Dela, Opoku, G. F., Barima, A. A. T., & Donkor, A. K. L. (2023). Nutritional, Sensory, and Microbial Quality of Cookies Produced by Partial Replacement of Wheat Flour with Plantain (Musa paradisiaca) and Cocoyam (Colocasia esculenta) Flours. Journal of Food Processing and Preservation, 2023, 1–9. https://doi.org/10.1155/2023/6762289spa
dc.relation.referencesBawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020a). Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. Journal of Food Processing and Preservation, 44(8). https://doi.org/10.1111/jfpp.14601spa
dc.relation.referencesBawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020b). Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. Journal of Food Processing and Preservation, 44(8). https://doi.org/10.1111/jfpp.14601spa
dc.relation.referencesBerk, Z. (2018a). Dehydration. En Food Process Engineering and Technology (pp. 513–566). Elsevier. https://doi.org/10.1016/B978-0-12-812018-7.00022-1spa
dc.relation.referencesBerk, Z. (2018b). Food Process Engineering and Technology (Third Edition). Academic Press.spa
dc.relation.referencesBoateng, I. D. (2023). A review of solar and solar-assisted drying of fresh produce: state of the art, drying kinetics, and product qualities. En Journal of the Science of Food and Agriculture. John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.12660spa
dc.relation.referencesBorah, A., Hazarika, K., & Khayer, S. M. (2015). Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Information Processing in Agriculture, 2(2), 85–92. https://doi.org/10.1016/j.inpa.2015.06.002spa
dc.relation.referencesBradley, R. L. (2010). Moisture and Total Solids Analysis. En S. Nielsen (Ed.), Food Analysis (4a ed., pp. 85–104). Springer. https://doi.org/10.1007/978-1-4419-1478-1_6spa
dc.relation.referencesCauvain, S. P. (2016). Bread and other bakery products. En The Stability and Shelf Life of Food (pp. 431–459). Elsevier. https://doi.org/10.1016/B978-0-08-100435-7.00015-0spa
dc.relation.referencesCengel, Y. (2007). Transferencia de calor y masa: un enfoque práctico (3a ed.). Mc Graw Hill.spa
dc.relation.referencesCeylan, I., & Gürel, A. E. (2016). Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves. Applied Thermal Engineering, 106, 899–905. https://doi.org/10.1016/j.applthermaleng.2016.06.077spa
dc.relation.referencesChabane, F., Moummi, N., & Brima, A. (2019). An experimental study and mathematical modeling of solar drying of moisture content of the mint, apricot, and green pepper. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1670755spa
dc.relation.referencesChauhan, A., Saxena, D. C., & Singh, S. (2016). Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food and Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1125773spa
dc.relation.referencesChinma, C. E., Igbadul, B. D., & Omotayo, O. O. (2012). Quality characteristics of cookies prepared from unripe plantain. American Journal of Food Technology, 7(7), 398408.spa
dc.relation.referencesDepartamento Nacional de Planeación (DNP) República de Colombia. (2016). Pérdida y Desperdicio de Alimentos en Colombia. Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. https://mrv.dnp.gov.co/Documentos%20de%20Interes/ Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdfspa
dc.relation.referencesDesai, M. A., Vallabhbhai, S., Kapadiya, S., & Desai, M. A. (2014). Solar drying of natural and food products: a review. En International Journal of Agriculture and Food Science Technology (Vol. 5, Número 6). http://www.ripublication.com/ijafst.htmspa
dc.relation.referencesDjebli, A., Hanini, S., Badaoui, O., Haddad, B., & Benhamou, A. (2020a). Modeling and comparative analysis of solar drying behavior of potatoes. Renewable Energy, 145, 1494–1506. https://doi.org/10.1016/j.renene.2019.07.083spa
dc.relation.referencesDurán Jiménez, A. (2014). Diseño de un sistema de secado y separación de impurezas para polen apícola en Colombia.spa
dc.relation.referencesEl Hage, H., Herez, A., Ramadan, M., Bazzi, H., & Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157, 815–829. https://doi.org/10.1016/j.energy.2018.05.197spa
dc.relation.referencesErick César, L. V., Ana Lilia, C. M., Octavio, G. V., Isaac, P. F., & Rogelio, B. O. (2020a). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy, 147, 845–855. https://doi.org/10.1016/j.renene.2019.09.018spa
dc.relation.referencesFennema, O. R. (2000). Química de los alimentos (Acribia, Ed.; Tercera).spa
dc.relation.referencesFröhlich, C. L., & London, J. (1986). Revised Instruction Manual on Radiation Instruments and Measurements.spa
dc.relation.referencesGallagher, E., Gormley, T. R., & Arendt, E. K. (2003). Crust and crumb characteristics of gluten free breads. Journal of Food Engineering, 56(2–3), 153–161. https://doi.org/10.1016/S0260-8774(02)00244-3spa
dc.relation.referencesGarcía-Moreira, D. P., Hernández-Guzmán, H., Pacheco, N., Cuevas-Bernardino, J. C., Herrera-Pool, E., Moreno, I., & López-Vidaña, E. C. (2023). Solar and Convective Drying: Modeling, Color, Texture, Total Phenolic Content, and Antioxidant Activity of Peach (Prunus persica (L.) Batsch) Slices. Processes, 11(4). https://doi.org/10.3390/pr11041280spa
dc.relation.referencesGarwood, A. (2005). Energía solar: The rising solar solution in rural Latin America. Refocus, 6(3), 32–34. https://doi.org/10.1016/S1471-0846(05)70397-8spa
dc.relation.referencesGuiné, R. P. F. (2022). Textural Properties of Bakery Products: A Review of Instrumental and Sensory Evaluation Studies. En Applied Sciences (Switzerland) (Vol. 12, Número 17). MDPI. https://doi.org/10.3390/app12178628spa
dc.relation.referencesGuiné, R. P. F., & Florença, S. G. (2024). Development and Characterization of Functional Bakery Products. Physchem, 4(3), 234–257. https://doi.org/10.3390/physchem4030017spa
dc.relation.referencesHaque, A. (2016). 3 - Solar energy. En Electric Renewable Energy Systems (pp. 40–59). https://doi.org/10.1016/B978-0-12-804448-3/00003-7spa
dc.relation.referencesHarper, C. A., & Petrie, E. M. (2003). Plastic Materials and Processes. www.copyright.com.spa
dc.relation.referencesHasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. En Journal of Food Processing and Preservation (Vol. 43, Número 12). Blackwell Publishing Ltd. https://doi.org/10.1111/jfpp.14280spa
dc.relation.referencesHeldman, D. R., & Hartel, R. W. (1998). Principles of food processing. Aspen Publishers, Inc.spa
dc.relation.referencesHempattarasuwan, P., Somsong, P., Duangmal, K., Jaskulski, M., Adamiec, J., & Srzednicki, G. (2020). Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Drying Technology, 38(1–2), 48–54. https://doi.org/10.1080/07373937.2019.1609495spa
dc.relation.referencesHolman, J. P. (1998). Transferencia de calor (8a ed.).spa
dc.relation.referencesIbrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Farhana, Z. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 18, 1402–1412. https://doi.org/10.1016/j.egypro.2012.05.156spa
dc.relation.referencesIbrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Razliana, A. R. N. (2012). An estimation of solar radiation using robust linear regression method. Energy Procedia, 18, 1413–1420. https://doi.org/10.1016/j.egypro.2012.05.157spa
dc.relation.referencesICONTEC. (1991). Norma Técnica Colombiana NTC 2799: Industrias alimentarias. Harina de Plátano. ICONTEC.spa
dc.relation.referencesIDEAM, & UPME. (2017). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia.spa
dc.relation.referencesIgbabul, B., Ogunleye, R., & Amove, J. (2018). Quality Characteristics of Cookies Prepared from Wheat and Fermented Afzelia Africana Flour. American Journal of Food Science and Technology, 6(6), 247–252. https://doi.org/10.12691/ajfst-6-6-3spa
dc.relation.referencesIncropera, F. P., & DeWitt David P. (1999). Fundamentos de transferencia de calor (4a ed.). Prentice Hall Hispanoamericana S.A.spa
dc.relation.referencesJoardder, M. U. H., Masud, M. H., Nasif, S., Plabon, J. A., & Chaklader, S. H. (2019). Development and performance test of an innovative solar derived intermittent microwave convective food dryer. AIP Conference Proceedings, 2121. https://doi.org/10.1063/1.5115881spa
dc.relation.referencesKant, K., Shukla, A., Sharma, A., Kumar, A., & Jain, A. (2016). Thermal energy storage based solar drying systems: A review. En Innovative Food Science and Emerging Technologies (Vol. 34, pp. 86–99). Elsevier Ltd. https://doi.org/10.1016/j.ifset.2016.01.007spa
dc.relation.referencesKirkham, M. B. (2014). Solar Radiation, Black Bodies, Heat Budget, and Radiation Balance. En Principles of Soil and Plant Water Relations (pp. 453–472). Elsevier. https://doi.org/10.1016/b978-0-12-420022-7.00025-2spa
dc.relation.referencesKoua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), 72–82. https://doi.org/10.1016/j.jssas.2017.01.002spa
dc.relation.referencesKouchakzadeh, A. (2016). The hybrid drying of pistachios by solar energy and high electric field (Vol. 18, Número 1). http://www.cigrjournal.orgspa
dc.relation.referencesLakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2018). Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renewable Energy, 120, 23–34. https://doi.org/10.1016/j.renene.2017.12.053spa
dc.relation.referencesLakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2019). Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Solar Energy, 188, 507–518. https://doi.org/10.1016/J.SOLENER.2019.06.009spa
dc.relation.referencesLiu, X., Huang, Z., Wang, Y., Su, H., Lin, P., Yu, W., & Chen, Y. (2022). Thermal energy storage and solar energy utilization enabled by novel composite sodium acetate trihydrate/sodium dihydrogen phosphate dihydrate phase change materials. Solar Energy Materials and Solar Cells, 247. https://doi.org/10.1016/j.solmat.2022.111938spa
dc.relation.referencesMaka, A. O. M., Ghalut, T., & Elsaye, E. (2024). The pathway toward decarbonisation and net-zero emissions by 2050: The role of solar energy technology. Green Technologies and Sustainability, 100107. https://doi.org/10.1016/j.grets.2024.100107spa
dc.relation.referencesMaraveas, C. (2019). Environmental sustainability of greenhouse covering materials. En Sustainability (Switzerland) (Vol. 11, Número 21). MDPI. https://doi.org/10.3390/su11216129spa
dc.relation.referencesMehediihasannmasud, M. (2019). Chapter 2: Water in foods. En State of Bound Water: Measurement ans Significance in Food Processing.spa
dc.relation.referencesMghazli, S., Ouhammou, M., Hidar, N., Lahnine, L., Idlimam, A., & Mahrouz, M. (2017). Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 108, 303–310. https://doi.org/10.1016/j.renene.2017.02.022spa
dc.relation.referencesMinciencias, M. de C. T. e Innovación. R. de Colombia. (2020). Convocatoria A Ciencia Cierta 2020. Experiencias ganadoras: Los Yariguíes con abejas, ciencia, tecnología e innovación. En Convocatoria A Ciencia Cierta 2020. https://acienciacierta.minciencias.gov.co/index.php/experiencias-ganadoras-desarrollo-local/126-2020-desarrollo-local-para-transformarrealidades/ experiencia-ganadoras/652-los-yariguies-con-abejas-ciencia-tecnologia-e-innovacionspa
dc.relation.referencesMinisterio de Ambiente. (2022, septiembre 29). Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos. Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos. https://www.minambiente.gov.co/cambio-climatico/minambiente-interesado-en-ayudar-a-disminuir-el-desperdicio-de-alimentos/#:~:text=Seg%C3%BAn%20el%20Departamento%20Nacional%20de,responsable%20de%20la%20p%C3%A9rdida%20despa
dc.relation.referencesMINSALUD. (2022a). Resolución 1407 de 2022 del Ministerio de Salud y Protección Social.spa
dc.relation.referencesMINSALUD. (2022b). Resolución 2492 de 2022 del Ministerio de Salud y Protección Social.spa
dc.relation.referencesMohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Solar dryers for food applications: Concepts, designs, and recent advances. En Solar Energy (Vol. 208, pp. 321–344). Elsevier Ltd. https://doi.org/10.1016/j.solener.2020.07.098spa
dc.relation.referencesMoradi, M., Fallahi, M. A., & Mousavi Khaneghah, A. (2020). Kinetics and mathematical modeling of thin layer drying of mint leaves by a hot water recirculating solar dryer. Journal of Food Process Engineering, 43(1). https://doi.org/10.1111/jfpe.13181spa
dc.relation.referencesMustayen, A. G. M. B., Mekhilef, S., & Saidur, R. (2014). Performance study of different solar dryers: A review. En Renewable and Sustainable Energy Reviews (Vol. 34, pp. 463–470). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.03.020spa
dc.relation.referencesNajjar, Z., Alkaabi, M., Alketbi, K., Stathopoulos, C., & Ranasinghe, M. (2022). Physical Chemical and Textural Characteristics and Sensory Evaluation of Cookies Formulated with Date Seed Powder. Foods, 11(3). https://doi.org/10.3390/foods11030305spa
dc.relation.referencesNoorfarahzilah, M., Lee, J. S., Sharifudin, M. S., Mohd Fadzelly, A. B., & Hasmadi, M. (2014). Applications of composite flour in development of food products. International Food Research Journal, 21(6), 2061–2074.spa
dc.relation.referencesOkpala, L., Okoli, E., & Udensi, E. (2013). Physico‐chemical and sensory properties of cookies made from blends of germinated pigeon pea, fermented sorghum, and cocoyam flours. Food Science & Nutrition, 1(1), 8–14. https://doi.org/10.1002/fsn3.2spa
dc.relation.referencesOluwamukomi, O., & Akinsola, O. (2015). Thermal and Physicochemical Properties of Some Starchy Foods: Yam (Dioscorea rotundata), Cocoyam (Xanthosoma sagittifolium) and Plantain (Musa paradisiaca). Food Science and Technology, 3(1), 9–17. https://doi.org/10.13189/fst.2015.030102spa
dc.relation.referencesOnwurafor, E. U., Uzodinma, E. O., Chikwendu, J. N., & Nwankfor, O. F. (2019). Effect of incorporation of unripe plantain and mung bean malt flours on wheat flour on the chemical, physical and sensory properties of cookies. International Food Research Journal, 3(26), 959–967.spa
dc.relation.referencesOvando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., & Bello-Pérez, L. A. (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry, 113(1), 121–126. https://doi.org/10.1016/j.foodchem.2008.07.035spa
dc.relation.referencesPaul Singh, R., & Heldman, D. R. (2009). Introduction to Food Engineering (Fourth). Elsevier.spa
dc.relation.referencesPavan, M., & Worth, A. (2008). A set of case studies to illustrate the applicability of DART (Decision Analysis by Ranking Techniques) in the ranking of chemicals. http://ecb.jrc.it/QSARspa
dc.relation.referencesPoonia, S., Singh, A. K., & Jain, D. (2018). Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Engineering, 5(1), 1–18. https://doi.org/10.1080/23311916.2018.1507084spa
dc.relation.referencesPrakash, O., & Kumar, A. (2013). Historical review and recent trends in solar drying systems. En International Journal of Green Energy (Vol. 10, Número 7, pp. 690–738). Taylor and Francis Inc. https://doi.org/10.1080/15435075.2012.727113spa
dc.relation.referencesPrakash, O., & Kumar, A. (2014). Solar greenhouse drying: A review. En Renewable and Sustainable Energy Reviews (Vol. 29, pp. 905–910). Elsevier Ltd. https://doi.org/10.1016/j.rser.2013.08.084spa
dc.relation.referencesPrakash, O., & Kumar, A. (2017). Solar Drying Technology. Springer. https://doi.org/10.1007/978-981-10-3833-4spa
dc.relation.referencesQolipour, M., Zarezade, M., Rezaei, M., Golmohammadi, A.-M., Hadian, H., & Soltani, M. (2018). Identifying the effective factors for implementing solar water heaters (SWH) for Yazd, Iran.spa
dc.relation.referencesRahaman, S. M., Bhattarai, A., Kumar, D., Singh, B., & Saha, B. (2023). Application of biosurfactants as emulsifiers in the processing of food products with diverse utilization in the baked goods. Applications of Next Generation Biosurfactants in the Food Sector, 203–237. https://doi.org/10.1016/B978-0-12-824283-4.00021-6spa
dc.relation.referencesReyes, A., Mahn, A., & Vásquez, F. (2014). Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Conversion and Management, 83, 241–248. https://doi.org/10.1016/j.enconman.2014.03.077spa
dc.relation.referencesSánchez-Rivera, M. M., Bello-Pérez, L. A., Tovar, J., Martinez, M. M., & Agama-Acevedo, E. (2019). Esterified plantain flour for the production of cookies rich in indigestible carbohydrates. Food Chemistry, 292, 1–5. https://doi.org/10.1016/j.foodchem.2019.04.007spa
dc.relation.referencesŞevik, S., Aktaş, M., Dolgun, E. C., Arslan, E., & Tuncer, A. D. (2019). Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology. Solar Energy, 180, 537–549. https://doi.org/10.1016/j.solener.2019.01.049spa
dc.relation.referencesShimpy, Kumar, M., & Kumar, A. (2023). Designs, Performance and Economic Feasibility of Domestic Solar Dryers. En Food Engineering Reviews (Vol. 15, Número 1, pp. 156–186). Springer. https://doi.org/10.1007/s12393-022-09323-1spa
dc.relation.referencesSolar Energy Office. (2024). Solar Radiation Basics. Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/solar/solar-radiation-basicsspa
dc.relation.referencesSontakke, M. S., & Salve, S. P. (2015). Solar Drying Technologies: A review. En International Refereed Journal of Engineering and Science (Vol. 4, Número 4). www.irjes.comspa
dc.relation.referencesŠumić, Z., Tepić, A., Vidović, S., Jokić, S., & Malbaša, R. (2013). Optimization of frozen sour cherries vacuum drying process. Food Chemistry, 136(1), 55–63. https://doi.org/10.1016/j.foodchem.2012.07.102spa
dc.relation.referencesSuresh Kumar, S. V. R. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. En Mysore J Food Sci Technol (Vol. 47, Número 1).spa
dc.relation.referencesThe American Institute of Architects. (2017). Arquitectural Graphic Standards (K. R. Hedges, Ed.). Wiley.spa
dc.relation.referencesTosniwal, U., & Karale, S. R. (2013). A review paper on Solar Dryer. International Journal of Engineering Research and Applications (IJERA), 3(2). www.ijera.comspa
dc.relation.referencesTreybal, R. E. (1968). Operaciones de transferencia de masa (A. García Rodríguez, Trad.; 2a ed.). Mc Graw-Hill.spa
dc.relation.referencesUniversidad Nacional de Colombia. (2018). Proyecto de Extensión Solidaria: Escalamiento de un prototipo piloto de secador solar pasivo en el Altiplano Cundiboyacense aplicable a productos de origen vegetal.spa
dc.relation.referencesVan den Berg, C., & Bruin, S. (1981). WATER ACTIVITY AND ITS ESTIMATION IN FOOD SYSTEMS: THEORETICAL ASPECTS. En Water Activity: Influences on Food Quality (pp. 1–61). Elsevier. https://doi.org/10.1016/b978-0-12-591350-8.50007-3spa
dc.relation.referencesVergara-Barrios, P., Rey-López, J. M., Osma-Pinto, G. A., & Ordoñez-Plata, G. (2014). Evaluación del potencial solar y eólico del campus central de la Universidad Industrial de Santander y la ciudad de Bucaramanga, Colombia. Revista UIS Ingenierías, 113(2), 49–57. https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/49-57spa
dc.relation.referencesWalke, P., Phadke, P., & Kriplani, V. (2015). A review on indirect solar dryers. https://www.researchgate.net/publication/281952016spa
dc.relation.referencesWang, G., Zhang, Z., & Lin, J. (2024). Multi-energy complementary power systems based on solar energy: A review. En Renewable and Sustainable Energy Reviews (Vol. 199). Elsevier Ltd. https://doi.org/10.1016/j.rser.2024.114464spa
dc.relation.referencesYahya, M., Fudholi, A., & Sopian, K. (2017). Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renewable Energy, 105, 22–29. https://doi.org/10.1016/j.renene.2016.12.049spa
dc.relation.referencesZiaforoughi, A., & Esfahani, J. A. (2016). A salient reduction of energy consumption and drying time in a novel PV-solar collector-assisted intermittent infrared dryer. Solar Energy, 136, 428–436. https://doi.org/10.1016/j.solener.2016.07.025spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.ddc664.02842spa
dc.subject.lembDESHIDRATACION DE ALIMENTOSspa
dc.subject.lembFood - dryingeng
dc.subject.lembCONSERVACION DE ALIMENTOSspa
dc.subject.lembFood - Preservationeng
dc.subject.lembAPICULTORESspa
dc.subject.lembBeekeeperseng
dc.subject.lembPRODUCTOS PERECEDEROSspa
dc.subject.lembPerishable productseng
dc.subject.lembPRODUCTOS AGRICOLAS-TRANSPORTEspa
dc.subject.lembFarm produce - transportationeng
dc.subject.lembALIMENTOS-DESHIDRATACION, SECADO, ETC.spa
dc.subject.lembFood - Dryingeng
dc.subject.proposalConservaciónspa
dc.subject.proposalDeshidrataciónspa
dc.subject.proposalEnergía solarspa
dc.subject.proposalProcesamiento de alimentosspa
dc.subject.proposalSecadospa
dc.subject.proposalPreservationeng
dc.subject.proposalDehydrationeng
dc.subject.proposalSolar energyeng
dc.subject.proposalFood processingeng
dc.subject.proposalDryingeng
dc.titleDesarrollo tecnológico basado en un sistema de deshidratación solar para la generación de valor en alimentos producidos por una comunidad vulnerable de Santanderspa
dc.title.translatedTechnological development based on a solar dehydration system to generate value in foods produced by a vulnerable community in Santandereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleVinculación de una comunidad vulnerable del departamento de Santander al ciclo de desarrollo tecnológico de un sistema de deshidratación solar pasivo de matrices alimentarias de origen vegetalspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033740079.2024.pdf
Tamaño:
3.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: