Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares

dc.contributor.advisorOrtiz Trujillo, Isabel Cristina
dc.contributor.advisorLópez, Juan Bautista
dc.contributor.authorLondoño Berrio, Maritza
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemasspa
dc.date.accessioned2022-09-05T15:57:17Z
dc.date.available2022-09-05T15:57:17Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa interacción de los sistemas biológicos con agentes externos puede representar una desregulación de la homeóstasis celular al generar procesos tóxicos, por esto se hace necesario evaluar la exposición a las diferentes propuestas de ingeniería en todos los campos del desarrollo. Teniendo en cuenta esto, el objetivo del estudio fue evaluar la citotoxicidad y genotoxicidad del material orgánico extraíble (MOE) proveniente de diésel y diésel con mezclas de alcoholes y nanopartículas (NPs) del copolímero de ácido láctico y glicólico (PLGA) y la expresión diferencial de proteínas tras la exposición al MOE. Esto se logró llevando a cabo el ensayo de MTT para determinar la citotoxicidad de estos compuestos, para la evaluación de genotoxicidad se realizó el ensayo de electroforesis alcalino de células individuales (ensayo Cometa) y para la evaluación de la mutagenicidad de Nps se realizó el test de AMES. Posteriormente, para evaluar la expresión diferencial de proteínas, se realizó la extracción de proteínas totales y mediante geles de una dimensión (1D) se evaluó integridad y estabilidad, para la generación de los perfiles proteicos se realizó una electroforesis de dos dimensiones (2D) y las proteínas que se encontraron diferencialmente expresadas frente al control negativo se caracterizaron mediante espectrometría de masas (MALDI-TOF/TOF). Los resultados indicaron efectos genotóxicos, pero no citotóxicos tras la exposición a MP y Nps y no se evidenció mutagenicidad mediada por Nps. En cuanto a la expresión diferencial de proteínas tras la exposición al MOE, se evidenció sobreexpresión de proteínas relacionadas con el estrés oxidativo. En conjunto estos resultados resaltan la necesidad de probar nuevas tecnologías y compuestos a los cuales pueden expuestos los sistemas biológicos. (Texto tomado de la fuente)spa
dc.description.abstractThe particulate matter (PM) of diesel fuels is a complex mixture that can vary depending on the characteristics of the engine, its type, the type of fuel and the source of production, it has been shown to have negative effects on environmental health and For this reason, the need has been generated to test alternative fuels that may have less effect on biological systems, taking this into account, the cytotoxicity and genotoxicity of the organic fraction of the particulate material of engines fed with alternative fuels corresponding to diesel was evaluated. . Mixed with alcohols (10% ethanol and butanol) by in vitro tests using the HepG2 cell line, cytotoxicity was evaluated by the MTT colorimetric test and genotoxicity by the comet test. A low cytotoxicity of the extracts was found, but a high genotoxicity, showing statistically significant differences between the negative control and the different treatments in all the concentrations tested, with this it is concluded that the organic fraction of the PM has a genotoxic effect that can lead to imbalances of cellular homeostasis.eng
dc.description.curricularareaÁrea Curricular de Bioctecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias-biotecnologíaspa
dc.description.methodsInvestigaciónspa
dc.description.researchareaMutagénesis y Epigenética Ambientaspa
dc.format.extentxiv, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82250
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesYadav R, Sahu LK, Beig G, Tripathi N, Jaaffrey SNA. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms. Environmental Pollution. 1 de junio de 2017;225:291-303.spa
dc.relation.referencesLiang F, Lu M, Keener TC, Liu Z, Khang S-J. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. J Environ Monit. octubre de 2005;7(10):983-8.spa
dc.relation.referencesDumax-Vorzet AF, Tate M, Walmsley R, Elder RH, Povey AC. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis. septiembre de 2015;30(5):621-33.spa
dc.relation.referencesJeon YM, Son BS, Lee MY. Proteomic identification of the differentially expressed proteins in human lung epithelial cells by airborne particulate matter. J Appl Toxicol. enero de 2011;31(1):45-52.spa
dc.relation.referencesKim H-J, Bae I-H, Son ED, Park J, Cha N, Na H-W, et al. Transcriptome analysis of airborne PM2.5-induced detrimental effects on human keratinocytes. Toxicol Lett. 5 de mayo de 2017;273:26-35.spa
dc.relation.referencesWetmore BA, Merrick BA. Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol. diciembre de 2004;32(6):619-42.spa
dc.relation.referencesFeng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety. 1 de junio de 2016;128:67-74.spa
dc.relation.referencesHumans IWG on the E of CR to. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. International Agency for Research on Cancer; 2014spa
dc.relation.referencesArora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol. 15 de enero de 2012;258(2):151-65.spa
dc.relation.referencesTargeted Drug Delivery : Concepts and Design | Padma V. Devarajan | Springer [Internet]. [citado 10 de enero de 2018]. Disponible en: //www.springer.com/br/book/9783319113548spa
dc.relation.referencesOsorio-Delgado MA, Henao-Tamayo LJ, Velásquez-Cock JA, Cañas-Gutierrez AI, Restrepo-Múnera LM, Gañán-Rojo PF, et al. Biomedical applications of polymeric biomaterials. DYNA. junio de 2017;84(201):241-52.spa
dc.relation.referencesCamacho Á, Duarte Á, Dubay D, Forero E, González E, Jaramillo F, et al. Definición de nanomateriales para Colombia. Revista Colombiana de Química. 1 de enero de 2016;45(1):15-20.spa
dc.relation.referencesKleeman MJ, Schauer JJ, Cass GR. Size and Composition Distribution of Fine Particulate Matter Emitted from Motor Vehicles. Environ Sci Technol. 1 de abril de 2000;34(7):1132-42.spa
dc.relation.referencesSevastyanova O, Binkova B, Topinka J, Sram RJ, Kalina I, Popov T, et al. In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines. Mutat Res. 1 de julio de 2007;620(1-2):123-34.spa
dc.relation.referencesCorrêa AXR, Cotelle S, Millet M, Somensi CA, Wagner TM, Radetski CM. Genotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles using the in vivo Vicia faba L. micronucleus test. Ecotoxicology and Environmental Safety. 1 de mayo de 2016;127:199-204.spa
dc.relation.referencesVelali E, Papachristou E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, et al. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. Environmental Pollution. 1 de noviembre de 2016;218:1350-62.spa
dc.relation.referencesPizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763.spa
dc.relation.referencesInfluence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine - ScienceDirect [Internet]. [citado 13 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0306261914000622spa
dc.relation.referencesGiard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived From a Series of Solid Tumors2. JNCI: Journal of the National Cancer Institute. 1 de noviembre de 1973;51(5):1417-23.spa
dc.relation.referencesYoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicology in Vitro. 1 de junio de 2001;15(3):245-56.spa
dc.relation.referencesLineamientos de Política [Internet]. Ministerio de Ambiente y Desarrollo Sostenible. [citado 25 de noviembre de 2021]. Disponible en: https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/lineamientos-de-politica/spa
dc.relation.referencesCadrazco M, Agudelo JR, Orozco LY, Estrada V. Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol. Journal of Energy Resources Technology [Internet]. 30 de marzo de 2017 [citado 14 de noviembre de 2021];139(4). Disponible en: https://doi.org/10.1115/1.4036253spa
dc.relation.referencesMutagenicidad de material orgánico particulado en el aire de áreas urbanas e industriales de São Paulo, Brasil - ScienceDirect [Internet]. [citado 15 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/0165116195000356spa
dc.relation.referencesTice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35(3):206-21spa
dc.relation.referencesSingh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. marzo de 1988;175(1):184-91.spa
dc.relation.referencesThe comet assay: a method to measure DNA damage in individual cells | Nature Protocols [Internet]. [citado 18 de abril de 2018]. Disponible en: https://www.nature.com/articles/nprot.2006.5spa
dc.relation.referencesBeamish LA, Osornio-Vargas AR, Wine E. Air pollution: An environmental factor contributing to intestinal disease. Journal of Crohn’s and Colitis. 1 de agosto de 2011;5(4):279-86.spa
dc.relation.referencesAmann CA, Stivender DL, Plee SL, MacDonald JS. Some Rudiments of Diesel Particulate Emissions. SAE Transactions. 1980;89:1118-47.spa
dc.relation.referencesLópez C, Nohema S, Alvarado Díaz D. Análisis y determinación de la concentración de hidrocarburos aromático policíclicos (HAP.s) contenidos en el material particulado respirable (PM10) en la localidad de Puente Aranda de Bogotá en la zona de alta actividad industrial y alto flujo vehicular. 2006 [citado 18 de abril de 2018]; Disponible en: http://repository.lasalle.edu.co/handle/10185/14835spa
dc.relation.referencesCrebelli R, Conti L, Crochi B, Carere A, Bertoli C, Del Giacomo N. The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutat Res. marzo de 1995;346(3):167-72.spa
dc.relation.referencesArenas LMB, Atehortúa JR, Ortíz LD, Guerrero MC. Búsqueda de nuevos biomarcadores genéticos en gliomas de alto grado. Actualidades Biológicas. 2019;41(111):01-9.spa
dc.relation.referencesKrahl J, Knothe G, Munack A, Ruschel Y, Schröder O, Hallier E, et al. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel. 1 de junio de 2009;88(6):1064-9spa
dc.relation.referencesKisin ER, Shi XC, Keane MJ, Bugarski AB, Shvedova AA. Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions. J Environ Eng Ecol Sci. marzo de 2013;2(3):10.7243/2050-1323-2-3.spa
dc.relation.referencesSenthil Kumar S, Muthuselvam P, Pugalenthi V, Subramanian N, Ramkumar KM, Suresh T, et al. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. Environ Pollut. agosto de 2018;239:483-92.spa
dc.relation.referencesWaters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nature Reviews Genetics. diciembre de 2004;5(12):936-48.spa
dc.relation.referencesLemos AT, Lemos CT de, Flores AN, Pantoja EO, Rocha JAV, Vargas VMF. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. Chemosphere. 1 de septiembre de 2016;159:610-8.spa
dc.relation.referencesBai Y, Suzuki AK, Sagai M. The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: role of active oxygen species. Free Radic Biol Med. 1 de marzo de 2001;30(5):555-62.spa
dc.relation.referencesMendoza LC, Jimenez luz YO, Restrepo LMZ, Baena JAP. Genotoxicidad sobre linfocitos humanos expuestos a PM10 de tres sitios del Valle de Aburrá (Antioquia). Revista de Salud Pública. 1 de marzo de 2013;15(2):294-306.spa
dc.relation.referencesLepers C, André V, Dergham M, Billet S, Verdin A, Garçon G, et al. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence. J Appl Toxicol. junio de 2014;34(6):703-13.spa
dc.relation.referencesClaxton LD, Woodall GM. A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res. diciembre de 2007;636(1-3):36-94.spa
dc.relation.referencesZhao C, Zhu L, Li R, Wang H, Cai Z. Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells. Environmental Pollution. 1 de marzo de 2019;246:45-52.spa
dc.relation.referencesCOX5A cytochrome c oxidase subunit 5A [Homo sapiens (human)] - Gene - NCBI [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/9377spa
dc.relation.referencesWhitworth KM, Zhao J, Spate LD, Li R, Prather RS. Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogram. junio de 2011;13(3):191-204.spa
dc.relation.referencesTPI1 triosafosfato isomerasa 1 [Homo sapiens (humano)] - Gene - NCBI [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=7167spa
dc.relation.referencesTriosephosphate isomerase 1 suppresses growth, migration and invasion of hepatocellular carcinoma cells - ScienceDirect [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0006291X16320307?casa_token=YZ2YolvZTMEAAAAA:kocwZMyzwd-fkJWnVXn9b7daD7_TMVllltuVqGakEXRiNqzh-exBSu__Br9xS7q_HO2_C7vOgzfMspa
dc.relation.referencesZhao F, Wang Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci. 18 de junio de 2012;2:22.spa
dc.relation.referencesYan Y, Sabharwal P, Rao M, Sockanathan S. The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2. Cell. 18 de septiembre de 2009;138(6):1209-21.spa
dc.relation.referencesPeroxiredoxin II Is Essential for Maintaining Stemness by Redox Regulation in Liver Cancer Cells - Kwon - 2016 - STEM CELLS - Wiley Online Library [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://stemcellsjournals.onlinelibrary.wiley.com/doi/10.1002/stem.2323spa
dc.relation.referencesRao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxidants & Redox Signaling. 20 de marzo de 2018;28(9):797-818.spa
dc.relation.referencesPiao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 1 de junio de 2018;92(6):2077-91.spa
dc.relation.referencesYe G, Ding D, Gao H, Chi Y, Chen J, Wu Z, et al. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure: Insights from an untargeted metabolomics. Science of The Total Environment. 15 de noviembre de 2019;691:874-84.spa
dc.relation.referencesBolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol. 17 de enero de 2017;30(1):13-37.spa
dc.relation.referencesMkrtchiana S, Baryshev M, Matvijenko O, Sharipo A, Sandalova T, Schneider G, et al. Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Letters. 24 de julio de 1998;431(3):322-6.spa
dc.relation.referencesZhang M, Wang Y, Wong RMS, Yung KKL, Li R. Fine particulate matter induces endoplasmic reticulum stress-mediated apoptosis in human SH-SY5Y cells. NeuroToxicology. 1 de enero de 2022;88:187-95.spa
dc.relation.referencesLaing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. octubre de 2010;299(4):C736-749.spa
dc.relation.referencesWatterson TL, Hamilton B, Martin R, Coulombe RA Jr. Urban Particulate Matter Causes ER Stress and the Unfolded Protein Response in Human Lung Cells. Toxicological Sciences. 1 de noviembre de 2009;112(1):111-22.spa
dc.relation.referencesGuo L, Guan J, Xing M, Wang Z, Hou F, Xing C, et al. Endoplasmic reticulum protein ERp29 and doxorubicininduced toxicity in H9c2 cardiomyocytes: a comparative proteomics analysis. Asian Biomedicine. 31 de mayo de 2012;6(3):433-7.spa
dc.relation.referencesLu J-J, Lu D-Z, Chen Y-F, Dong Y-T, Zhang J-R, Li T, et al. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines. 1 de septiembre de 2015;13(9):673-9.spa
dc.relation.referencesKondo R, Ishino K, Wada R, Takata H, Peng W-X, Kudo M, et al. Downregulation of protein disulfide‑isomerase A3 expression inhibits cell proliferation and induces apoptosis through STAT3 signaling in hepatocellular carcinoma. International Journal of Oncology. 1 de abril de 2019;54(4):1409-21.spa
dc.relation.referencesVerheyen GR, Nuijten J-M, Van Hummelen P, Schoeters GR. Microarray analysis of the effect of diesel exhaust particles on in vitro cultured macrophages. Toxicology in Vitro. 1 de junio de 2004;18(3):377-91.spa
dc.relation.referencesWinckelmans E, Nawrot TS, Tsamou M, Den Hond E, Baeyens W, Kleinjans J, et al. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure. Environ Health [Internet]. 18 de agosto de 2017 [citado 22 de febrero de 2019];16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563023/spa
dc.relation.referencesChao Y-K, Liu K-S, Wang Y-C, Huang Y-L, Liu S-J. Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest. julio de 2013;144(1):193-9.spa
dc.relation.referencesLee P, Kupeli E, Mehta AC. Airway stents. Clin Chest Med. marzo de 2010;31(1):141-50, Table of Contents.spa
dc.relation.referencesZhao X, Ng S, Heng BC, Guo J, Ma L, Tan TTY, et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. junio de 2013;87(6):1037-52.spa
dc.relation.referencesBabaie E, Lin B, Goel VK, Bhaduri SB. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements. Biomed Mater. 07 de 2016;11(5):055010.spa
dc.relation.referencesKumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceramics International. 1 de diciembre de 2009;35(8):3355-64.spa
dc.relation.referencesan Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. En: Cree IA, editor. Cancer Cell Culture: Methods and Protocols [Internet]. Totowa, NJ: Humana Press; 2011 [citado 23 de septiembre de 2021]. p. 237-45. (Methods in Molecular Biology). Disponible en: https://doi.org/10.1007/978-1-61779-080-5_20spa
dc.relation.referencesOpacUdea [Internet]. [citado 7 de diciembre de 2017]. Disponible en: http://opacudea.udea.edu.co/query.php?607415spa
dc.relation.referencesStrober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2 de noviembre de 2015;111:A3.B.1-3.spa
dc.relation.referencesMortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 20 de noviembre de 2000;455(1-2):29-60.spa
dc.relation.referencesGe S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, et al. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnology. junio de 2011;5(2):36-40.spa
dc.relation.referencesMakadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 1 de septiembre de 2011;3(3):1377-97.spa
dc.relation.referencesKumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 1 de enero de 2010;75(1):1-18.spa
dc.relation.referencesLima TC, Lucarini R, Luz PP, de Faria EH, Marçal L, Magalhães LG, et al. In vitro schistosomicidal activity of the lignan (−)-6,6′-dinitrohinokinin (DNHK) loaded into poly(lactic-co-glycolic acid) nanoparticles against Schistosoma mansoni. Pharm Biol. 26 de noviembre de 2017;55(1):2270-6.spa
dc.relation.referencesZhang B, Sai Lung P, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep [Internet]. 4 de agosto de 2017 [citado 7 de noviembre de 2018];7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544670/spa
dc.relation.referencesXiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Arch Toxicol. junio de 2013;87(6):1075-86.spa
dc.relation.referencesDoak SH, Manshian B, Jenkins GJS, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res. 14 de junio de 2012;745(1-2):104-11.spa
dc.relation.referencesHenderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S. The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis. enero de 1998;13(1):89-94.spa
dc.relation.referencesZivkovic L, Akar B, Roux BM, Spremo Potparevic B, Bajic V, Brey EM. Investigation of DNA damage in cells exposed to poly (lactic-co-glycolic acid) microspheres. J Biomed Mater Res A. 2017;105(1):284-91.spa
dc.relation.referencesMagdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. mayo de 2014;8(3):233-78.spa
dc.relation.referencesKisin ER, Murray AR, Keane MJ, Shi X-C, Schwegler-Berry D, Gorelik O, et al. Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. Journal of Toxicology and Environmental Health, Part A. 13 de noviembre de 2007;70(24):2071-9.spa
dc.relation.referencesLi Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 14 de junio de 2012;745(1):4-10.spa
dc.relation.referencesThe photogenotoxicity of titanium dioxide particles - ScienceDirect [Internet]. [citado 24 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1383571897001265?casa_token=Rh-WCuPH8JUAAAAA:QYQBvCrRb2Ideeq6HKGmtowKsEnM_iorfwddX0mNGEQkT_8nexF309TRWo9kKU-Xs8qH4g4sBgspa
dc.relation.referencesDusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, et al. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food Chem Toxicol. noviembre de 2017;109(Pt 1):797-811spa
dc.relation.referencesSawai J, Kojima H, Kano F, Igarashi H, Hashimoto A, Kawada E, et al. Short Communication: Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities. World Journal of Microbiology and Biotechnology. 1 de octubre de 1998;14:773-5.spa
dc.relation.referencesFu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis. 1 de marzo de 2014;22(1):64-75.spa
dc.relation.referencesChoudhury SR, Ordaz J, Lo C-L, Damayanti NP, Zhou F, Irudayaraj J. From the Cover: Zinc oxide Nanoparticles-Induced Reactive Oxygen Species Promotes Multimodal Cyto- and Epigenetic Toxicity. Toxicol Sci. 01 de 2017;156(1):261-74.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembCitotoxicidad por mediación celular
dc.subject.lembCell-mediated cytotoxicity
dc.subject.proposalToxicoproteómicaspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalDiésel con mezcla de alcoholesspa
dc.subject.proposalToxicoproteomicseng
dc.subject.proposalNanoparticleseng
dc.subject.proposalDiesel with a mixture of alcoholseng
dc.titleEvaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celularesspa
dc.title.translatedIn vitro evaluation of the effect of particulate matter and a potential treatment on two cell lineseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1214714626.2021.pdf
Tamaño:
1.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: