Predicción del perfil de resistencia a antibióticos a partir de datos de secuenciación del genoma completo de aislamientos colombianos de Providencia rettgeri comprendidos en el período 2015 – 2016

dc.contributor.advisorBarreto-Hernandez, Emiliano
dc.contributor.advisorReguero Reza, María Teresa Jesús
dc.contributor.authorTenorio Arévalo, María Caridad
dc.contributor.researchgroupBioinformáticaspa
dc.date.accessioned2022-07-29T16:53:04Z
dc.date.available2022-07-29T16:53:04Z
dc.date.issued2021
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractLa resistencia a los antibióticos es considerada una de las amenazas más urgentes de la salud pública mundial. Actualmente obtener resultados fenotípicos de esa resistencia por los métodos convencionales basados en cultivos toma mucho tiempo. La secuenciación de genoma completo (WGS) supera estas limitaciones ya que permite inferir el comportamiento fenotípico mediante la identificación de elementos de resistencia a antibióticos en el genoma en menor tiempo, sin embargo, aún no se ha conseguido una predicción óptima de estos perfiles. Los métodos de Machine Learning facilitan esta optimización, por lo tanto, el objetivo de este trabajo fue implementar un modelo de predicción de resistencia a antibióticos utilizando métodos de Machine Learning a partir de datos de WGS de 521 Enterobacterales que incluye 28 aislamientos colombianos de Providencia rettgeri. Para la predicción se utilizaron tres métodos: a) Regresión Logística (RL), b) Support Vector Machine (SVM) y c) Random Forest (RF) y tres métodos de selección de características: 1) Eliminación recursiva de características (RFECV), 2) regularización L1 y 3) Feature importance. Se desarrollaron modelos de predicción a 10 antibióticos, con una exactitud promedio del 88% (IC 95% ± 6) y exactitudes individuales de 89% (IC 95% ± 7), 93% (IC 95% ± 5), 90% (IC 95% ± 7), 93% (IC 95% ± 6), 81% (IC 95% ± 12), 93% (IC 95% ± 8), 81% (IC 95% ± 10), 79% (IC 95% ± 9), 86% (IC 95% ± 9) y 93% (IC 95% ± 5) para amikacina, ciprofloxacina, trimetropim/sulfometoxazol, tetraciclina, tigeciclina, colistina, ceftazidima, cefepime, imipenem y meropenem, respectivamente. Los métodos que permitieron obtener estos desempeños corresponden a RL y SVM con los métodos de selección de características RFECV y regularización L1. Estos hallazgos señalan que los modelos construidos pueden predecir con exactitud elevada la resistencia a antibióticos de diferentes especies de bacterias y apoya la idea de que pueden convertirse en una herramienta potencial para el diagnóstico clínico. (Texto tomado de la fuente)spa
dc.description.abstractAntibiotic resistance is considered one of the most urgent threats to global public health. Due to the public health risk, there are several methods for obtained phenotypic results. However, conventional methods take days or weeks. Whole-genome sequencing (WGS) overcomes these limitations by estimating phenotypic behavior and identifying antibiotic resistance elements in the genome in a faster way. However, information about the optimal prediction of these profiles is still scarce. The project aim was to implement an antibiotic resistance prediction model using Machine Learning methods, using WGS data of 521 Enterobacterales isolates, including 28 Providencia rettgeri isolates sequenced in Colombia. The Machine Learning methods used were a) Logistic Regression (RL), b) Support Vector Machine (SVM), and c) Random Forest (RF). Also, the following feature selection methods were applied: 1) recursive feature elimination (RFECV), 2) L1 regularization, and 3) feature importance. Finally, prediction models were developed for 10 antibiotics, with a mean accuracy of 88% (IC 95% ± 6) and individual accuracies of 89% (IC 95% ± 7), 93% (IC 95% ± 5), 90% (IC 95% ± 7), 93% (IC 95% ± 6), 81% (IC 95% ± 12), 93% (IC 95% ± 8) 81% (IC 95% ± 10), 79% (IC 95% ± 9), 86% (IC 95% ± 9) and 93% (IC 95% ± 5), for amikacin, ciprofloxacin, trimethoprim/sulfamethoxazole, tetracycline, tigecycline, colistin, ceftazidime, cefepime, imipenem and meropenem respectively. These performances correspond to RL and SVM, using RFECV and L1 as regularization feature selection methods. These findings indicate that these models could accurately predict antibiotic resistance from different Enterobacteriaceae species and could be a potential tool for clinical diagnosis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBiología molecular de agentes infecciososspa
dc.format.extent167 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81760
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología (IBUN)spa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdallah, M., & Balshi, A. (2018). First literature review of carbapenem-resistant Providencia. In New Microbes and New Infections (Vol. 25, pp. 16–23). Elsevier Ltd. https://doi.org/10.1016/j.nmni.2018.05.009spa
dc.relation.referencesAdriana, L., & Buitrago, P. (2019). Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016.spa
dc.relation.referencesAedekerk, S., Diggle, S. P., Song, Z., Høiby, N., Cornelis, P., Williams, P., & Cámara, M. (2005). The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology, 151(4), 1113–1125. https://doi.org/10.1099/mic.0.27631-0spa
dc.relation.referencesAghapour, Z., Gholizadeh, P., Ganbarov, K., Bialvaei, A. Z., Mahmood, S. S., Tanomand, A., Yousefi, M., Asgharzadeh, M., Yousefi, B., & Kafil, H. S. (2019). Molecular mechanisms related to colistin resistance in enterobacteriaceae. In Infection and Drug Resistance (Vol. 12, pp. 965–975). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S199844spa
dc.relation.referencesAlcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V, Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., ... McArthur, A. G. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz935spa
dc.relation.referencesAlekshun, M. N., & Levy, S. B. (2007). Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell, 128(6), 1037–1050. https://doi.org/10.1016/j.cell.2007.03.004spa
dc.relation.referencesAngermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12(7), 878. https://doi.org/10.15252/msb.20156651spa
dc.relation.referencesAntunes, P., Machado, J., Sousa, J. C., & Peixe, L. (2005). Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrobial Agents and Chemotherapy, 49(2), 836– 839. https://doi.org/10.1128/AAC.49.2.836-839.2005spa
dc.relation.referencesBehera, R. N., Das, K., Tech, B., & Professor, A. (2017). A Survey on Machine Learning: Concept, Algorithms and Applications Machine Learning View project International Journal of Innovative Research in Computer and Communication Engineering A Survey on Machine Learning: Concept, Algorithms and Applications. Article in International Journal of Innovative Research in Computer, 1301–1309. https://doi.org/10.15680/IJIRCCE.2017spa
dc.relation.referencesBengoechea, J. A., Zhang, L., Toivanen, P., & Skurnik, M. (2002). Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Molecular Microbiology, 44(4), 1045–1062. https://doi.org/10.1046/j.1365-2958.2002.02940.xspa
dc.relation.referencesBesier, S., Ludwig, A., Brade, V., & Wichelhaus, T. A. (2003). Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Molecular Microbiology, 47(2), 463–469. https://doi.org/10.1046/j.1365-2958.2003.03307.xspa
dc.relation.referencesBielaszewska, M., Daniel, O., Karch, H., & Mellmann, A. (2020). Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. The Journal of Antimicrobial Chemotherapy, 75(9), 2442–2451. https://doi.org/10.1093/jac/dkaa214spa
dc.relation.referencesBlair, J. M. A., Richmond, G. E., & Piddock, L. J. V. (2014). Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. In Future Microbiology (Vol. 9, Issue 10, pp. 1165–1177). Future Medicine Ltd. https://doi.org/10.2217/FMB.14.66spa
dc.relation.referencesBlair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380spa
dc.relation.referencesBorstel, F. (1983). from a Proteus mirabilis Re-mutant. 22, 15–22.spa
dc.relation.referencesBouziane, F., Allem, R., Sebaihia, M., Kumanski, S., Mougari, F., Sougakoff, W., Raskine, L., Yala, D., & Cambau, E. (2019). First genetic characterisation of multidrug- resistant Mycobacterium tuberculosis isolates from Algeria. Journal of Global Antimicrobial Resistance, 19, 301–307. https://doi.org/10.1016/j.jgar.2019.05.010spa
dc.relation.referencesBrolund, A., Sundqvist, M., Kahlmeter, G., & Grape, M. (2010). Molecular Characterisation of Trimethoprim Resistance in Escherichia coli and Klebsiella pneumoniae during a Two Year Intervention on Trimethoprim Use. PLoS ONE, 5(2), e9233. https://doi.org/10.1371/journal.pone.0009233spa
dc.relation.referencesCarvalho-Assef, A. P. D., Pereira, P. S., Albano, R. M., Beriao, G. C., Chagas, T. P. G., Timm, L. N., Da Silva, R. C. F., Falci, D. R., & Asensi, M. D. (2013). Isolation of NDM-producing Providencia rettgeri in Brazil. Journal of Antimicrobial Chemotherapy, 68(12), 2956–2957. https://doi.org/10.1093/jac/dkt298spa
dc.relation.referencesCastanheira, M., Mills, J. C., Farrell, D. J., & Jones, R. N. (2014). Mutation-Driven β- Lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrobial Agents and Chemotherapy, 58(11), 6844–6850. https://doi.org/10.1128/AAC.03681-14spa
dc.relation.referencesCLSI. (n.d.). M100: Antimicrobial Susceptibility Testing Standards. 2019. Retrieved November 7, 2019, from https://clsi.org/standards/products/microbiology/documents/m100/spa
dc.relation.referencesCLSI. (2018). Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. www.clsi.org.spa
dc.relation.referencesCLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing (29th ed).spa
dc.relation.referencesCody, A. J., Bray, J. E., Jolley, K. A., McCarthy, N. D., & Maiden, M. C. J. (2017). Core Genome Multilocus Sequence Analyses of Campylobacter jejuni and C. coli Human Disease Isolates. Journal of Clinical Microbiology, 55(7), 2086–2097.spa
dc.relation.referencesCoelho, J. R., Carriço, J. A., Knight, D., Martínez, J.-L., Morrissey, I., Oggioni, M. R., & Freitas, A. T. (2013). The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus. PLoS ONE, 8(2), e55582. https://doi.org/10.1371/journal.pone.0055582spa
dc.relation.referencesCoyne, S., Rosenfeld, N., Lambert, T., Courvalin, P., & Périchon, B. (2010). Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 54(10), 4389–4393. https://doi.org/10.1128/AAC.00155-10spa
dc.relation.referencesCui, X., Zhang, H., & Du, H. (2019). Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Frontiers in Microbiology, 10, 1823. https://doi.org/10.3389/fmicb.2019.01823spa
dc.relation.referencesD’Andrea, M. M., Arena, F., Pallecchi, L., & Rossolini, G. M. (2013). CTX-M-type β- lactamases: A successful story of antibiotic resistance. International Journal of Medical Microbiology, 303(6–7), 305–317. https://doi.org/10.1016/j.ijmm.2013.02.008spa
dc.relation.referencesDastvan, R., Fischer, A. W., Mishra, S., Meiler, J., & McHaourab, H. S. (2016). Protonation-dependent conformational dynamics of the multidrug transporter EmrE. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1220–1225. https://doi.org/10.1073/pnas.1520431113spa
dc.relation.referencesDey, A. (2016). Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technologies, 7(3), 1174–1179. www.ijcsit.comspa
dc.relation.referencesDidelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., & Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. In Nature Reviews Genetics (Vol. 13, Issue 9, pp. 601–612). Nat Rev Genet. https://doi.org/10.1038/nrg3226spa
dc.relation.referencesDoménech-Sánchez, A., Hernández-Allés, S., Martínez-Martínez, L., Benedí, V. J., & Albertí, S. (1999). Identification and characterization of a new porin gene of Klebsiella pneumoniae: Its role in β-lactam antibiotic resistance. Journal of Bacteriology, 181(9), 2726–2732. https://doi.org/10.1128/jb.181.9.2726-2732.1999spa
dc.relation.referencesDomínguez, M., Miranda, C. D., Fuentes, O., de la Fuente, M., Godoy, F. A., Bello- Toledo, H., & González-Rocha, G. (2019). Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Frontiers in Microbiology, 10(APR), 748. https://doi.org/10.3389/fmicb.2019.00748spa
dc.relation.referencesEDGAR, R. (n.d.). UCLUST algorithm. 2010. Retrieved March 27, 2021, from https://drive5.com/usearch/manual/uclust_algo.htmlspa
dc.relation.referencesElena, B., Ayala, A., María, A., & Amórtegui, L. (n.d.). CARBAPENEMASA NUEVA DELHI TIPO 1 (NDM): DESCRIPCIÓN FENOTÍPICA, EPIDEMIOLÓGICA Y TRATAMIENTO. In Laboratorio Actual •. Retrieved October 2, 2018, from http://abj.org.co/images/revistas/vol_44/Pag. 24-31 Carbapenemasa Nueva Delhi tipo 1 (NDM) descripción fenotípica, epidemiológica y tratamiento.pdfspa
dc.relation.referencesEUCAST: Clinical breakpoints and dosing of antibiotics. (n.d.). Retrieved November 7, 2019, from http://www.eucast.org/clinical_breakpoints/spa
dc.relation.referencesEyre, D. W., Silva, D. De, Cole, K., Peters, J., Cole, M. J., Grad, Y. H., Demczuk, W., Martin, I., Mulvey, M. R., Crook, D. W., Walker, A. S., Peto, T. E. A., & Paul, J. (2017). WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 72(7), 1937–1947. https://doi.org/10.1093/jac/dkx067spa
dc.relation.referencesFàbrega, A., Martin, R. G., Rosner, J. L., Tavio, M. M., & Vila, J. (2010). Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG. Antimicrobial Agents and Chemotherapy, 54(3), 1218–1225. https://doi.org/10.1128/AAC.00944-09spa
dc.relation.referencesFDA. (n.d.). TYGACIL ® (TIGECYCLINE) FOR INJECTION Rx only. Retrieved April 8, 2021, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021821s016lbl.pdfspa
dc.relation.referencesFounou, R. C., Founou, L. L., Allam, M., Ismail, A., & Essack, Y. (n.d.). Whole Genome sequencing of extended spectrum β-lactamase (esBL)-producing Klebsiella pneumoniae Isolated from Hospitalized patients in KwaZulu-Natal, south Africa. Scientific Reports. https://doi.org/10.1038/s41598-019-42672-2spa
dc.relation.referencesFreeman, Z. N., Dorus, S., & Waterfield, N. R. (2013). The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence. PLoS Pathogens, 9(3). https://doi.org/10.1371/journal.ppat.1003201spa
dc.relation.referencesFu, Z., Ma, Y., Chen, C., Guo, Y., Hu, F., Liu, Y., Xu, X., & Wang, M. (2016). Prevalence of fosfomycin resistance and mutations in murA, glpT, and uhpT in methicillin- resistant Staphylococcus aureus strains isolated from blood and cerebrospinal fluid samples. Frontiers in Microbiology, 6(JAN). https://doi.org/10.3389/fmicb.2015.01544spa
dc.relation.referencesGarcía, S., Ramírez, S. G., Luengo, J., & Herrera, F. (2016). Big Data : Preprocesamiento. Novática, 17–23. http://sci2s.ugr.es/sites/default/files/ficherosPublicaciones/2133_Nv237-Digital- sramirez.pdfspa
dc.relation.referencesGefen-Halevi, S., Hindiyeh, M. Y., Ben-David, D., Smollan, G., Gal-Mor, O., Azar, R., Castanheira, M., Belausov, N., Rahav, G., Tal, I., Mendelson, E., & Keller, N. (2013). Isolation of genetically unrelated bla(NDM-1)-positive Providencia rettgeri strains in Israel. Journal of Clinical Microbiology, 51(5), 1642–1643. https://doi.org/10.1128/JCM.00381-13spa
dc.relation.referencesGhaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. (2015). The Applications of Genetic Algorithms in Medicine. Oman Medical Journal, 30(6), 406–416.spa
dc.relation.referencesGhotaslou, R., Yeganeh Sefidan, F., Akhi, M. T., Asgharzadeh, M., & Mohammadzadeh Asl, Y. (2017). Dissemination of Genes Encoding Aminoglycoside-Modifying Enzymes and armA among Enterobacteriaceae Isolates in Northwest Iran. Microbial Drug Resistance, 23(7), 826–832. https://doi.org/10.1089/mdr.2016.0224spa
dc.relation.referencesGovindaswamy, A., Bajpai, V., Khurana, S., Aravinda, A., Batra, P., Malhotra, R., & Mathur, P. (2019). Prevalence and characterization of beta-lactamase-producing Escherichia coli isolates from a tertiary care hospital in India. Journal of Laboratory Physicians, 11(02), 123–127. https://doi.org/10.4103/jlp.jlp_122_18spa
dc.relation.referencesGuidance Document on Tigecycline Dosing in association with Revision of Breakpoints for Enterobacterales and other species with an “Intermediate” category. (2018).spa
dc.relation.referencesHaidar, G., Alkroud, A., Cheng, S., Churilla, T. M., Churilla, B. M., Shields, R. K., Doi, Y., Clancy, C. J., & Nguyen, H. (2016). Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase-and Extended-Spectrum-Lactamase-Producing Enterobacter Species. https://doi.org/10.1128/AAC.00869-16spa
dc.relation.referencesHands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts ... - Aurélien Géron - Google Libros. (n.d.). Retrieved November 15, 2020, from https://books.google.com.ec/books?id=HHetDwAAQBAJ&printsec=frontcover&dq=h ands+on+machine+learning+with+scikit- learn+and+tensorflow&hl=es&sa=X&ved=2ahUKEwjU66ijiIbtAhXyxlkKHRYQBNEQ6 AEwAHoECAAQAg#v=onepage&q=hands on Machine Learning with scikit-learn and tensorflow&f=falsespa
dc.relation.referencesHirakawa, H., Nishino, K., Hirata, T., & Yamaguchi, A. (2003). Comprehensive studies of drug resistance mediated by overexpression of response regulators of two- component signal transduction systems in Escherichia coli. Journal of Bacteriology, 185(6), 1851–1856. https://doi.org/10.1128/JB.185.6.1851-1856.2003spa
dc.relation.referencesHome - BioSample - NCBI. (n.d.). Retrieved March 27, 2021, from https://www.ncbi.nlm.nih.gov/biosamplespa
dc.relation.referencesHome - Genome - NCBI. (n.d.). Retrieved March 27, 2021, from https://www.ncbi.nlm.nih.gov/genome/spa
dc.relation.referencesHuang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics & Proteomics, 15(1), 41–51. https://doi.org/10.21873/cgp.20063spa
dc.relation.referencesHyun, J. C., Kavvas, E. S., Monk, J. M., & Palsson, B. O. (2020). Machine Learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Computational Biology, 16(3), e1007608. https://doi.org/10.1371/journal.pcbi.1007608spa
dc.relation.referencesIredell, J., Brown, J., & Tagg, K. (2016). Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. BMJ (Online), 352(February 2016). https://doi.org/10.1136/bmj.h6420spa
dc.relation.referencesJabbar, H. K., & Khan, R. Z. (2015). Methods to Avoid Over-Fitting and Under-Fitting in Supervised Machine Learning (Comparative Study). December 2014, 163–172. https://doi.org/10.3850/978-981-09-5247-1_017spa
dc.relation.referencesJayol, A., Nordmann, P., André, C., Poirel, L., & Dubois, V. (2018). Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli. Journal of Antimicrobial Chemotherapy, 73(5), 1272–1278. https://doi.org/10.1093/jac/dky012spa
dc.relation.referencesJihye Jeon. (2015). The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(5), 1634–1642. https://pdfs.semanticscholar.org/50a9/a4a1cf87575bbb83b43419102d09fc89f942.pd fspa
dc.relation.referencesJIM O’NEILL. (2015). TACKLING DRUG-RESISTANT INFECTIONS GLOBALLY: FINAL REPORT AND RECOMMENDATIONS. 136(1), 29–31.spa
dc.relation.referencesJorgensen, J. H., Ferraro, M. J., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases, 49(11), 1749–1755. https://doi.org/10.1086/647952spa
dc.relation.referencesKaraiskos, I., Lagou, S., Pontikis, K., Rapti, V., & Poulakou, G. (2019). The “Old” and the “New” antibiotics for MDR Gram-negative pathogens: For whom, when, and how. In Frontiers in Public Health (Vol. 7, Issue JUN, p. 151). Frontiers Media S.A. https://doi.org/10.3389/fpubh.2019.00151spa
dc.relation.referencesKim, S.-Y., Park, Y.-J., Yu, J. K., & Kim, Y. S. (2011). Aminoglycoside Susceptibility Profiles of Enterobacter cloacae Isolates Harboring the aac(6’)-Ib Gene. The Korean Journal of Laboratory Medicine, 31(4), 279. https://doi.org/10.3343/KJLM.2011.31.4.279spa
dc.relation.referencesKobayashi, N., Nishino, K., Hirata, T., & Yamaguchi, A. (2003). Membrane topology of ABC-type macrolide antibiotic exporter MacB in Escherichia coli. FEBS Letters, 546(2–3), 241–246. https://doi.org/10.1016/S0014-5793(03)00579-9spa
dc.relation.referencesKolarević, S., Milovanović, D., Avdović, M., Oalđe, M., Kostić, J., Sunjog, K., Nikolić, B., Knežević-Vukčević, J., & Vuković-Gačić, B. (2016). Optimisation оf the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. https://doi.org/10.5281/zenodo.48751spa
dc.relation.referencesKöser, C. U., Ellington, M. J., Cartwright, E. J. P., Gillespie, S. H., Brown, N. M., Farrington, M., Holden, M. T. G., Dougan, G., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathogens, 8(8). https://doi.org/10.1371/journal.ppat.1002824spa
dc.relation.referencesKotb, D. N., Mahdy, W. K., Mahmoud, M. S., & Khairy, R. M. M. (2019). Impact of co- existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infectious Diseases, 19(1), 1–8. https://doi.org/10.1186/s12879-019-4606-yspa
dc.relation.referencesKouchaki, S., Yang, Y. Y., Walker, T. M., Walker, A. S., Wilson, D. J., Peto, T. E. A., Crook, D. W., Clifton, D. A., Hoosdally, S. J., Gibertoni Cruz, A. L., Carter, J., Grazian, C., Kouchaki, S., Walker, T. M., Fowler, P. W., Clifton, D. A., Iqbal, Z., Hunt, M., Smith, E. G., ... Van Soolingen, D. (2019). Application of Machine Learning techniques to tuberculosis drug resistance analysis. Bioinformatics, 35(13), 2276– 2282. https://doi.org/10.1093/bioinformatics/bty949spa
dc.relation.referencesKumar Trivedi, M. (2015). Antibiogram, Biochemical Reactions and Biotyping of Biofield Treated <i>Providencia rettgeri</i> American Journal of Health Research, 3(6), 344. https://doi.org/10.11648/j.ajhr.20150306.15spa
dc.relation.referencesL, D., P, N., & L, P. (2012). Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(4), 1693–1697. https://doi.org/10.1128/AAC.05583-11spa
dc.relation.referencesLi, X. Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria: An update. In Drugs (Vol. 69, Issue 12, pp. 1555–1623). https://doi.org/10.2165/11317030- 000000000-00000spa
dc.relation.referencesLM, C., H, H., S, X., & FM, A. (2009). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrobial Agents and Chemotherapy, 53(2), 603–608. https://doi.org/10.1128/AAC.00997-08spa
dc.relation.referencesM, G., S, E., S, A., V, D., MA, K., E, S., & S, S. (2016). GyrA ser83 and ParC trp106 Mutations in Salmonella enterica Serovar Typhi Isolated from Typhoid Fever Patients in Tertiary Care Hospital. Journal of Clinical and Diagnostic Research : JCDR, 10(7), DC14–DC18. https://doi.org/10.7860/JCDR/2016/17677.8153spa
dc.relation.referencesM, M. A., S, K., C, W., S, L., G, M., T, M., S, J., & TR, R. (2015). Identification of a novel mutation at the primary dimer interface of GyrA conferring fluoroquinolone resistance in Clostridium difficile. Journal of Global Antimicrobial Resistance, 3(4), 295–299. https://doi.org/10.1016/J.JGAR.2015.09.007spa
dc.relation.referencesM, N., K, S., O, K., S, K., S, N., & R, S. (2015). Characterisation of novel mutations involved in quinolone resistance in Escherichia coli isolated from imported shrimp. International Journal of Antimicrobial Agents, 45(5), 471–476.spa
dc.relation.referencesMajlesi, A., Kakhki, R. K., Mozaffari Nejad, A. S., Mashouf, R. Y., Roointan, A., Abazari, M., & Alikhani, M. Y. (2018). Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi Journal of Biological Sciences, 25(3), 426–430. https://doi.org/10.1016/j.sjbs.2016.11.019spa
dc.relation.referencesMarquez-Ortiz, R. A., Haggerty, L., Sim, E. M., Duarte, C., Castro-Cardozo, B. E., Beltran, M., Saavedra, S., Vanegas, N., Escobar-Perez, J., & Petty, N. K. (2017). First Complete Providencia rettgeri Genome Sequence, the NDM-1-Producing Clinical Strain RB151. Genome Announcements, 5(3), e01472-16. https://doi.org/10.1128/genomeA.01472-16spa
dc.relation.referencesMazzariol, A., Kocsis, B., Koncan, R., Kocsis, E., Lanzafame, P., & Cornaglia, G. (2012). Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. Clinical Microbiology and Infection, 18(3), E46–E48. https://doi.org/10.1111/j.1469-0691.2011.03728.xspa
dc.relation.referencesMbelle, N., Sekyere, J. O., Amoako, D. G., & Maningi, N. E. (2019). Genomic analysis of a multidrug-resistant clinical Providencia rettgeri (PR002) strain with the novel integron ln1483 and an A/C plasmid replicon Genetic diversity of Mycobacterium tuberculosis strains among mycobacterial isolates from symptomatic holy water attendees in Amhara region, Ethiopia View project Fluoquinolone and Ketolide Resistance in Haemophilus Parainfluenzae from Private Sector of KwaZulu-Natal, South Africa View project. https://doi.org/10.1111/nyas.14237spa
dc.relation.referencesMisawa, K., Tarumoto, N., Tamura, S., Osa, M., Hamamoto, T., Yuki, A., Kouzaki, Y., Imai, K., Ronald, R. L., Yamaguchi, T., Murakami, T., Maesaki, S., Suzuki, Y., Kawana, A., & Maeda, T. (2018). Single nucleotide polymorphisms in genes encoding penicillin-binding proteins in β-lactamase-negative ampicillin-resistant Haemophilus influenzae in Japan. BMC Research Notes, 11(1). https://doi.org/10.1186/s13104-018-3169-0spa
dc.relation.referencesMitra, S., Mukherjee, S., Naha, S., Chattopadhyay, P., Dutta, S., & Basu, S. (2019). Evaluation of co-transfer of plasmid-mediated fluoroquinolone resistance genes and bla NDM gene in Enterobacteriaceae causing neonatal septicaemia. Antimicrobial Resistance and Infection Control, 7(1), 1–15.spa
dc.relation.referencesMohanty, S., & Mahapatra, A. (2021). In vitro activity of tigecycline against multidrug- resistant Enterobacteriaceae isolates from skin and soft tissue infections. Annals of Medicine and Surgery, 62, 228–230. https://doi.org/10.1016/J.AMSU.2021.01.010spa
dc.relation.referencesMohr O’hara, C., Brenner, F. W., & Miller, J. M. (2000). Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella (Vol. 13, Issue 4). http://cmr.asm.org/spa
dc.relation.referencesMoradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan- genome data. PLOS Computational Biology, 14(12), e1006258.spa
dc.relation.referencesNaas, T., & Nordmann, P. (1994). Analysis of a carbapenem-hydrolyzing class A β- lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 91(16), 7693–7697. https://doi.org/10.1073/pnas.91.16.7693spa
dc.relation.referencesNagakubo, S., Nishino, K., Hirata, T., & Yamaguchi, A. (2002). The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. Journal of Bacteriology, 184(15), 4161–4167. https://doi.org/10.1128/JB.184.15.4161-4167.2002spa
dc.relation.referencesNazir, S., Dekyong, A., Fomda, B., Benazir, S., Bhat, A., & Bashir, L. (2017). Providencia Rettgeri: an Unexpected Cause of Sepsis. International Journal of Advanced Research, 5(12), 1442–1444. https://doi.org/10.21474/IJAR01/6104spa
dc.relation.referencesNguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., Shukla, M., Stevens, R. L., Xia, F., Yoo, H., & Davis, J. J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Scientific Reports, 8(1), 421. https://doi.org/10.1038/s41598-017-18972-wspa
dc.relation.referencesNguyen, M., Wesley Long, S., McDermott, P. F., Olsen, R. J., Olson, R., Stevens, R. L., Tyson, G. H., Zhao, S., & Davisa, J. J. (2019). Using Machine Learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(2). https://doi.org/10.1128/JCM.01260-18spa
dc.relation.referencesNiehaus, K. E., Walker, T. M., Crook, D. W., Peto, T. E. A., & Clifton, D. A. (2014). Machine Learning for the prediction of antibacterial susceptibility in Mycobacterium tuberculosis. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 618–621. https://doi.org/10.1109/BHI.2014.6864440spa
dc.relation.referencesNishino, K., Senda, Y., & Yamaguchi, A. (2008). CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. Journal of Antibiotics, 61(3), 120–127. https://doi.org/10.1038/ja.2008.120spa
dc.relation.referencesNordmann, P., Naas, T., & Poirel, L. (2011). Global spread of Carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17(10), 1791–1798. https://doi.org/10.3201/eid1710.110655spa
dc.relation.referencesOlaitan, Abiola O., Morand, S., & Rolain, J.-M. (2014). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Frontiers in Microbiology, 5, 643. https://doi.org/10.3389/fmicb.2014.00643spa
dc.relation.referencesOlaitan, Abiola Olumuyiwa, Diene, S. M., Assous, M. V., & Rolain, J.-M. (2016). Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. Genome Biology and Evolution, 8(3), 723–728. https://doi.org/10.1093/gbe/evv195spa
dc.relation.referencesOlaitan, Abiola Olumuyiwa, Diene, S. M., Gupta, S. K., Adler, A., Assous, M. V., & Rolain, J. M. (2014). Genome analysis of NDM-1 producing Morganella morganii clinical isolate. Expert Review of Anti-Infective Therapy, 12(10), 1297–1305.spa
dc.relation.referencesOlivares, J., Bernardini, A., Garcia-Leon, G., Corona, F., Sanchez, M. B., & Martinez, J. L. (2013). The intrinsic resistome of bacterial pathogens. In Frontiers in Microbiology (Vol. 4, Issue APR, p. 103). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2013.00103spa
dc.relation.referencesOlumuyiwa Olaitan, A., Diene, S. M., Victor Assous, M., & Rolain, J. M. (2016). Genomic plasticity of multidrug-resistant NDM-1 positive clinical isolate of providencia rettgeri. Genome Biology and Evolution, 8(3), 723–728. https://doi.org/10.1093/gbe/evv195spa
dc.relation.referencesOpenSUSE. (n.d.). openSUSE - Linux OS. La mejor elección para administradores de sistemas, desarrolladores y usuarios de ordenadores de sobremesa. 2021. Retrieved March 27, 2021, from https://www.opensuse.org/spa
dc.relation.referencesOrdóñez-díaz, K. M., Estupiñán, J. L., & Alzate, J. A. (2018). Metalobetalactamasa de tipo Nueva Delhi en Risaralda ( Colombia ): reporte de un caso. 22(1), 55–57.spa
dc.relation.referencesOrtiz, K. P. P., Segura, J. C., Bettin, L., Coriat, J., & Díez, H. (2011). recuencia de betalactamasas de espectro extendido (BLEE) en Klebsiella pneumoniae, Klebsiella oxytoca y Escherichia coli aisladas de pacientes hospitalizados en una clínica de tercer nivel en Bogotá. Ciencia Actual, 4(0), 1–9. https://doi.org/10.21500/2248468X.2285spa
dc.relation.referencesOsei Sekyere, J., & Amoako, D. G. (2017). Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLOS ONE, 12(6), e0178888. https://doi.org/10.1371/journal.pone.0178888spa
dc.relation.referencesOvalle, M. V., Saavedra, S. Y., González, M. N., Hidalgo, A. M., Duarte, C., & Beltrán, M. (2017). Resultados de la vigilancia nacional de resistencia antimicrobiana en infecciones asociadas a la atención en salud en enterobacterias y Gram negativos no fermentadores, Colombia 2012-2014. Biomédica, 37(4), 39. https://doi.org/http://dx.doi.org/10.7705/biomedica.v37i4.3432spa
dc.relation.referencesOzkaya-Parlakay, A., Gulhan, B., Kanik-Yuksek, S., Guney, D., Gonulal, D., Demirtas, G., Tezer, H., Unal, S., & Senel, E. (2020). Tigecycline therapy in pediatric patients with multidrug resistant bacteremia. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 38(10), 471–473. https://doi.org/10.1016/j.eimce.2019.12.014spa
dc.relation.referencesPartridge, S. R. (2015). Resistance mechanisms in Enterobacteriaceae. Pathology, 47(3), 276–284. https://doi.org/10.1097/PAT.0000000000000237spa
dc.relation.referencesPataki, B. Á., Matamoros, S., van der Putten, B. C. L., Remondini, D., Giampieri, E., Aytan-Aktug, D., Hendriksen, R. S., Lund, O., Csabai, I., Schultsz, C., Matamoros, S., Janes, V., Hendriksen, R. S., Lund, O., Clausen, P., Aarestrup, F. M., Koopmans, M., Pataki, B., Visontai, D., ... McDermott, P. (2020). Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with Machine Learning. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-71693-5spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Cournapeau, D., Passos, A., Brucher, M., Perrot Andédouardand ́andédouard Duchesnay, M., & Perrot, M. (2011). Scikit-learn: Machine Learning in Python. In Machine Learning in Python. Journal of Machine Learning Research (Vol. 12). Microtome Pub-lishing. https://hal.inria.fr/hal-00650905v2spa
dc.relation.referencesPedregosa FABIANPEDREGOSA, F., Michel, V., Grisel OLIVIERGRISEL, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot andÉdouardand, M., Duchesnay, andÉdouard, & Duchesnay EDOUARDDUCHESNAY, Fré. (2011). Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. In Journal of Machine Learning Research (Vol. 12, Issue 85). http://scikit-learn.sourceforge.net.spa
dc.relation.referencesPérez-Vázquez, M., Sola Campoy, P. J., Ortega, A., Bautista, V., Monzón, S., Ruiz- Carrascoso, G., Mingorance, J., González-Barberá, E. M., Gimeno, C., Aracil, B., Sáez, D., Lara, N., Fernández, S., González-López, J. J., Campos, J., Kingsley, R. A., Dougan, G., Oteo-Iglesias, J., Rodrigo, C. H., ... Suarez, C. B. (2019). Emergence of NDM-producing Klebsiella pneumoniae and Escherichia coli in Spain: phylogeny, resistome, virulence and plasmids encoding blaNDM-like genes as determined by WGS. Journal of Antimicrobial Chemotherapy, 74(12), 3489–3496. https://doi.org/10.1093/jac/dkz366spa
dc.relation.referencesPérez, A., Poza, M., Fernández, A., Del Carmen Fernández, M., Mallo, S., Merino, M., Rumbo-Feal, S., Cabral, M. P., & Bou, G. (2012). Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 56(4), 2084–2090. https://doi.org/10.1128/AAC.05509-11spa
dc.relation.referencesPesesky, M. W., Hussain, T., Wallace, M., Patel, S., Andleeb, S., Burnham, C.-A. D., & Dantas, G. (2016). Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data. Frontiers in Microbiology, 7, 1887. https://doi.org/10.3389/fmicb.2016.01887spa
dc.relation.referencesPeterson, L. R. (2008). A review of tigecycline - the first glycylcycline. International Journal of Antimicrobial Agents, 32(SUPPL. 4), S215–S222. https://doi.org/10.1016/S0924-8579(09)70005-6spa
dc.relation.referencesPournaras, S., Koumaki, V., Spanakis, N., Gennimata, V., & Tsakris, A. (2016). Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. International Journal of Antimicrobial Agents, 48(1), 11–18. https://doi.org/10.1016/j.ijantimicag.2016.04.017spa
dc.relation.referencesPuértolas-Balint, F., Warsi, O., Linkevicius, M., Tang, P. C., & Andersson, D. I. (2020). Mutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. Journal of Antimicrobial Chemotherapy, 75(2), 300–308. https://doi.org/10.1093/jac/dkz434spa
dc.relation.referencesRamirez, L. S., & Marin Castaño, D. (2009). METODOLOGIAS PARA EVALUAR IN VITRO LA ACTIVIDAD ANTIBACTERIANA DE COMPUESTOS DE ORIGEN VEGETAL Methodologies for evaluating the In vitro antibacterial activity of natural compounds of plant origin. Scientia et Technica, 42, 263–268.spa
dc.relation.referencesRamón, J., Anaya, M., & Química, M. S. (2006). MANUAL DE TÉCNICAS BÁSICAS EN BIOLOGÍA MOLECULAR.spa
dc.relation.referencesRedgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. V. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22(8), 438–445. https://doi.org/10.1016/j.tim.2014.04.007spa
dc.relation.referencesRizzo, R., Fiannaca, A., La Rosa, M., & Urso, A. (2016). A Deep Learning Approach to DNA Sequence Classification (pp. 129–140). Springer, Cham. https://doi.org/10.1007/978-3-319-44332-4_10spa
dc.relation.referencesRoberts, L. W., Catchpoole, E., Jennison, A. V., Bergh, H., Hume, A., Heney, C., George, N., Paterson, D. L., Schembri, M. A., Beatson, S. A., & Harris, P. N. A. (2020). Genomic analysis of carbapenemase-producing enterobacteriaceae in queensland reveals widespread transmission of blaimp-4 on an incHI2 plasmid. Microbial Genomics, 6(1). https://doi.org/10.1099/mgen.0.000321spa
dc.relation.referencesSaad, N., Munir, T., Ansari, M., Gilani, M., Latif, M., & Haroon, A. (2016). Introduction Evaluation of phenotypic tests for detection of Amp C beta-lactamases in clinical isolates from a tertiary care hospital of Rawalpindi, Pakistan (Vol. 66, Issue 6).spa
dc.relation.referencesSaavedra-Rojas, S.-Y., Duarte-Valderrama, C., González-de-Arias, M.-N., & Ovalle- Guerro, M. V. (2013). Emergence of Providencia rettgeri NDM-1 in two departments of Colombia, 2012-2013. Enfermedades Infecciosas y Microbiologia Clinica, 35(6), doi:10.1016/j.eimc.2015.05.011. https://doi.org/10.1016/j.eimc.2015.05.011spa
dc.relation.referencesSagar, S., Narasimhaswamy, N., & D’Souza, J. (2017). Providencia Rettgeri: An Emerging Nosocomial Uropathogen in an Indwelling Urinary Catheterised Patient. Journal of Clinical and Diagnostic Research : JCDR, 11(6), DD01–DD02. https://doi.org/10.7860/JCDR/2017/25740.10026spa
dc.relation.referencesSagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm.1249spa
dc.relation.referencesSagiroglu, S., & Sinanc, D. (2013). Big data: A review. Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, 42–47. https://doi.org/10.1109/CTS.2013.6567202spa
dc.relation.referencesSchneiders, T., Amyes, S. G. B., & Levy, S. B. (2003). Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore. Antimicrobial Agents and Chemotherapy, 47(9).spa
dc.relation.referencesSchrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. Trends in Genetics, 34(4), 301–312. https://doi.org/10.1016/J.TIG.2017.12.005spa
dc.relation.referencesSchürch, A. C., & van Schaik, W. (2017). Challenges and opportunities for whole-genome sequencing–based surveillance of antibiotic resistance. Annals of the New York Academy of Sciences, 1388(1), 108–120. https://doi.org/10.1111/nyas.13310spa
dc.relation.referencesSharff, A., Fanutti, C., Shi, J., Calladine, C., & Luisi, B. (2001). The role of the TolC family in protein transport and multidrug efflux from stereochemical certainty to mechanistic hypothesis. In European Journal of Biochemistry (Vol. 268, Issue 19, pp. 5011– 5026). Eur J Biochem. https://doi.org/10.1046/j.0014-2956.2001.02442.xspa
dc.relation.referencesSharma, D., Sharma, P., & Soni, P. (2017). First case report of Providencia Rettgeri neonatal sepsis. BMC Research Notes, 10(1), 17–20. https://doi.org/10.1186/s13104-017-2866-4spa
dc.relation.referencesShin, S., Jeong, S. H., Lee, H., Hong, J. S., Park, M. J., & Song, W. (2018). Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum β-lactamase causing a first outbreak in Korea. Annals of Clinical Microbiology and Antimicrobials, 17(1), 1–6. https://doi.org/10.1186/s12941-018-0272-yspa
dc.relation.referencesSidjabat, H. E., Townell, N., Nimmo, G. R., George, N. M., Robson, J., Vohra, R., Davis, L., Heney, C., & Patersona, D. L. (2015). Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia. Antimicrobial Agents and Chemotherapy, 59(7), 4059–4066. https://doi.org/10.1128/AAC.04378-14spa
dc.relation.referencesSingh, A., Thakur, N., & Sharma, A. (2016). A review of supervised Machine Learning algorithms. Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, 1310–1315.spa
dc.relation.referencesSingh, H., Velamakanni, S., Deery, M. J., Howard, J., Wei, S. L., & Van Veen, H. W. (2016). ATP-dependent substrate transport by the ABC transporter MsbA is proton- coupled. Nature Communications, 7. https://doi.org/10.1038/ncomms12387spa
dc.relation.referencesSommer, C., & Gerlich, D. W. (2013). Machine Learning in cell biology – teaching computers to recognize phenotypes. Journal of Cell Science, 126(24), 5529–5539. https://doi.org/10.1242/JCS.123604spa
dc.relation.referencesSpellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H. W., Scheld, W. M., Bartlett, J. G., & Edwards, J. (2008). The epidemic of antibiotic-resistant infections: A call to action for the medical community from the infectious diseases society of America. In Clinical Infectious Diseases (Vol. 46, Issue 2, pp. 155–164). https://doi.org/10.1086/524891spa
dc.relation.referencesSrinivasan, V. B., & Rajamohan, G. (2013). KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 57(9), 4449–4462. https://doi.org/10.1128/AAC.02284-12spa
dc.relation.referencesSrinivasan, V. B., Singh, B. B., Priyadarshi, N., Chauhan, N. K., & Rajamohan, G. (2014). Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0096288spa
dc.relation.referencesTafur, D., & Villegas, V. (2008). Mecanismos de resistencia a los antibióticos en bacterias Gram negativas. Infectio, 12(3), 217–226. https://doi.org/http://www.sld.cu/galerias/pdf/sitios/apua- cuba/mecanismos_de_resistencia_a_los_antibioticos_en_bacterias_gram_negativas .pdfspa
dc.relation.referencesTamara, N. Q., Esthela, T. M., Pamela, C. S., Jenniffer, H. L., & Pablo, S. R. (2020). Journal of Medical Case Reports and Reviews 3:8 [2020] CARBAPENEMASE- PRODUCING ENTEROBACTERIACEAE IN PATIENTS OF A THIRD LEVEL HOSPITAL IN THE CITY OF GUAYAQUIL-ECUADOR. Journal of Medical Case Reports and Reviews, 3(08). www.jmcrr.infospa
dc.relation.referencesTatarinova, T. V, Editors, Y. N., Raschka, S., Verdier, C. F. J. E. S. O., Hearty, J., Huffman, J., & Pajankar, A. (2000). Python 机器学习. In Astronomical Data Analysis Software and Systems IX (Vol. 216).spa
dc.relation.referencesThe Comprehensive Antibiotic Resistance Database. (n.d.). Retrieved March 27, 2021, from https://card.mcmaster.ca/spa
dc.relation.referencesTorres, E., López-Cerero, L., Rodríguez-Martínez, J. M., & Pascual, Á. (2016). Reduced Susceptibility to Cefepime in Clinical Isolates of Enterobacteriaceae Producing OXA- 1 Beta-Lactamase. Microbial Drug Resistance, 22(2), 141–146. https://doi.org/10.1089/mdr.2015.0122spa
dc.relation.referencesTshisevhe, V. S., Lekalakala, M. R., Tshuma, N., Janse van Rensburg, S., & Mbelle, N. (2016). Outbreak of carbapenem-resistant Providencia rettgeri in a tertiary hospital. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 107(1), 31–33. https://doi.org/10.7196/SAMJ.2016.v107.i1.12002spa
dc.relation.referencesVan Camp, P.-J., Haslam, D. B., & Porollo, A. (2020). Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. Frontiers in Microbiology, 11, 1013. https://doi.org/10.3389/fmicb.2020.01013spa
dc.relation.referencesvan Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. In Virulence (Vol. 8, Issue 4, pp. 460–469). Taylor and Francis Inc. https://doi.org/10.1080/21505594.2016.1222343spa
dc.relation.referencesVB, S., & G, R. (2013). KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad- spectrum antimicrobial resistance. Antimicrobial Agents and Chemotherapy, 57(9), 4449–4462. https://doi.org/10.1128/AAC.02284-12spa
dc.relation.referencesVillalobos, A. P., Barrero, L. I., Rivera, S. M., Ovalle, M. V., & Valera, D. (2013). Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica, 34(0), 67. https://doi.org/10.7705/biomedica.v34i0.1698spa
dc.relation.referencesViviana, L., & Su, R. (2019). Caracterización de perfiles de elementos genéticos plasmídicos de aislamientos colombianos de Providencia rettgeri, causantes de IAAS. Obtenidos del Instituto Nacional de Salud, durante el periodo 2015-2016.spa
dc.relation.referencesWeinstein, M. P., Patel, J. B., Bobenchik, A. M., Campeau, S., Cullen, S. K., Galas, M. F., Gold, H., Humphries, R. M., Kirn, T. J., Lewis Ii, J. S., Limbago, B., Mathers, A. J., Mazzulli, T., Richter, S. S., Satlin, M., Schuetz, A. N., Swenson, J. M., Tamma, P. D., & Simner, P. J. (2020). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. Performance Standards for Antimicrobial Susceptibility Testing Performance Standards for Antimicrobial Susceptibility Testing.spa
dc.relation.referencesWeiss, S. J., Mansell, T. J., Mortazavi, P., Knight, R., & Gill, R. T. (2016). Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli. PLOS ONE, 11(1), e0146916. https://doi.org/10.1371/journal.pone.0146916spa
dc.relation.referencesWelcome to Python.org. (n.d.). Retrieved March 27, 2021, from https://www.python.org/spa
dc.relation.referencesWeston, N., Sharma, P., Ricci, V., & Piddock, L. J. V. (2017). Regulation of the AcrAB- TolC efflux pump in Enterobacteriaceae. Research in Microbiology, 1–7. https://doi.org/10.1016/j.resmic.2017.10.005spa
dc.relation.referencesWeston, N., Sharma, P., Ricci, V., & Piddock, L. J. V. (2018). Regulation of the AcrAB- TolC efflux pump in Enterobacteriaceae. Research in Microbiology, 169(7–8), 425– 431. https://doi.org/10.1016/j.resmic.2017.10.005spa
dc.relation.referencesWHO | Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. (2017). WHO.spa
dc.relation.referencesWu, L. T., Tsou, M. F., Wu, H. J., Chen, H. E., Chuang, Y. C., & Yu, W. L. (2004). Survey of CTX-M-3 extended-spectrum β-lactamase (ESBL) among cefotaxime-resistant Serratia marcescens at a medical center in middle Taiwan. Diagnostic Microbiology and Infectious Disease, 49(2), 125–129. https://doi.org/10.1016/j.diagmicrobio.2004.02.004spa
dc.relation.referencesYang, Y., Niehaus, K. E., Walker, T. M., Iqbal, Z., Walker, A. S., Wilson, D. J., Peto, T. E. A., Crook, D. W., Smith, E. G., Zhu, T., & Clifton, D. A. (2018). Machine Learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics, 34(10), 1666–1671. https://doi.org/10.1093/bioinformatics/btx801spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)
dc.subject.lembAnti-Bacterial Agents
dc.subject.otherAntibacterianos
dc.subject.proposalResistencia antimicrobianaspa
dc.subject.proposalMachine Learningeng
dc.subject.proposalWGSother
dc.subject.proposalProvidencia rettgerieng
dc.subject.proposalRegresión logísticaspa
dc.subject.proposalSupport Vector Machineeng
dc.subject.proposalAntimicrobial resistanceeng
dc.subject.proposalLogistic Regressioneng
dc.subject.proposalRandom Foresteng
dc.titlePredicción del perfil de resistencia a antibióticos a partir de datos de secuenciación del genoma completo de aislamientos colombianos de Providencia rettgeri comprendidos en el período 2015 – 2016spa
dc.title.translatedPrediction of the resistance profile to antibiotics based on whole genome sequencing data of Colombian isolates of Providencia rettgeri during the period 2015 – 2016eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
0104797576.2022.pdf
Tamaño:
5.37 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: