Evaluación del efecto de extractos de plantas (familias lauraceae y rutaceae) con potencial agonista de receptores nucleares LXR sobre diversos cambios celulares, moleculares y transcripcionales en modelos de enfermedad de Alzheimer

dc.contributor.advisorArboleda Bustos, Gonzalo
dc.contributor.advisorSandoval Hernández, Adrián
dc.contributor.authorMuñoz Cabrera, Jonathan Mauricio
dc.contributor.googlescholarMuñoz Cabrera, Jonathan Mauricio [1jRrqWQAAAAJ&hl]
dc.contributor.orcidMuñoz Cabrera, Jonathan Mauricio [0000000277738914]
dc.contributor.researchgroupGrupo de Neurociencias-Universidad Nacional de Colombia
dc.contributor.researchgroupMuerte Celular
dc.date.accessioned2025-09-15T16:00:01Z
dc.date.available2025-09-15T16:00:01Z
dc.date.issued2025-09-11
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa enfermedad de Alzheimer (EA), principal causa de demencia y amenaza sanitaria creciente se caracteriza por la acumulación de β‑amiloide (Aβ), la tauopatía y una neuroinflamación glial que deterioran la plasticidad sináptica y la memoria. Dado que los receptores X hepáticos (LXR) coordinan el metabolismo lipídico y suprimen la vía NF‑κB, la búsqueda de agonistas naturales de LXR representa una estrategia terapéutica atractiva. Este proyecto evaluó dos extractos vegetales, NR (Lauraceae) y ZM (Rutaceae), como agonistas multitarget de LXR, examinando su impacto conductual, histopatológico, celular y transcriptómico en ratones triple transgénicos para la Enfermedad de Alzheimer (3xTg‑EA) y en cultivos de neuronas hipocampales. La administración crónica de los extractos disminuyó de forma sustancial la carga de placas amiloides y ovillos de Tau, atenuó la reactividad microglial y astrocítica, y restauró la complejidad dendrítica y la estabilidad del calcio intracelular; estos cambios devolvieron el rendimiento en pruebas de memoria espacial a niveles comparables con los animales sanos. A escala molecular, el análisis transcriptómico reveló una reprogramación pan‑celular que favoreció el eflujo de colesterol, la proteostasis, la bioenergética mitocondrial y la expresión de componentes sinápticos, mientras que en cultivos neuronales los extractos preservaron la viabilidad y la morfología frente a la toxicidad de oligómeros Aβ. En conjunto, los resultados muestran que NR y ZM activan LXR para sincronizar metabolismo lipídico, proteostasis, bioenergética e inmunomodulación, mitigando integralmente la patología amiloide‑tau, la neuroinflamación y la disfunción sináptica, y restaurando la cognición; por ello, ambos extractos emergen como candidatos prometedores para terapias naturales contra la EA. (Texto tomado de la fuente)spa
dc.description.abstractAlzheimer’s disease (AD)—the leading cause of dementia and a mounting global health threat projected to escalate by 2050—is characterized by β‑amyloid (Aβ) deposition, tauopathy and glial‑driven neuroinflammation, all of which undermine synaptic plasticity and memory. Because liver X receptors (LXRs) orchestrate lipid metabolism and repress NF‑κB signaling, identifying natural LXR agonists constitutes an appealing therapeutic avenue. This study assessed two plant extracts, NR (Lauraceae) and ZM (Rutaceae), as multitarget LXR agonists, analyzing their behavioral, histopathological, cellular and transcriptomic effects in triple‑transgenic Alzheimer’s mice (3xTg‑AD) and in primary hippocampal neuron cultures. Chronic administration of the extracts markedly reduced amyloid plaque burden and tau tangles, attenuated microglial and astrocytic reactivity, and restored dendritic complexity and intracellular Ca²⁺ stability, thereby normalizing spatial‑memory performance to levels comparable with non‑transgenic controls. Transcriptomic profiling revealed a pan‑cellular reprogramming that enhanced cholesterol efflux, proteostasis, mitochondrial bioenergetics and synaptic gene expression, while in vitro the extracts preserved neuronal viability and morphology against Aβ oligomer toxicity. Collectively, the data indicate that NR and ZM activate LXRs to synchronize lipid metabolism, proteostasis, bioenergetics and immunomodulation, thereby comprehensively mitigating amyloid–tau pathology, neuroinflammation and synaptic dysfunction, and restoring cognition. These findings position both extracts as promising natural candidates for AD therapy.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor En ciencias Biomédicas
dc.description.researchareaFisiología de las enfermedades neurodegenerativas
dc.format.extentxx, 246 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88759
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicas
dc.relation.references2023 Alzheimer’s disease facts and figures. (2023). Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 19(4), 1598–1695. https://doi.org/10.1002/ALZ.13016
dc.relation.referencesAbbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13–25. https://doi.org/10.1016/j.nbd.2009.07.030
dc.relation.referencesAfsar, A., Chacon Castro, M. del C., Soladogun, A. S., & Zhang, L. (2023). Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer’s Disease. International Journal of Molecular Sciences, 24(8). https://doi.org/10.3390/ijms24087258
dc.relation.referencesAkiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S. T., Hampel, H., Hull, M., Landreth, G., Lue, L. F., Mrak, R., MacKenzie, I. R., … Wyss-Coray, T. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421. https://doi.org/10.1016/S0197-4580(00)00124-X
dc.relation.referencesAlonso, A. D. C., Zaidi, T., Novak, M., Grundke-Iqbal, I., & Iqbal, K. (2001). Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6923–6928. https://doi.org/10.1073/pnas.121119298
dc.relation.referencesAnders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England), 31(2), 166–169. https://doi.org/10.1093/BIOINFORMATICS/BTU638
dc.relation.referencesAndreadis, A. (2006). Misregulation of tau alternative splicing in neurodegeneration and dementia. En Progress in molecular and subcellular biology (Vol. 44). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34449-0_5
dc.relation.referencesArbor, S. C., Lafontaine, M., & Cumbay, M. (2016). Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores. Yale Journal of Biology and Medicine, 89(1), 5–21.
dc.relation.referencesArendt, T., Stieler, J. T., & Holzer, M. (2016). Tau and tauopathies. Brain Research Bulletin, 126, 238–292. https://doi.org/10.1016/J.BRAINRESBULL.2016.08.018
dc.relation.referencesArnsten, A. F. T., Datta, D., Del Tredici, K., & Braak, H. (2021). Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 17(1), 115–124. https://doi.org/10.1002/ALZ.12192
dc.relation.referencesArranz, A. M., & De Strooper, B. (2019). The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. The Lancet Neurology, 18(4), 406–414. https://doi.org/10.1016/S1474-4422(18)30490-3
dc.relation.referencesArshavsky, Y. I. (2020). Alzheimer’s Disease: From Amyloid to Autoimmune Hypothesis. Neuroscientist, 26(5–6), 455–470. https://doi.org/10.1177/1073858420908189
dc.relation.referencesAshburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics, 25(1), 25–29. https://doi.org/10.1038/75556
dc.relation.referencesAtta-ur-Rahman, & Choudhary, M. I. (2001). Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure and Applied Chemistry, 73(3), 555–560. https://doi.org/10.1351/pac200173030555
dc.relation.referencesBachmeier, C., Paris, D., Beaulieu-Abdelahad, D., Mouzon, B., Mullan, M., & Crawford, F. (2012). A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier. Neurodegenerative Diseases, 11(1), 13–21. https://doi.org/10.1159/000337231
dc.relation.referencesBáez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569–579. https://doi.org/10.1007/s12640-017-9845-3
dc.relation.referencesBain, D. L., Heneghan, A. F., Connaghan-Jones, K. D., & Miura, M. T. (2007). Nuclear Receptor Structure: Implications for Function. Annual Review of Physiology, 69(1), 201–220. https://doi.org/10.1146/annurev.physiol.69.031905.160308
dc.relation.referencesBakota, L., & Brandt, R. (2016). Tau Biology and Tau-Directed Therapies for Alzheimer’s Disease. Drugs, 76(3), 301–313. https://doi.org/10.1007/s40265-015-0529-0
dc.relation.referencesBaranello, R., Bharani, K., Padmaraju, V., Chopra, N., Lahiri, D., Greig, N., Pappolla, M., & Sambamurti, K. (2015). Amyloid-Beta Protein Clearance and Degradation (ABCD) Pathways and their Role in Alzheimer’s Disease. Current Alzheimer Research, 12(1), 32–46. https://doi.org/10.2174/1567205012666141218140953
dc.relation.referencesBarghorn, S., & Mandelkow, E. (2002). Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry, 41(50), 14885–14896. https://doi.org/10.1021/bi026469j
dc.relation.referencesBastias-Candia, S., Garrido A., N., M. Zolezzi, J., & C. Inestrosa, N. (2016). Recent Advances in Neuroinflammation Therapeutics: PPARs/LXR as Neuroinflammatory Modulators. Current pharmaceutical design, 22(10), 1312–1323. https://doi.org/10.2174/1381612822666151223103038
dc.relation.referencesBayer, T. A., Cappai, R., Masters, C. L., Beyreuther, K., & Multhaup, G. (1999). It all sticks together - The APP-related family of proteins and Alzheimer’s disease. En Molecular Psychiatry (Vol. 4, Número 6, pp. 524–528). Nature Publishing Group. https://doi.org/10.1038/sj.mp.4000552
dc.relation.referencesBelfiore, R., Rodin, A., Ferreira, E., Velazquez, R., Branca, C., Caccamo, A., & Oddo, S. (2019). Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell, 18(1), e12873. https://doi.org/10.1111/ACEL.12873
dc.relation.referencesBloom, G. S. (2014). Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology, 71(4), 505–508. https://doi.org/10.1001/jamaneurol.2013.5847
dc.relation.referencesBobba, A., Amadoro, G., Valenti, D., Corsetti, V., Lassandro, R., & Atlante, A. (2013). Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion, 13(4), 298–311. https://doi.org/10.1016/j.mito.2013.03.008
dc.relation.referencesBode, D. C., Baker, M. D., & Viles, J. H. (2017). Ion channel formation by amyloid-β42 oligomers but not amyloid-β40 in cellular membranes. Journal of Biological Chemistry, 292(4), 144–1413. https://doi.org/10.1074/jbc.M116.762526
dc.relation.referencesBode, D. C., Freeley, M., Nield, J., Palma, M., & Viles, J. H. (2019). Amyloid-β oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy. Journal of Biological Chemistry, 294(19), 7566–7572. https://doi.org/10.1074/jbc.AC118.007195
dc.relation.referencesBookout, A. L., Jeong, Y., Downes, M., Yu, R. T., Evans, R. M., & Mangelsdorf, D. J. (2006). Anatomical Profiling of Nuclear Receptor Expression Reveals a Hierarchical Transcriptional Network. Cell, 126(4), 789–799. https://doi.org/10.1016/j.cell.2006.06.049
dc.relation.referencesBordji, K., Becerril-Ortega, J., & Buisson, A. (2011). Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Reviews in the Neurosciences, 22(3), 285–294. https://doi.org/10.1515/RNS.2011.029
dc.relation.referencesBraak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. En Acta Neuropathologica (Vol. 82, Número 4, pp. 239–259). Springer-Verlag. https://doi.org/10.1007/BF00308809
dc.relation.referencesBray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature biotechnology, 34(5), 525–527. https://doi.org/10.1038/NBT.3519
dc.relation.referencesBromley-Brits, K., Deng, Y., & Song, W. (2011). Morris Water Maze test for learning and memory deficits in Alzheimer’s disease model mice. Journal of Visualized Experiments, 53, 2–6. https://doi.org/10.3791/2920
dc.relation.referencesBrunden, K. R., Zhang, B., Carroll, J., Yao, Y., Potuzak, J. S., Hogan, A. M. L., Iba, M., James, M. J., Xie, S. X., Ballatore, C., Smith, A. B., Lee, V. M. Y., & Trojanowski, J. Q. (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. Journal of Neuroscience, 30(41), 13861–13866. https://doi.org/10.1523/JNEUROSCI.3059-10.2010
dc.relation.referencesBukhari, H., Glotzbach, A., Kolbe, K., Leonhardt, G., Loosse, C., & Müller, T. (2017). Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Progress in neurobiology, 156, 189–213. https://doi.org/10.1016/J.PNEUROBIO.2017.05.005
dc.relation.referencesBusche, M. A., & Hyman, B. T. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nature Neuroscience, 23(10), 1183–1193. https://doi.org/10.1038/s41593-020-0687-6
dc.relation.referencesBustos-Rangel, A., Muñoz-Cabrera, J., Cuca, L., Arboleda, G., Ávila Murillo, M., & Sandoval-Hernández, A. G. (2023). Neuroprotective and antioxidant activities of Colombian plants against paraquat and C2-ceramide exposure in SH-SY5Y cells. Frontiers in Natural Products, 2. https://doi.org/10.3389/FNTPR.2023.1169182
dc.relation.referencesButterfield, S. M., & Lashuel, H. A. (2010). Amyloidogenic protein-membrane interactions: Mechanistic insight from model systems. En Angewandte Chemie - International Edition (Vol. 49, Número 33, pp. 5628–5654). Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.200906670
dc.relation.referencesBuzsáki, G. (2002). Theta oscillations in the hippocampus. En Neuron (Vol. 33, Número 3, pp. 325–340). Cell Press. https://doi.org/10.1016/S0896-6273(02)00586-X
dc.relation.referencesCameron, B., & Landreth, G. E. (2010). Inflammation, microglia, and alzheimer’s disease. En Neurobiology of Disease (Vol. 37, Número 3, pp. 503–509). Neurobiol Dis. https://doi.org/10.1016/j.nbd.2009.10.006
dc.relation.referencesCao, H., Li, M. Y., Li, G., Li, S. J., Wen, B., Lu, Y., & Yu, X. (2020). Retinoid X Receptor α Regulates DHA-Dependent Spinogenesis and Functional Synapse Formation In Vivo. Cell reports, 31(7), 107649. https://doi.org/10.1016/j.celrep.2020.107649
dc.relation.referencesCarbon, S., Douglass, E., Dunn, N., Good, B., Harris, N. L., Lewis, S. E., Mungall, C. J., Basu, S., Chisholm, R. L., Dodson, R. J., Hartline, E., Fey, P., Thomas, P. D., Albou, L. P., Ebert, D., Kesling, M. J., Mi, H., Muruganujan, A., Huang, X., … Westerfield, M. (2019). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic acids research, 47(D1), D330–D338. https://doi.org/10.1093/NAR/GKY1055
dc.relation.referencesChai, E., Chen, Z., Mou, Y., Thakur, G., Zhan, W., & Li, X. J. (2023). Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking. Neurobiology of disease, 187. https://doi.org/10.1016/J.NBD.2023.106293
dc.relation.referencesChang, E. H., Savage, M. J., Flood, D. G., Thomas, J. M., Levy, R. B., Mahadomrongkul, V., Shirao, T., Aoki, C., & Huerta, P. T. (2006). AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3410–3415. https://doi.org/10.1073/pnas.0507313103
dc.relation.referencesChapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., Younkin, L., Good, M. A., Bliss, T. V. P., Hyman, B. T., Younkin, S. G., & Hsiao, K. K. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neuroscience, 2(3), 271–276. https://doi.org/10.1038/6374
dc.relation.referencesChauhan, P., Jethwa, K., Rathawa, A., Chauhan, G., & Mehra, S. (2021). The Anatomy of the Hippocampus. Cerebral Ischemia, 17–30. https://doi.org/10.36255/EXONPUBLICATIONS.CEREBRALISCHEMIA.2021.HIPPOCAMPUS
dc.relation.referencesChawta, A., Repa, J. J., Evans, R. M., & Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: Opening the x-files. Science, 294(5548), 1866–1870. https://doi.org/10.1126/science.294.5548.1866
dc.relation.referencesCheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14, 450–464. https://doi.org/10.1016/J.REDOX.2017.10.014/OXIDATIVE_STRESS_AND_THE_AMYLOID_BETA_PEPTIDE_IN_ALZHEIMER_S_DISEASE.PDF
dc.relation.referencesChen, C., Wang, J., Pan, D., Wang, X., Xu, Y., Yan, J., Wang, L., Yang, X., Yang, M., & Liu, G. P. (2023). Applications of multi-omics analysis in human diseases. MedComm, 4(4). https://doi.org/10.1002/MCO2.315
dc.relation.referencesChen, Y., Strickland, M. R., Soranno, A., & Holtzman, D. M. (2021). Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis. Neuron, 109(2), 205–221. https://doi.org/10.1016/J.NEURON.2020.10.008
dc.relation.referencesCho, D. H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., & Lipton, S. A. (2009). β-Amyloid-related mitochondrial fission and neuronal injury. Science, 324(5923), 102–105. https://doi.org/10.1126/science.1171091
dc.relation.referencesChow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. En Neuromolecular medicine (Vol. 12, Número 1, pp. 1–12). NIH Public Access. https://doi.org/10.1007/s12017-009-8104-z
dc.relation.referencesCizas, P., Budvytyte, R., Morkuniene, R., Moldovan, R., Broccio, M., Lösche, M., Niaura, G., Valincius, G., & Borutaite, V. (2010). Size-dependent neurotoxicity of β-amyloid oligomers. Archives of Biochemistry and Biophysics, 496(2), 84–92. https://doi.org/10.1016/j.abb.2010.02.001
dc.relation.referencesClavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., & Tolnay, M. (2009). Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biology, 11(7), 909–913. https://doi.org/10.1038/ncb1901
dc.relation.referencesCline, E. N., Bicca, M. A., Viola, K. L., & Klein, W. L. (2018). The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. Journal of Alzheimer’s Disease, 64(s1), S567–S610. https://doi.org/10.3233/JAD-179941
dc.relation.referencesCockerill, I., Oliver, J. A., Xu, H., Fu, B. M., & Zhu, D. (2018). Blood-brain barrier integrity and clearance of amyloid-β from the BBB. En Advances in Experimental Medicine and Biology (Vol. 1097, pp. 261–278). https://doi.org/10.1007/978-3-319-96445-4_14
dc.relation.referencesCongdon, E. E., Gu, J., Sait, H. B. R., & Sigurdsson, E. M. (2013). Antibody uptake into neurons occurs primarily via clathrin-dependent Fcα receptor endocytosis and is a prerequisite for acute tau protein clearance. Journal of Biological Chemistry, 288(49), 35452–35465. https://doi.org/10.1074/jbc.M113.491001
dc.relation.referencesCongdon, E. E., & Sigurdsson, E. M. (2018). Tau-targeting therapies for Alzheimer disease. Nature Reviews Neurology, 14(7), 399–415. https://doi.org/10.1038/s41582-018-0013-z
dc.relation.referencesCorder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923. https://doi.org/10.1126/science.8346443
dc.relation.referencesCosta-Silva, J., Domingues, D., & Lopes, F. M. (2017). RNA-Seq differential expression analysis: An extended review and a software tool. PloS one, 12(12). https://doi.org/10.1371/JOURNAL.PONE.0190152
dc.relation.referencesCourtney, R., & Landreth, G. E. (2016). LXR Regulation of Brain Cholesterol: From Development to Disease. Trends in Endocrinology and Metabolism, 27(6), 404–414. https://doi.org/10.1016/j.tem.2016.03.018
dc.relation.referencesCramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y. D., Karlo, J. C., Zinn, A. E., Casali, B. T., Restivo, J. L., Goebel, W. D., James, M. J., Brunden, K. R., Wilson, D. A., & Landreth, G. E. (2012). ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science, 335(6075), 1503–1506. https://doi.org/10.1126/science.1217697
dc.relation.referencesCui, W., Sun, Y., Wang, Z., Xu, C., Xu, L., Wang, F., Chen, Z., Peng, Y., & Li, R. (2011). Activation of liver X receptor decreases BACE1 expression and activity by reducing membrane cholesterol levels. Neurochemical research, 36(10), 1910–1921. https://doi.org/10.1007/S11064-011-0513-3
dc.relation.referencesDavis, K. E., Fox, S., & Gigg, J. (2014). Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer’s disease in vivo. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091203
dc.relation.referencesde Flores, R., La Joie, R., & Chételat, G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience, 309, 29–50. https://doi.org/10.1016/J.NEUROSCIENCE.2015.08.033
dc.relation.referencesDeane, R., Bell, R., Sagare, A., & Zlokovic, B. (2009). Clearance of Amyloid-beta Peptide Across the Blood-Brain Barrier: Implication for Therapies in Alzheimers Disease. CNS & Neurological Disorders - Drug Targets, 8(1), 16–30. https://doi.org/10.2174/187152709787601867
dc.relation.referencesDekeyzer, S., De Kock, I., Nikoubashman, O., Vanden Bossche, S., Van Eetvelde, R., De Groote, J., Acou, M., Wiesmann, M., Deblaere, K., & Achten, E. (2017). “Unforgettable” - a pictorial essay on anatomy and pathology of the hippocampus. Insights into imaging, 8(2), 199–212. https://doi.org/10.1007/S13244-016-0541-2
dc.relation.referencesDeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., Harmony, J. A. K., Aronow, B. J., Bales, K. R., Paul, S. M., & Holtzman, D. M. (2004). ApoE and Clusterin Cooperatively Suppress Aβ Levels and Deposition: Evidence that ApoE Regulates Extracellular Aβ Metabolism In Vivo. Neuron, 41(2), 193–202. https://doi.org/10.1016/S0896-6273(03)00850-X
dc.relation.referencesDeVos, S. L., Goncharoff, D. K., Chen, G., Kebodeaux, C. S., Yamada, K., Stewart, F. R., Schuler, D. R., Maloney, S. E., Wozniak, D. F., Rigo, F., Bennett, C. F., Cirrito, J. R., Holtzman, D. M., & Miller, T. M. (2013). Antisense reduction of tau in adult mice protects against seizures. Journal of Neuroscience, 33(31), 12887–12897. https://doi.org/10.1523/JNEUROSCI.2107-13.2013
dc.relation.referencesD’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60–90. https://doi.org/10.1016/S0165-0173(01)00067-4
dc.relation.referencesDietschy, J. M., & Turley, S. D. (2001). Cholesterol metabolism in the brain. En Current Opinion in Lipidology (Vol. 12, Número 2, pp. 105–112). Curr Opin Lipidol. https://doi.org/10.1097/00041433-200104000-00003
dc.relation.referencesDixit, R., Ross, J. L., Goldman, Y. E., & Holzbaur, E. L. F. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866), 1086–1089. https://doi.org/10.1126/science.1152993
dc.relation.referencesDorval, V., & Fraser, P. E. (2006). Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. Journal of Biological Chemistry, 281(15), 9919–9924. https://doi.org/10.1074/jbc.M510127200
dc.relation.referencesDuyckaerts, C., Clavaguera, F., & Potier, M. C. (2019). The prion-like propagation hypothesis in Alzheimer’s and Parkinson’s disease. Current Opinion in Neurology, 32(2), 266–271. https://doi.org/10.1097/WCO.0000000000000672
dc.relation.referencesEcheverria, P. C., & Picard Didier, D. (2010). Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. En Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1803, Número 6, pp. 641–649). Biochim Biophys Acta. https://doi.org/10.1016/j.bbamcr.2009.11.012
dc.relation.referencesEichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732–744. https://doi.org/10.1038/nrn3827
dc.relation.referencesEndo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., Gradinaru, V., Kawaguchi, R., & Khakh, B. S. (2022). Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science (New York, N.Y.), 378(6619). https://doi.org/10.1126/SCIENCE.ADC9020
dc.relation.referencesFa, M., Orozco, I. J., Francis, Y. I., Saeed, F., Gong, Y., & Arancio, O. (2010). Preparation of Oligomeric β-amyloid1-42 and Induction of Synaptic Plasticity Impairment on Hippocampal Slices. Journal of Visualized Experiments : JoVE, 41, 1884. https://doi.org/10.3791/1884
dc.relation.referencesFan, X., Xia, L., Zhou, Z., Qiu, Y., Zhao, C., Yin, X., & Qian, W. (2022). Tau Acts in Concert With Kinase/Phosphatase Underlying Synaptic Dysfunction. Frontiers in aging neuroscience, 14. https://doi.org/10.3389/FNAGI.2022.908881
dc.relation.referencesFarhy-Tselnicker, I., & Allen, N. J. (2018). Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural development, 13(1). https://doi.org/10.1186/S13064-018-0104-Y
dc.relation.referencesFernández-Calle, R., Konings, S. C., Frontiñán-Rubio, J., García-Revilla, J., Camprubí-Ferrer, L., Svensson, M., Martinson, I., Boza-Serrano, A., Venero, J. L., Nielsen, H. M., Gouras, G. K., & Deierborg, T. (2022). APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases. Molecular Neurodegeneration 2022 17:1, 17(1), 1–47. https://doi.org/10.1186/S13024-022-00566-4
dc.relation.referencesFerreira, T. A., Blackman, A. V., Oyrer, J., Jayabal, S., Chung, A. J., Watt, A. J., Sjöström, P. J., & Van Meyel, D. J. (2014). Neuronal morphometry directly from bitmap images. Nature Methods 2014 11:10, 11(10), 982–984. https://doi.org/10.1038/nmeth.3125
dc.relation.referencesFitz, N. F., Cronican, A. A., Lefterov, I., & Koldamova, R. (2013). Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science, 340(6135). https://doi.org/10.1126/science.1235809
dc.relation.referencesFitz, N. F., Nam, K. N., Koldamova, R., & Lefterov, I. (2019). Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for Alzheimer’s disease. British Journal of Pharmacology, 176(18), 3599–3610. https://doi.org/10.1111/bph.14668
dc.relation.referencesFlöck, D., Colacino, S., Colombo, G., & Di Nola, A. (2006). Misfolding of the amyloid β-protein: A molecular dynamics study. Proteins: Structure, Function and Genetics, 62(1), 183–192. https://doi.org/10.1002/prot.20683
dc.relation.referencesFouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J. M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity—Structure-function relationship analysis. Journal of Steroid Biochemistry and Molecular Biology, 190, 173–182. https://doi.org/10.1016/j.jsbmb.2019.03.028
dc.relation.referencesFröhlich, F., & Fröhlich, F. (2016). Chapter 4 – Synaptic Plasticity. Network Neuroscience, 47–58. https://doi.org/10.1016/B978-0-12-801560-5.00004-5
dc.relation.referencesFryer, J. D., Taylor, J. W., DeMattos, R. B., Bales, K. R., Paul, S. M., Parsadanian, M., & Holtzman, D. M. (2003). Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. Journal of Neuroscience, 23(21), 7889–7896. https://doi.org/10.1523/jneurosci.23-21-07889.2003
dc.relation.referencesFurman, J. L., Sama, D. M., Gant, J. C., Beckett, T. L., Murphy, M. P., Bachstetter, A. D., van Eldik, L. J., & Norris, C. M. (2012). Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(46), 16129–16140. https://doi.org/10.1523/JNEUROSCI.2323-12.2012
dc.relation.referencesGabbi, C., Warner, M., & Gustafsson, J. Å. (2014). Action mechanisms of Liver X Receptors. Biochemical and Biophysical Research Communications, 446(3), 647–650. https://doi.org/10.1016/j.bbrc.2013.11.077
dc.relation.referencesGan, L., & Mucke, L. (2008). Paths of Convergence: Sirtuins in Aging and Neurodegeneration. En Neuron (Vol. 58, Número 1, pp. 10–14). Elsevier. https://doi.org/10.1016/j.neuron.2008.03.015
dc.relation.referencesGandy, S., & DeKosky, S. T. (2013). Toward the Treatment and Prevention of Alzheimer’s Disease: Rational Strategies and Recent Progress. Annual Review of Medicine, 64(1), 367–383. https://doi.org/10.1146/annurev-med-092611-084441
dc.relation.referencesGao, Y., Tan, L., Yu, J.-T., & Tan, L. (2018). Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Current Alzheimer Research, 15(3), 283–300. https://doi.org/10.2174/1567205014666170417111859
dc.relation.referencesGasparini, L., Terni, B., & Spillantini, M. G. (2007). Frontotemporal dementia with tau pathology. En Neurodegenerative Diseases (Vol. 4, Números 2–3, pp. 236–253). Neurodegener Dis. https://doi.org/10.1159/000101848
dc.relation.referencesGatta, V., D’Aurora, M., Granzotto, A., Stuppia, L., & Sensi, S. L. (2014). Early and sustained altered expression of aging-related genes in young 3xTg-AD mice. Cell Death and Disease, 5(2), 1–10. https://doi.org/10.1038/cddis.2014.11
dc.relation.referencesGeiller, T., Priestley, J. B., & Losonczy, A. (2023). A local circuit-basis for spatial navigation and memory processes in hippocampal area CA1. Current opinion in neurobiology, 79. https://doi.org/10.1016/J.CONB.2023.102701
dc.relation.referencesGhisletti, S., Huang, W., Ogawa, S., Pascual, G., Lin, M. E., Willson, T. M., Rosenfeld, M. G., & Glass, C. K. (2007). Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Molecular cell, 25(1), 57–70. https://doi.org/10.1016/J.MOLCEL.2006.11.022
dc.relation.referencesGibbons, G. S., Lee, V. M. Y., & Trojanowski, J. Q. (2019). Mechanisms of Cell-to-Cell Transmission of Pathological Tau: A Review. JAMA Neurology, 76(1), 101–108. https://doi.org/10.1001/jamaneurol.2018.2505
dc.relation.referencesGilardi, F., Viviani, B., Galmozzi, A., Boraso, M., Bartesaghi, S., Torri, A., Caruso, D., Crestani, M., Marinovich, M., & de Fabiani, E. (2009). Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling. Neuroscience, 164(2), 530–540. https://doi.org/10.1016/j.neuroscience.2009.08.003
dc.relation.referencesGill, N., & Dhillon, B. (2022). RNA-seq Data Analysis for Differential Expression. Methods in molecular biology (Clifton, N.J.), 2391, 45–54. https://doi.org/10.1007/978-1-0716-1795-3_4
dc.relation.referencesGinhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and differentiation of microglia. Frontiers in cellular neuroscience, 7(MAR). https://doi.org/10.3389/FNCEL.2013.00045
dc.relation.referencesGiorgetti, S., Greco, C., Tortora, P., & Aprile, F. A. (2018). Targeting amyloid aggregation: An overview of strategies and mechanisms. En International Journal of Molecular Sciences (Vol. 19, Número 9). MDPI AG. https://doi.org/10.3390/ijms19092677
dc.relation.referencesGkikas, D., Tsampoula, M., & Politis, P. K. (2017). Nuclear receptors in neural stem/progenitor cell homeostasis. Cellular and Molecular Life Sciences, 74(22), 4097–4120. https://doi.org/10.1007/s00018-017-2571-4
dc.relation.referencesGlass, C. K., & Ogawa, S. (2006). Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Reviews Immunology, 6(1), 44–55. https://doi.org/10.1038/nri1748
dc.relation.referencesGlass, C. K., & Rosenfeld, M. G. (2000). The coregulator exchange in transcriptional functions of nuclear receptors. En Genes and Development (Vol. 14, Número 2, pp. 121–141). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/gad.14.2.121
dc.relation.referencesGoedert, M., & Jakes, R. (1990). Expression of separate isoforms of human tau protein: Correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO Journal, 9(13), 4225–4230. https://doi.org/10.1002/j.1460-2075.1990.tb07870.x
dc.relation.referencesGosselet, F., Saint-Pol, J., & Fenart, L. (2014). Effects of oxysterols on the blood-brain barrier: Implications for Alzheimer’s disease. Biochemical and Biophysical Research Communications, 446(3), 687–691. https://doi.org/10.1016/j.bbrc.2013.11.059
dc.relation.referencesGosztyla, M. L., Brothers, H. M., & Robinson, S. R. (2018). Alzheimer’s Amyloid-β is an Antimicrobial Peptide: A Review of the Evidence. En Journal of Alzheimer’s Disease (Vol. 62, Número 4, pp. 1495–1506). IOS Press. https://doi.org/10.3233/JAD-171133
dc.relation.referencesGoto, A. (2022). Synaptic plasticity during systems memory consolidation. Neuroscience research, 183, 1–6. https://doi.org/10.1016/J.NEURES.2022.05.008
dc.relation.referencesGrinberg, L. T. (2023). Synaptic Oligomers and Glial Cells in Alzheimer Disease. JAMA neurology, 80(11), 1136–1137. https://doi.org/10.1001/JAMANEUROL.2023.3539
dc.relation.referencesGunawardena, S., & Goldstein, L. S. B. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron, 32(3), 389–401. https://doi.org/10.1016/S0896-6273(01)00496-2
dc.relation.referencesGuo, L., Tian, J., & Du, H. (2017). Mitochondrial Dysfunction and Synaptic Transmission Failure in Alzheimer’s Disease. Journal of Alzheimer’s disease : JAD, 57(4), 1071–1086. https://doi.org/10.3233/JAD-160702
dc.relation.referencesGutierrez, B. A., & Limon, A. (2022). Synaptic Disruption by Soluble Oligomers in Patients with Alzheimer’s and Parkinson’s Disease. Biomedicines, 10(7). https://doi.org/10.3390/BIOMEDICINES10071743
dc.relation.referencesHabib, A., Sawmiller, D., & Tan, J. (2017). Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer’s Disease. Journal of neuroscience research, 95(4), 973–991. https://doi.org/10.1002/JNR.23823
dc.relation.referencesHalliday, M. R., Rege, S. V., Ma, Q., Zhao, Z., Miller, C. A., Winkler, E. A., & Zlokovic, B. V. (2016). Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism, 36(1), 216–227. https://doi.org/10.1038/jcbfm.2015.44
dc.relation.referencesHampel, H., Mesulam, M. M., Cuello, A. C., Khachaturian, A. S., Vergallo, A., Farlow, M. R., Snyder, P. J., Giacobini, E., & Khachaturian, Z. S. (2019). Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. The journal of prevention of Alzheimer’s disease, 6(1), 2–15. https://doi.org/10.14283/JPAD.2018.43
dc.relation.referencesHansson Petersen, C. A., Alikhani, N., Behbahani, H., Wiehager, B., Pavlov, P. F., Alafuzoff, I., Leinonen, V., Ito, A., Winblad, B., Glaser, E., & Ankarcrona, M. (2008). The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13145–13150. https://doi.org/10.1073/pnas.0806192105
dc.relation.referencesHarada, A., Oguchi, K., Okabe, S., Kuno, J., Terada, S., Ohshima, T., Sato-Yoshitake, R., Takei, Y., Noda, T., & Hirokawa, N. (1994). Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature, 369(6480), 488–491. https://doi.org/10.1038/369488a0
dc.relation.referencesHardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. En Science (Vol. 256, Número 5054, pp. 184–185). Science. https://doi.org/10.1126/science.1566067
dc.relation.referencesHardy, J; Selokoe, D. (2002). The Amyloid Hypothesis of Alzheimer ’s Disease. Amyloid International Journal Of Experimental And Clinical Investigation, 297(5580), 353–357.
dc.relation.referencesHatsuda, A., Kurisu, J., Fujishima, K., Kawaguchi, A., Ohno, N., & Kengaku, M. (2023). Calcium signals tune AMPK activity and mitochondrial homeostasis in dendrites of developing neurons. Development (Cambridge, England), 150(21). https://doi.org/10.1242/DEV.201930
dc.relation.referencesHeneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. En The Lancet Neurology (Vol. 14, Número 4, pp. 388–405). Lancet Publishing Group. https://doi.org/10.1016/S1474-4422(15)70016-5
dc.relation.referencesHeneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T. C., Gelpi, E., Halle, A., Korte, M., Latz, E., & Golenbock, D. T. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 674–678. https://doi.org/10.1038/NATURE11729
dc.relation.referencesHernandez-Zimbron, L. F., Luna-Muñoz, J., Mena, R., Vazquez-Ramirez, R., Kubli-Garfias, C., Cribbs, D. H., Manoutcharian, K., & Gevorkian, G. (2012). Amyloid-β peptide binds to cytochrome C oxidase subunit 1. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0042344
dc.relation.referencesHirsch-Reinshagen, V., Zhou, S., Burgess, B. L., Bernier, L., McIsaac, S. A., Chan, J. Y., Tansley, G. H., Cohn, J. S., Hayden, M. R., & Wellington, C. L. (2004). Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. Journal of Biological Chemistry, 279(39), 41197–41207. https://doi.org/10.1074/jbc.M407962200
dc.relation.referencesHoltzman, D. M. (2001). Role of apoE/Aβ interactions in the pathogenesis of Alzheimer’s disease and cerebral amyloid angiopathy. Journal of Molecular Neuroscience, 17(2), 147–155. https://doi.org/10.1385/JMN:17:2:147
dc.relation.referencesHoltzman, D. M., Herz, J., & Bu, G. (2012). Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(3), 1–24. https://doi.org/10.1101/cshperspect.a006312
dc.relation.referencesHong, C., & Tontonoz, P. (2014). Liver X receptors in lipid metabolism: opportunities for drug discovery. Nature reviews. Drug discovery, 13(6), 433–444. https://doi.org/10.1038/NRD4280
dc.relation.referencesHoover, B. R., Reed, M. N., Su, J., Penrod, R. D., Kotilinek, L. A., Grant, M. K., Pitstick, R., Carlson, G. A., Lanier, L. M., Yuan, L. L., Ashe, K. H., & Liao, D. (2010). Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. Neuron, 68(6), 1067–1081. https://doi.org/10.1016/j.neuron.2010.11.030
dc.relation.referencesHou, T. T., Han, Y. D., Cong, L., Liu, C. C., Liang, X. Y., Xue, F. Z., & Du, Y. F. (2020). Apolipoprotein e Facilitates Amyloid-β Oligomer-Induced Tau Phosphorylation. Journal of Alzheimer’s Disease, 74(2), 521–534. https://doi.org/10.3233/JAD-190711
dc.relation.referencesHsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., & Malinow, R. (2006). AMPAR Removal Underlies Aβ-Induced Synaptic Depression and Dendritic Spine Loss. Neuron, 52(5), 831–843. https://doi.org/10.1016/j.neuron.2006.10.035
dc.relation.referencesHuang, D. X., Yu, X., Yu, W. J., Zhang, X. M., Liu, C., Liu, H. P., Sun, Y., & Jiang, Z. P. (2022). Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer’s Disease. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.834962
dc.relation.referencesIonescu-Tucker, A., & Cotman, C. W. (2021). Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiology of aging, 107, 86–95. https://doi.org/10.1016/J.NEUROBIOLAGING.2021.07.014
dc.relation.referencesIttner, A., & Ittner, L. M. (2018). Dendritic Tau in Alzheimer’s Disease. Neuron, 99(1), 13–27. https://doi.org/10.1016/j.neuron.2018.06.003
dc.relation.referencesIturria-Medina, Y., Adewale, Q., Khan, A. F., Ducharme, S., Rosa-Neto, P., O’Donnell, K., Petyuk, V. A., Gauthier, S., De Jager, P. L., Breitner, J., & Bennett, D. A. (2022). Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer’s disease progression and heterogeneity. Science advances, 8(46). https://doi.org/10.1126/SCIADV.ABO6764
dc.relation.referencesJack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207–216. https://doi.org/10.1016/S1474-4422(12)70291-0
dc.relation.referencesJackson, R. J., Hyman, B. T., & Serrano-Pozo, A. (2024). Multifaceted roles of APOE in Alzheimer disease. Nature reviews. Neurology, 20(8), 457–474. https://doi.org/10.1038/S41582-024-00988-2
dc.relation.referencesJamasbi, E., Wade, J., Separovic, F., & Hossain, M. (2016). Amyloid Beta (AB) Peptide and Factors that Play Important Roles in Alzheimer’s Disease. Current Medicinal Chemistry, 23(9), 884–892. https://doi.org/10.2174/0929867323666160229113911
dc.relation.referencesJang, H., Connelly, L., Teran Arce, F., Ramachandran, S., Kagan, B. L., Lal, R., & Nussinov, R. (2013). Mechanisms for the insertion of toxic, fibril-like β-amyloid oligomers into the membrane. Journal of Chemical Theory and Computation, 9(1), 822–833. https://doi.org/10.1021/ct300916f
dc.relation.referencesJang, H., Zheng, J., & Nussinov, R. (2007). Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophysical Journal, 93(6), 1938–1949. https://doi.org/10.1529/biophysj.107.110148
dc.relation.referencesJanus, C., & Westaway, D. (2001). Transgenic mouse models of Alzheimer’s disease. Physiology & Behavior, 73(5), 873–886. https://doi.org/10.1016/S0031-9384(01)00524-8
dc.relation.referencesJassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, J., Gillespie, M., Haw, R., Loney, F., May, B., Milacic, M., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Weiser, J., … D’Eustachio, P. (2020). The reactome pathway knowledgebase. Nucleic acids research, 48(D1), D498–D503. https://doi.org/10.1093/NAR/GKZ1031
dc.relation.referencesJellinger, K. A. (2020). Neuropathological assessment of the Alzheimer spectrum. Journal of neural transmission (Vienna, Austria : 1996), 127(9), 1229–1256. https://doi.org/10.1007/S00702-020-02232-9
dc.relation.referencesJiang, Q., Lee, C. Y. D., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T. M., Collins, J. L., Richardson, J. C., Smith, J. D., Comery, T. A., Riddell, D., Holtzman, D. M., Tontonoz, P., & Landreth, G. E. (2008). ApoE Promotes the Proteolytic Degradation of Aβ. Neuron, 58(5), 681–693. https://doi.org/10.1016/j.neuron.2008.04.010
dc.relation.referencesJohn, A., & Reddy, P. H. (2021). Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Research Reviews, 65, 101208. https://doi.org/10.1016/j.arr.2020.101208
dc.relation.referencesJouanne, M., Rault, S., & Voisin-Chiret, A. S. (2017). Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. European Journal of Medicinal Chemistry, 139, 153–167. https://doi.org/10.1016/j.ejmech.2017.07.070
dc.relation.referencesJulien, C., Tremblay, C., Émond, V., Lebbadi, M., Salem, N., Bennett, D. A., & Calon, F. (2009). Sirtuin 1 reduction parallels the accumulation of tau in alzheimer disease. Journal of Neuropathology and Experimental Neurology, 68(1), 48–58. https://doi.org/10.1097/NEN.0b013e3181922348
dc.relation.referencesJungenitz, T., Bird, A., Engelhardt, M., Jedlicka, P., Schwarzacher, S. W., & Deller, T. (2023). Structural plasticity of the axon initial segment in rat hippocampal granule cells following high frequency stimulation and LTP induction. Frontiers in neuroanatomy, 17. https://doi.org/10.3389/FNANA.2023.1125623
dc.relation.referencesKanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research, 45(D1), D353–D361. https://doi.org/10.1093/NAR/GKW1092
dc.relation.referencesKanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27–30. https://doi.org/10.1093/NAR/28.1.27
dc.relation.referencesKastner, P., Mark, M., & Chambon, P. (1995). Nonsteroid nuclear receptors: What Are genetic studies telling us about their role in real life? En Cell (Vol. 83, Número 6, pp. 859–869). https://doi.org/10.1016/0092-8674(95)90202-3
dc.relation.referencesKato, S., Gondo, T., Hoshii, Y., Takahashi, M., Yamada, M., & Ishihara, T. (1998). Confocal observation of senile plaques in Alzheimer’s disease: senile plaque morphology and relationship between senile plaques and astrocytes. Pathology international, 48(5), 332–340. https://doi.org/10.1111/J.1440-1827.1998.TB03915.X
dc.relation.referencesKepp, K. P., Robakis, N. K., Høilund-Carlsen, P. F., Sensi, S. L., & Vissel, B. (2023). The amyloid cascade hypothesis: an updated critical review. Brain : a journal of neurology, 146(10), 3969–3990. https://doi.org/10.1093/BRAIN/AWAD159
dc.relation.referencesKhan, S. S., & Bloom, G. S. (2016). Tau: The Center of a Signaling Nexus in Alzheimer’s Disease. Frontiers in Neuroscience, 10(FEB), 1–5. https://doi.org/10.3389/fnins.2016.00031
dc.relation.referencesKhorasanizadeh, S., & Rastinejad, F. (2001). Nuclear-receptor interactions on DNA-response elements. En Trends in Biochemical Sciences (Vol. 26, Número 6, pp. 384–390). https://doi.org/10.1016/S0968-0004(01)01800-X
dc.relation.referencesKierdorf, K., & Fritz, G. (2013). RAGE regulation and signaling in inflammation and beyond. Journal of Leukocyte Biology, 94(1), 55–68. https://doi.org/10.1189/jlb.1012519
dc.relation.referencesKim, J., Yoon, H., Basak, J., & Kim, J. (2014). Apolipoprotein E in synaptic plasticity and alzheimer’s disease: Potential cellular and molecular mechanisms. Molecules and Cells, 37(11), 833–840. https://doi.org/10.14348/molcells.2014.0248
dc.relation.referencesKinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. En Alzheimer’s and Dementia: Translational Research and Clinical Interventions (Vol. 4, pp. 575–590). Elsevier Inc. https://doi.org/10.1016/j.trci.2018.06.014
dc.relation.referencesKitazawa, M., Cheng, D., Tsukamoto, M. R., Koike, M. A., Wes, P. D., Vasilevko, V., Cribbs, D. H., & LaFerla, F. M. (2011). Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. Journal of immunology (Baltimore, Md. : 1950), 187(12), 6539–6549. https://doi.org/10.4049/JIMMUNOL.1100620
dc.relation.referencesKnopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature reviews. Disease primers, 7(1). https://doi.org/10.1038/S41572-021-00269-Y
dc.relation.referencesKoistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K. R., & Paul, S. M. (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Medicine, 10(7), 719–726. https://doi.org/10.1038/nm1058
dc.relation.referencesKolarova, M., García-Sierra, F., Bartos, A., Ricny, J., & Ripova, D. (2012). Structure and pathology of tau protein in Alzheimer disease. International Journal of Alzheimer’s Disease, 2012. https://doi.org/10.1155/2012/731526
dc.relation.referencesKoldamova, R., & Lefterov, I. (2007). Role of LXR and ABCA1 in the Pathogenesis of Alzheimers Disease -Implications for a New Therapeutic Approach. Current Alzheimer Research, 4(2), 171–178. https://doi.org/10.2174/156720507780362227
dc.relation.referencesKonietzko, U. (2012). AICD Nuclear Signaling and Its Possible Contribution to Alzheimers Disease. Current Alzheimer Research, 9(2), 200–216. https://doi.org/10.2174/156720512799361673
dc.relation.referencesKopke, E., Tung, Y. C., Shaikh, S., Del Alonso, C. A., Iqbal, K., & Grundke-Iqbal, I. (1993). Microtubule-associated protein tau. Abnormal phosphorylation of a non- paired helical filament pool in Alzheimer disease. Journal of Biological Chemistry, 268(32), 24374–24384.
dc.relation.referencesKraft, A. W., Hu, X., Yoon, H., Yan, P., Xiao, Q., Wang, Y., Gil, S. C., Brown, J., Wilhelmsson, U., Restivo, J. L., Cirrito, J. R., Holtzman, D. M., Kim, J., Pekny, M., & Lee, J. M. (2013). Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 27(1), 187–198. https://doi.org/10.1096/FJ.12-208660
dc.relation.referencesKramarz, B., & Lovering, R. C. (2019). Gene Ontology: A Resource for Analysis and Interpretation of Alzheimer’s Disease Data. Alzheimer’s Disease, 23–36. https://doi.org/10.15586/ALZHEIMERSDISEASE.2019.CH2
dc.relation.referencesKramarz, B., Roncaglia, P., Meldal, B. H. M., Huntley, R. P., Martin, M. J., Orchard, S., Parkinson, H., Brough, D., Bandopadhyay, R., Hooper, N. M., & Lovering, R. C. (2018). Improving the Gene Ontology Resource to Facilitate More Informative Analysis and Interpretation of Alzheimer’s Disease Data. Genes, 9(12). https://doi.org/10.3390/genes9120593
dc.relation.referencesKriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual review of neuroscience, 32, 149–184. https://doi.org/10.1146/ANNUREV.NEURO.051508.135600
dc.relation.referencesKumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor protocols, 2018(6), 465–468. https://doi.org/10.1101/PDB.PROT095497
dc.relation.referencesKurkinen, M., Fułek, M., Fułek, K., Beszłej, J. A., Kurpas, D., & Leszek, J. (2023). The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules, 13(3). https://doi.org/10.3390/BIOM13030453
dc.relation.referencesLaDu, M. J., Falduto, M. T., Manelli, A. M., Reardon, C. A., Getz, G. S., & Frail, D. E. (1994). Isoform-specific binding of apolipoprotein E to β-amyloid. Journal of Biological Chemistry, 269(38), 23403–23406. https://www.jbc.org/content/269/38/23403
dc.relation.referencesLaffitte, B. A., Repa, J. J., Joseph, S. B., Wilpitz, D. C., Kast, H. R., Mangelsdorf, D. J., & Tontonoz, P. (2001). LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 507–512. https://doi.org/10.1073/PNAS.98.2.507/ASSET/7E294697-B4F6-47E7-B46E-ECF019D4349E/ASSETS/GRAPHIC/PQ0214887007.JPEG
dc.relation.referencesLambermon, M. H. L., Rappaport, R. V., & McLaurin, J. A. (2005). Biophysical characterization of longer forms of amyloid beta peptides: Possible contribution to flocculent plaque formation. Journal of Neurochemistry, 95(6), 1667–1676. https://doi.org/10.1111/j.1471-4159.2005.03497.x
dc.relation.referencesLamprecht, R., & LeDoux, J. (2004). Structural plasticity and memory. Nature Reviews Neuroscience, 5(1), 45–54. https://doi.org/10.1038/nrn1301
dc.relation.referencesLane-Donovan, C., & Herz, J. (2017). ApoE, ApoE Receptors, and the Synapse in Alzheimer’s Disease. En Trends in Endocrinology and Metabolism (Vol. 28, Número 4, pp. 273–284). Elsevier Ltd. https://doi.org/10.1016/j.tem.2016.12.001
dc.relation.referencesLanfranco, M. F., Ng, C. A., & Rebeck, G. W. (2020). ApoE Lipidation as a Therapeutic Target in Alzheimer’s Disease. International Journal of Molecular Sciences, 21(17), 6336. https://doi.org/10.3390/IJMS21176336
dc.relation.referencesLaurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-Β oligomers. Nature, 457(7233), 1128–1132. https://doi.org/10.1038/nature07761
dc.relation.referencesLauretti, E., Dincer, O., & Praticò, D. (2020). Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochimica et Biophysica Acta - Molecular Cell Research, 1867(5), 118664. https://doi.org/10.1016/j.bbamcr.2020.118664
dc.relation.referencesLee, A., Kondapalli, C., Virga, D. M., Lewis, T. L., Koo, S. Y., Ashok, A., Mairet-Coello, G., Herzig, S., Foretz, M., Viollet, B., Shaw, R., Sproul, A., & Polleux, F. (2022). Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nature communications, 13(1). https://doi.org/10.1038/S41467-022-32130-5
dc.relation.referencesLee, G., Todd Newman, S., Gard, D. L., Band, H., & Panchamoorthy, G. (1998). Tau interacts with src-family non-receptor tyrosine kinases. Journal of Cell Science, 111(21), 3167–3177.
dc.relation.referencesLee, J. H., Park, S. M., Kim, O. S., Lee, C. S., Woo, J. H., Park, S. J., Joe, E. hye, & Jou, I. (2009). Differential SUMOylation of LXRα and LXRβ Mediates Transrepression of STAT1 Inflammatory Signaling in IFN-γ-Stimulated Brain Astrocytes. Molecular Cell, 35(6), 806–817. https://doi.org/10.1016/j.molcel.2009.07.021
dc.relation.referencesLee, S. J. C., Nam, E., Lee, H. J., Savelieff, M. G., & Lim, M. H. (2017). Towards an understanding of amyloid-β oligomers: Characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews, 46(2), 310–323. https://doi.org/10.1039/c6cs00731g
dc.relation.referencesLi, W., & Lee, V. M. Y. (2006). Characterization of two VQIXXK motifs for tau fibrillization in vitro. Biochemistry, 45(51), 15692–15701. https://doi.org/10.1021/bi061422+
dc.relation.referencesLi, Y., Lambert, M. H., & Xu, H. E. (2003). Activation of nuclear receptors: A perspective from structural genomics. Structure, 11(7), 741–746. https://doi.org/10.1016/S0969-2126(03)00133-3
dc.relation.referencesLi, Z., & Sheng, M. (2012). Caspases in synaptic plasticity. Molecular Brain, 5(1), 15. https://doi.org/10.1186/1756-6606-5-15
dc.relation.referencesLiang, Y., Lin, S., Beyer, T. P., Zhang, Y., Wu, X., Bales, K. R., DeMattos, R. B., May, P. C., Li, S. D., Jiang, X. C., Eacho, P. I., Cao, G., & Paul, S. M. (2004). A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. Journal of Neurochemistry, 88(3), 623–634. https://doi.org/10.1111/j.1471-4159.2004.02183.x
dc.relation.referencesLiao, P., Satten, G. A., & Hu, Y. J. (2017). PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies. Genetic epidemiology, 41(5), 375–387. https://doi.org/10.1002/GEPI.22048
dc.relation.referencesLisek, M., Tomczak, J., Boczek, T., & Zylinska, L. (2024). Calcium-Associated Proteins in Neuroregeneration. Biomolecules, 14(2). https://doi.org/10.3390/BIOM14020183
dc.relation.referencesLitvinchuk, A., Suh, J. H., Guo, J. L., Lin, K., Davis, S. S., Bien-Ly, N., Tycksen, E., Tabor, G. T., Remolina Serrano, J., Manis, M., Bao, X., Lee, C., Bosch, M., Perez, E. J., Yuede, C. M., Cashikar, A. G., Ulrich, J. D., Di Paolo, G., & Holtzman, D. M. (2024). Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron, 112(3), 384-403.e8. https://doi.org/10.1016/j.neuron.2023.10.023
dc.relation.referencesLiu, C., Cui, G., Zhu, M., Kang, X., & Guo, H. (2014). Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. International Journal of Clinical and Experimental Pathology, 7(12), 8342. https://pmc.ncbi.nlm.nih.gov/articles/PMC4314046/
dc.relation.referencesLiu, S., Wang, Z., Zhu, R., Wang, F., Cheng, Y., & Liu, Y. (2021). Three differential expression analysis methods for rna sequencing: Limma, edger, deseq2. Journal of Visualized Experiments, 2021(175). https://doi.org/10.3791/62528
dc.relation.referencesLiu, Z., Sun, Y. H., Ren, Y., Perez, J. M., Scott, D., & Tamminga, C. (2024). Upregulated solute-carrier family genes in the hippocampus of schizophrenia can be rescued by antipsychotic medications. Schizophrenia research, 272, 39–50. https://doi.org/10.1016/J.SCHRES.2024.08.012
dc.relation.referencesLiyanage, S. I., & Weaver, D. F. (2019). Misfolded proteins as a therapeutic target in Alzheimer’s disease. Advances in Protein Chemistry and Structural Biology, 118, 371–411. https://doi.org/10.1016/bs.apcsb.2019.08.003
dc.relation.referencesLoiola, R. A., Nguyen, C., Dib, S., Saint-Pol, J., Dehouck, L., Sevin, E., Naudot, M., Landry, C., Pahnke, J., Pot, C., & Gosselet, F. (2024). 25-Hydroxycholesterol attenuates tumor necrosis factor alpha-induced blood-brain barrier breakdown in vitro. Biochimica et biophysica acta. Molecular basis of disease, 1870(8). https://doi.org/10.1016/J.BBADIS.2024.167479
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15(12). https://doi.org/10.1186/S13059-014-0550-8
dc.relation.referencesLovestone, S., & Reynolds, C. H. (1997). The phosphorylation of tau: A critical stage in neurodevelopment and neurodegenerative process. En Neuroscience (Vol. 78, Número 2, pp. 309–324). Elsevier Ltd. https://doi.org/10.1016/S0306-4522(96)00577-5
dc.relation.referencesLuo, D., Li, J., Liu, H., Wang, J., Xia, Y., Qiu, W., Wang, N., Wang, X., Wang, X., Ma, C., & Ge, W. (2023). Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer’s Disease. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(22). https://doi.org/10.1002/ADVS.202300876
dc.relation.referencesMa, S., & Zuo, Y. (2022). Synaptic modifications in learning and memory – A dendritic spine story. Seminars in Cell & Developmental Biology, 125, 84–90. https://doi.org/10.1016/J.SEMCDB.2021.05.015
dc.relation.referencesMaccioni, R. B., Farías, G., Morales, I., & Navarrete, L. (2010). The Revitalized Tau Hypothesis on Alzheimer’s Disease. Archives of Medical Research, 41(3), 226–231. https://doi.org/10.1016/j.arcmed.2010.03.007
dc.relation.referencesMacZewsky, J., Sikimic, J., Bauer, C., Krippeit-Drews, P., Wolke, C., Lendeckel, U., Barthlen, W., & Drews, G. (2017). The LXR Ligand T0901317 Acutely Inhibits Insulin Secretion by Affecting Mitochondrial Metabolism. Endocrinology, 158(7), 2145–2154. https://doi.org/10.1210/EN.2016-1941
dc.relation.referencesMadhu, P., & Mukhopadhyay, S. (2021). Distinct types of amyloid-β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer’s disease. Journal of cellular biochemistry, 122(11), 1594–1608. https://doi.org/10.1002/JCB.30141
dc.relation.referencesMagee, J. C., & Carruth, M. (1999). Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 82(4), 1895–1901. https://doi.org/10.1152/jn.1999.82.4.1895
dc.relation.referencesMaglich, J. M., Sluder, A., Guan, X., Shi, Y., McKee, D. D., Carrick, K., Kamdar, K., Willson, T. M., & Moore, J. T. (2001). Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome biology, 2(8), research0029.1. https://doi.org/10.1186/gb-2001-2-8-research0029
dc.relation.referencesMaiti, P., Manna, J., Ilavazhagan, G., Rossignol, J., & Dunbar, G. L. (2015). Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neuroscience and Biobehavioral Reviews, 59(101), 208–237. https://doi.org/10.1016/j.neubiorev.2015.09.020
dc.relation.referencesMalykhin, N., Pietrasik, W., Hoang, K. N., & Huang, Y. (2024). Contributions of hippocampal subfields and subregions to episodic memory performance in healthy cognitive aging. Neurobiology of aging, 133, 51–66. https://doi.org/10.1016/J.NEUROBIOLAGING.2023.10.006
dc.relation.referencesMandelkow, E. M., & Mandelkow, E. (2011). Biochemistry and cell biology of Tau protein in neurofibrillary degeneration. En Cold Spring Harbor Perspectives in Biology (Vol. 3, Número 10, pp. 1–25). Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a006247
dc.relation.referencesMandrekar-Colucci, S., & Landreth, G. E. (2011). Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opinion on Therapeutic Targets, 15(9), 1085–1097. https://doi.org/10.1517/14728222.2011.594043
dc.relation.referencesMangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., & Evans, R. M. (1995). The nuclear receptor superfamily: The second decade. Cell, 83(6), 835–839. https://doi.org/10.1016/0092-8674(95)90199-X
dc.relation.referencesMarmolejo-Garza, A., Medeiros-Furquim, T., Rao, R., Eggen, B. J. L., Boddeke, E., & Dolga, A. M. (2022). Transcriptomic and epigenomic landscapes of Alzheimer’s disease evidence mitochondrial-related pathways. Biochimica et biophysica acta. Molecular cell research, 1869(10). https://doi.org/10.1016/J.BBAMCR.2022.119326
dc.relation.referencesMárquez-Valadez, B., Rábano, A., & Llorens-Martín, M. (2022). Progression of Alzheimer’s disease parallels unusual structural plasticity of human dentate granule cells. Acta neuropathologica communications, 10(1), 125. https://doi.org/10.1186/S40478-022-01431-7
dc.relation.referencesMarschallinger, J., Iram, T., Zardeneta, M., Lee, S. E., Lehallier, B., Haney, M. S., Pluvinage, J. V., Mathur, V., Hahn, O., Morgens, D. W., Kim, J., Tevini, J., Felder, T. K., Wolinski, H., Bertozzi, C. R., Bassik, M. C., Aigner, L., & Wyss-Coray, T. (2020). Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature neuroscience, 23(2), 194–208. https://doi.org/10.1038/S41593-019-0566-1
dc.relation.referencesMarttinen, M., Takalo, M., Natunen, T., Wittrahm, R., Gabbouj, S., Kemppainen, S., Leinonen, V., Tanila, H., Haapasalo, A., & Hiltunen, M. (2018). Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease. Frontiers in Neuroscience, 12, 963. https://doi.org/10.3389/fnins.2018.00963
dc.relation.referencesMattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(2), 376–389. https://doi.org/10.1523/JNEUROSCI.12-02-00376.1992
dc.relation.referencesMauch, D. H., Nägier, K., Schumacher, S., Göritz, C., Müller, E. C., Otto, A., & Pfrieger, F. W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science, 294(5545), 1354–1357. https://doi.org/10.1126/science.294.5545.1354
dc.relation.referencesMietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., & Niewiadomska, G. (2014). Tau protein modifications and interactions: Their role in function and dysfunction. En International Journal of Molecular Sciences (Vol. 15, Número 3, pp. 4671–4713). MDPI AG. https://doi.org/10.3390/ijms15034671
dc.relation.referencesMin, S. W., Cho, S. H., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W. W., Huang, E. J., Shen, Y., Masliah, E., Mukherjee, C., Meyers, D., Cole, P. A., Ott, M., & Gan, L. (2010). Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 67(6), 953–966. https://doi.org/10.1016/j.neuron.2010.08.044
dc.relation.referencesMittag, M., Mediavilla, L., Remy, S., Cuntz, H., & Jedlicka, P. (2023). Modelling the contributions to hyperexcitability in a mouse model of Alzheimer’s disease. The Journal of physiology, 601(15), 3403–3437. https://doi.org/10.1113/JP283401
dc.relation.referencesMondragón-Rodríguez, S., Trillaud-Doppia, E., Dudilot, A., Bourgeois, C., Lauzon, M., Leclerc, N., & Boehm, J. (2012). Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. Journal of Biological Chemistry, 287(38), 32040–32053. https://doi.org/10.1074/jbc.M112.401240
dc.relation.referencesMonteiro, A. R., Barbosa, D. J., Remião, F., & Silva, R. (2023). Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochemical pharmacology, 211. https://doi.org/10.1016/J.BCP.2023.115522
dc.relation.referencesMoore, J. T., Collins, J. L., & Pearce, K. H. (2006). The nuclear receptor superfamily and drug discovery. ChemMedChem, 1(5), 504–523. https://doi.org/10.1002/cmdc.200600006
dc.relation.referencesMoreno, H., Choi, S., Yu, E., Brusco, J., Avila, J., Moreira, J. E., Sugimori, M., & Llinás, R. R. (2011). Blocking effects of human tau on squid giant synapse transmission and its prevention by T-817 MA. Frontiers in Synaptic Neuroscience, 3(MAY). https://doi.org/10.3389/fnsyn.2011.00003
dc.relation.referencesMorishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K., & Ihara, Y. (1993). Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron, 10(6), 1151–1160. https://doi.org/10.1016/0896-6273(93)90063-W
dc.relation.referencesMorris, M., Maeda, S., Vossel, K., & Mucke, L. (2011). The Many Faces of Tau. Neuron, 70(3), 410–426. https://doi.org/10.1016/j.neuron.2011.04.009
dc.relation.referencesMorris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11(1), 47–60. https://doi.org/10.1016/0165-0270(84)90007-4
dc.relation.referencesMoser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual review of neuroscience, 31, 69–89. https://doi.org/10.1146/ANNUREV.NEURO.31.061307.090723
dc.relation.referencesMoutinho, M., & Landreth, G. E. (2017). Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. En Journal of Lipid Research (Vol. 58, Número 10, pp. 1937–1949). https://doi.org/10.1194/jlr.R075556
dc.relation.referencesMroczko, B., Groblewska, M., Litman-Zawadzka, A., Kornhuber, J., & Lewczuk, P. (2018). Cellular receptors of amyloid β oligomers (AβOs) in Alzheimer’s disease. International Journal of Molecular Sciences, 19(7). https://doi.org/10.3390/ijms19071884
dc.relation.referencesMu, Y., & Gage, F. H. (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. En Molecular Neurodegeneration (Vol. 6, Número 1). https://doi.org/10.1186/1750-1326-6-85
dc.relation.referencesMucke, L., & Selkoe, D. J. (2012). Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction. Cold Spring Harbor Perspectives in Medicine, 2(7). https://doi.org/10.1101/cshperspect.a006338
dc.relation.referencesMüller, L., Kirschstein, T., Köhling, R., Kuhla, A., & Teipel, S. (2021). Neuronal Hyperexcitability in APPSWE/PS1dE9 Mouse Models of Alzheimer’s Disease. Journal of Alzheimer’s disease : JAD, 81(3), 855–869. https://doi.org/10.3233/JAD-201540
dc.relation.referencesMüller, T., Meyer, H. E., Egensperger, R., & Marcus, K. (2008). The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-Relevance for Alzheimer’s disease. Progress in Neurobiology, 85(4), 393–406. https://doi.org/10.1016/j.pneurobio.2008.05.002
dc.relation.referencesMuñoz-Cabrera, J. M., Sandoval-Hernández, A. G., & Arboleda, G. (2021). Type II nuclear receptors with potential role in Alzheimer disease. Molecular Aspects of Medicine, 78. https://doi.org/10.1016/j.mam.2020.100940
dc.relation.referencesMuñoz-Cabrera, J. M., Sandoval-Hernández, A. G., Niño, A., Báez, T., Bustos-Rangel, A., Cardona-Gómez, G. P., Múnera, A., & Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLoS ONE, 14(10), 1–22. https://doi.org/10.1371/journal.pone.0223578
dc.relation.referencesMushtaq, S., Abbasi, B. H., Uzair, B., & Abbasi, R. (2018). Natural products as reservoirs of novel therapeutic agents. En EXCLI Journal (Vol. 17, pp. 420–451). Leibniz Research Centre for Working Environment and Human Factors. https://doi.org/10.17179/excli2018-1174
dc.relation.referencesNadel, L., & Hardt, O. (2011). Update on memory systems and processes. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 36(1), 251–273. https://doi.org/10.1038/NPP.2010.169
dc.relation.referencesNaseri, N. N., Wang, H., Guo, J., Sharma, M., & Luo, W. (2019). The complexity of tau in Alzheimer’s disease. Neuroscience Letters, 705(December 2018), 183–194. https://doi.org/10.1016/j.neulet.2019.04.022
dc.relation.referencesNasrabady, S. E., Rizvi, B., Goldman, J. E., & Brickman, A. M. (2018). White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta neuropathologica communications, 6(1), 22. https://doi.org/10.1186/S40478-018-0515-3
dc.relation.referencesNeff, R. A., Wang, M., Vatansever, S., Guo, L., Ming, C., Wang, Q., Wang, E., Horgusluoglu-Moloch, E., Song, W. M., Li, A., Castranio, E. L., Julia, T. C. W., Ho, L., Goate, A., Fossati, V., Noggle, S., Gandy, S., Ehrlich, M. E., Katsel, P., … Zhang, B. (2021). Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Science advances, 7(2). https://doi.org/10.1126/SCIADV.ABB5398
dc.relation.referencesNelissen, K., Mulder, M., Smets, I., Timmermans, S., Smeets, K., Ameloot, M., & Hendriks, J. J. A. (2012). Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. Journal of Neuroscience Research, 90(1), 60–71. https://doi.org/10.1002/jnr.22743
dc.relation.referencesNelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., Castellani, R. J., Crain, B. J., Davies, P., Tredici, K. Del, Duyckaerts, C., Frosch, M. P., Haroutunian, V., Hof, P. R., Hulette, C. M., Hyman, B. T., Iwatsubo, T., Jellinger, K. A., Jicha, G. A., … Beach, T. G. (2012). Correlation of alzheimer disease neuropathologic changes with cognitive status: A review of the literature. En Journal of Neuropathology and Experimental Neurology (Vol. 71, Número 5, pp. 362–381). NIH Public Access. https://doi.org/10.1097/NEN.0b013e31825018f7
dc.relation.referencesNg, L. L. H., Chow, J., & Lau, K. F. (2024). The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochemical Society transactions, 52(6), 2539–2556. https://doi.org/10.1042/BST20241510
dc.relation.referencesNguyen, A. T., Wang, K., Hu, G., Wang, X., Miao, Z., Azevedo, J. A., Suh, E. R., Van Deerlin, V. M., Choi, D., Roeder, K., Li, M., & Lee, E. B. (2020). APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta neuropathologica, 140(4), 477–493. https://doi.org/10.1007/S00401-020-02200-3
dc.relation.referencesNimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, N.Y.), 308(5726), 1314–1318. https://doi.org/10.1126/SCIENCE.1110647
dc.relation.referencesNisbet, R. M., Polanco, J. C., Ittner, L. M., & Götz, J. (2015). Tau aggregation and its interplay with amyloid-β. Acta Neuropathologica, 129(2), 207–220. https://doi.org/10.1007/s00401-014-1371-2
dc.relation.referencesNiu, Z., Gui, X., Feng, S., & Reif, B. (2024). Aggregation Mechanisms and Molecular Structures of Amyloid-β in Alzheimer’s Disease. Chemistry (Weinheim an der Bergstrasse, Germany), 30(48). https://doi.org/10.1002/CHEM.202400277
dc.relation.referencesOddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P., & LaFerla, F. M. (2003). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging, 24(8), 1063–1070. https://doi.org/10.1016/j.neurobiolaging.2003.08.012
dc.relation.referencesOddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer’s Disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron, 39(3), 409–421. https://doi.org/10.1016/S0896-6273(03)00434-3
dc.relation.referencesOliveira De Melo, J., Truiti, M. D. C. T., Muscará, M. N., Bolonheis, S. M., Dantas, J. A., Caparroz-Assef, S. M., Cuman, R. K. N., & Bersani-Amado, C. A. (2006). Anti-inflammatory activity of crude extract and fractions of Nectandra falcifolia leaves. Biological & pharmaceutical bulletin, 29(11), 2241–2245. https://doi.org/10.1248/BPB.29.2241
dc.relation.referencesO’Malley, B. W., Malovannaya, A., & Qin, J. (2012). Minireview: Nuclear receptor and coregulator proteomics-2012 and beyond. Molecular Endocrinology, 26(10), 1646–1650. https://doi.org/10.1210/me.2012-1114
dc.relation.referencesOno, K., & Watanabe-Nakayama, T. (2021). Aggregation and structure of amyloid β-protein. Neurochemistry international, 151. https://doi.org/10.1016/J.NEUINT.2021.105208
dc.relation.referencesOverk, C., & Masliah, E. (2017). Perspective on the calcium dyshomeostasis hypothesis in the pathogenesis of selective neuronal degeneration in animal models of Alzheimer’s disease. Alzheimer’s & Dementia, 13(2), 183–185. https://doi.org/10.1016/J.JALZ.2017.01.005
dc.relation.referencesOz, M., Lorke, D., Yang, K.-H., & Petroianu, G. (2013). On the Interaction of beta-Amyloid Peptides and alpha 7-Nicotinic Acetylcholine Receptors in Alzheimer’s Disease. Current Alzheimer Research, 10(6), 618–630. https://doi.org/10.2174/15672050113109990132
dc.relation.referencesPairojana, T., Phasuk, S., Suresh, P., Huang, S. P., Pakaprot, N., Chompoopong, S., Hsieh, T. C., & Liu, I. Y. (2021). Age and gender differences for the behavioral phenotypes of 3xTg alzheimer’s disease mice. Brain Research, 1762, 147437. https://doi.org/10.1016/J.BRAINRES.2021.147437
dc.relation.referencesPalop, J. J., & Mucke, L. (2010). Amyloid-Β-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nature Neuroscience, 13(7), 812–818. https://doi.org/10.1038/nn.2583
dc.relation.referencesPaniri, A., Hosseini, M. M., & Akhavan-Niaki, H. (2024). Alzheimer’s Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Molecular Neurobiology, 61(3), 1282–1317. https://doi.org/10.1007/s12035-023-03626-y
dc.relation.referencesPawlak, M., Lefebvre, P., & Staels, B. (2012). General Molecular Biology and Architecture of Nuclear Receptors. Current Topics in Medicinal Chemistry, 12(6), 486–504. https://doi.org/10.2174/156802612799436641
dc.relation.referencesPchitskaya, E., Popugaeva, E., & Bezprozvanny, I. (2018). Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium, 70, 87–94. https://doi.org/10.1016/J.CECA.2017.06.008
dc.relation.referencesPelucchi, S., Gardoni, F., Di Luca, M., & Marcello, E. (2022). Synaptic dysfunction in early phases of Alzheimer’s Disease. Handbook of clinical neurology, 184, 417–438. https://doi.org/10.1016/B978-0-12-819410-2.00022-9
dc.relation.referencesPenke, B., Tóth, A. M., Földi, I., Szucs, M., & Janáky, T. (2012). Intraneuronal β-amyloid and its interactions with proteins and subcellular organelles. ELECTROPHORESIS, 33(24), 3608–3616. https://doi.org/10.1002/ELPS.201200297
dc.relation.referencesPerez-Nievas, B. G., & Serrano-Pozo, A. (2018). Deciphering the Astrocyte Reaction in Alzheimer’s Disease. Frontiers in aging neuroscience, 10(APR). https://doi.org/10.3389/FNAGI.2018.00114
dc.relation.referencesPerkovic, M. N., Paska, A. V., Konjevod, M., Kouter, K., Strac, D. S., Erjavec, G. N., & Pivac, N. (2021). Epigenetics of Alzheimer’s Disease. Biomolecules, 11(2), 1–40. https://doi.org/10.3390/BIOM11020195
dc.relation.referencesPerlman, R. L. (2016). Mouse models of human disease: An evolutionary perspective. Evolution, medicine, and public health, 2016(1), eow014. https://doi.org/10.1093/EMPH/EOW014
dc.relation.referencesPetrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W. H., Browne, S. E., Hall, A., Voellmy, R., Tsuboi, Y., Dawson, T. M., Wolozin, B., Hardy, J., & Hutton, M. (2004). CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human Molecular Genetics, 13(7), 703–714. https://doi.org/10.1093/hmg/ddh083
dc.relation.referencesPîrşcoveanu, D. F. V., Pirici, I., Tudorică, V., Bălşeanu, T. A., Albu, V. C., Bondari, S., Bumbea, A. M., & Pîrşcoveanu, M. (2017). Tau protein in neurodegenerative diseases – a review. Romanian Journal of Morphology and Embryology, 58(4), 1141–1150.
dc.relation.referencesPlazas, E. A., Avila, M. C., Delgado, W. A., Patino, O. J., & Cuca, L. E. (2018). In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Research Journal of Medicinal Plants, 12(1), 9–18. https://doi.org/10.3923/RJMP.2018.9.18
dc.relation.referencesPooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76(PART A), 1–8. https://doi.org/10.1016/j.neuropharm.2013.09.018
dc.relation.referencesPrice, D. L., Sisodia, S. S., & Gandy, S. E. (1995). Amyloid beta amyloidosis in Alzheimer’s disease. En Current Opinion in Neurology (Vol. 8, Número 4, pp. 268–274). Lippincott Williams and Wilkins. https://doi.org/10.1097/00019052-199508000-00004
dc.relation.referencesQin, Q., Teng, Z., Liu, C., Li, Q., Yin, Y., & Tang, Y. (2021). TREM2, microglia, and Alzheimer’s disease. Mechanisms of ageing and development, 195. https://doi.org/10.1016/J.MAD.2021.111438
dc.relation.referencesR. Swerdlow, J. Burns, and S. K. (2010). The AD mitochondrial cascade hypthesis. J Alzheimers Dis, 20(Suppl 2), 265–279. https://doi.org/10.3233/JAD-2010-100339.The
dc.relation.referencesRajasekhar, K., Chakrabarti, M., & Govindaraju, T. (2015). Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. En Chemical Communications (Vol. 51, Número 70, pp. 13434–13450). Royal Society of Chemistry. https://doi.org/10.1039/c5cc05264e
dc.relation.referencesRao, Y. L., Ganaraja, B., Murlimanju, B. V., Joy, T., Krishnamurthy, A., & Agrawal, A. (2022). Hippocampus and its involvement in Alzheimer’s disease: a review. 3 Biotech, 12(2). https://doi.org/10.1007/S13205-022-03123-4
dc.relation.referencesRape, M. (2018). Post-Translational Modifications: Ubiquitylation at the crossroads of development and disease. En Nature Reviews Molecular Cell Biology (Vol. 19, Número 1, pp. 59–70). Nature Publishing Group. https://doi.org/10.1038/nrm.2017.83
dc.relation.referencesRaz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral cortex (New York, N.Y. : 1991), 15(11), 1676–1689. https://doi.org/10.1093/CERCOR/BHI044
dc.relation.referencesReiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M., & Kasselman, L. J. (2018). Amyloid toxicity in Alzheimer’s disease. En Reviews in the Neurosciences (Vol. 29, Número 6, pp. 613–627). Walter de Gruyter GmbH. https://doi.org/10.1515/revneuro-2017-0063
dc.relation.referencesRenner, M., Lacor, P. N., Velasco, P. T., Xu, J., Contractor, A., Klein, W. L., & Triller, A. (2010). Deleterious Effects of Amyloid β Oligomers Acting as an Extracellular Scaffold for mGluR5. Neuron, 66(5), 739–754. https://doi.org/10.1016/j.neuron.2010.04.029
dc.relation.referencesResende, R., Ferreiro, E., Pereira, C., & Oliveira, C. R. (2008). ER stress is involved in Abeta-induced GSK-3beta activation and tau phosphorylation. Journal of neuroscience research, 86(9), 2091–2099. https://doi.org/10.1002/JNR.21648
dc.relation.referencesRiddell, D. R., Zhou, H., Comery, T. A., Kouranova, E., Lo, C. F., Warwick, H. K., Ring, R. H., Kirksey, Y., Aschmies, S., Xu, J., Kubek, K., Hirst, W. D., Gonzales, C., Chen, Y., Murphy, E., Leonard, S., Vasylyev, D., Oganesian, A., Martone, R. L., … Jacobsen, J. S. (2007). The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Molecular and Cellular Neuroscience, 34(4), 621–628. https://doi.org/10.1016/j.mcn.2007.01.011
dc.relation.referencesRitchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research, 43(7), e47. https://doi.org/10.1093/NAR/GKV007
dc.relation.referencesRoberson, E. D., Scearce-Levie, K., Palop, J. J., Yan, F., Cheng, I. H., Wu, T., Gerstein, H., Yu, G. Q., & Mucke, L. (2007). Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science, 316(5825), 750–754. https://doi.org/10.1126/science.1141736
dc.relation.referencesRobinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616
dc.relation.referencesRochette-Egly, C. (2003). Nuclear receptors: Integration of multiple signalling pathways through phosphorylation. Cellular Signalling, 15(4), 355–366. https://doi.org/10.1016/S0898-6568(02)00115-8
dc.relation.referencesRoussarie, J. P., Yao, V., Rodriguez-Rodriguez, P., Oughtred, R., Rust, J., Plautz, Z., Kasturia, S., Albornoz, C., Wang, W., Schmidt, E. F., Dannenfelser, R., Tadych, A., Brichta, L., Barnea-Cramer, A., Heintz, N., Hof, P. R., Heiman, M., Dolinski, K., Flajolet, M., … Greengard, P. (2020). Selective Neuronal Vulnerability in Alzheimer’s Disease: A Network-Based Analysis. Neuron, 107(5), 821-835.e12. https://doi.org/10.1016/J.NEURON.2020.06.010
dc.relation.referencesRowan, M. J., Klyubin, I., Cullen, W. K., & Anwyl, R. (2003). Synaptic plasticity in animal models of early Alzheimer’s disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1432), 821–828. https://doi.org/10.1098/rstb.2002.1240
dc.relation.referencesRoy, A., Jana, M., Corbett, G. T., Ramaswamy, S., Kordower, J. H., Gonzalez, F. J., & Pahan, K. (2013). Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Reports, 4(4), 724–737. https://doi.org/10.1016/j.celrep.2013.07.028
dc.relation.referencesSaijo, K., Crotti, A., & Glass, C. K. (2010). Nuclear receptors, inflammation, and neurodegenerative diseases. En Advances in Immunology (1a ed., Vol. 106, Número C). Elsevier Inc. https://doi.org/10.1016/S0065-2776(10)06002-5
dc.relation.referencesSamhan-Arias, A. K., Poejo, J., Marques-da-Silva, D., Martínez-Costa, O. H., & Gutierrez-Merino, C. (2023). Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling? Molecules (Basel, Switzerland), 28(23). https://doi.org/10.3390/MOLECULES28237909
dc.relation.referencesSandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X receptor in AD pathophysiology. PLoS ONE, 10(12), 1–24. https://doi.org/10.1371/journal.pone.0145467
dc.relation.referencesSandoval-Hernández, A. G., Hernández, H. G., Restrepo, A., Muñoz, J. I., Bayon, G. F., Fernández, A. F., Fraga, M. F., Cardona-Gómez, G. P., Arboleda, H., & Arboleda, G. H. (2016). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Journal of Molecular Neuroscience, 58(2), 243–253. https://doi.org/10.1007/s12031-015-0665-8
dc.relation.referencesSandoval-Hernández, A. G., Restrepo, A., Cardona-Gómez, G. P., & Arboleda, G. (2016). LXR activation protects hippocampal microvasculature in very old triple transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 621, 15–21. https://doi.org/10.1016/j.neulet.2016.04.007
dc.relation.referencesSchindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods 2012 9:7, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
dc.relation.referencesSchultz, C., & Engelhardt, M. (2014). Anatomy of the hippocampal formation. The Hippocampus in Clinical Neuroscience, 34, 6–17. https://doi.org/10.1159/000360925
dc.relation.referencesSelkoe, D. J. (2001a). Alzheimer’s disease: Genes, proteins, and therapy. En Physiological Reviews (Vol. 81, Número 2, pp. 741–766). https://doi.org/10.1152/physrev.2001.81.2.741
dc.relation.referencesSelkoe, D. J. (2001b). Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. Journal of Alzheimer’s disease : JAD, 3(1), 75–81. https://doi.org/10.3233/JAD-2001-3111
dc.relation.referencesSelkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. En Science (Vol. 298, Número 5594, pp. 789–791). American Association for the Advancement of Science. https://doi.org/10.1126/science.1074069
dc.relation.referencesSelkoe, D. J. (2004). Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nature Cell Biology, 6(11), 1054–1061. https://doi.org/10.1038/ncb1104-1054
dc.relation.referencesSelkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210
dc.relation.referencesSergeant, N., Bretteville, A., Hamdane, M., Caillet-Boudin, M. L., Grognet, P., Bombois, S., Blum, D., Delacourte, A., Pasquier, F., Vanmechelen, E., Schraen-Maschke, S., & Buée, L. (2008). Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. En Expert Review of Proteomics (Vol. 5, Número 2, pp. 207–224). Future Drugs Ltd. https://doi.org/10.1586/14789450.5.2.207
dc.relation.referencesSerrano-Pozo, A., Das, S., & Hyman, B. T. (2021). APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. The Lancet Neurology, 20(1), 68–80. https://doi.org/10.1016/S1474-4422(20)30412-9
dc.relation.referencesSever, R., & Glass, C. K. (2013). Signaling by nuclear receptors. Cold Spring Harbor Perspectives in Biology, 5(3), 1–4. https://doi.org/10.1101/cshperspect.a016709
dc.relation.referencesShankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., & Selkoe, D. J. (2008). Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14(8), 837–842. https://doi.org/10.1038/nm1782
dc.relation.referencesSharma, M., Pal, P., & Gupta, S. K. (2024). The neurotransmitter puzzle of Alzheimer’s: Dissecting mechanisms and exploring therapeutic horizons. Brain research, 1829. https://doi.org/10.1016/J.BRAINRES.2024.148797
dc.relation.referencesSheng, M., Sabatini, B. L., & Su, T. C. (2018). Synapses and Alzheimer ’ s Disease. Cold Spring Harb Perspect Biol, 1–18.
dc.relation.referencesShi, Y., Manis, M., Long, J., Wang, K., Sullivan, P. M., Serrano, J. R., Hoyle, R., & Holtzman, D. M. (2019). Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. The Journal of experimental medicine, 216(11), 2546–2561. https://doi.org/10.1084/JEM.20190980
dc.relation.referencesSibarov, D. A., Zhuravleva, Z. D., Ilina, M. A., Boikov, S. I., Stepanenko, Y. D., Karelina, T. V., & Antonov, S. M. (2023). Unveiling the Role of Cholesterol in Subnanomolar Ouabain Rescue of Cortical Neurons from Calcium Overload Caused by Excitotoxic Insults. Cells, 12(15). https://doi.org/10.3390/CELLS12152011
dc.relation.referencesSiddiqi, M. K., Malik, S., Majid, N., Alam, P., & Khan, R. H. (2019). Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. Advances in Protein Chemistry and Structural Biology, 118, 333–369. https://doi.org/10.1016/bs.apcsb.2019.06.001
dc.relation.referencesSievers, S. A., Karanicolas, J., Chang, H. W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J. T., Münch, J., Baker, D., & Eisenberg, D. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 475(7354), 96–103. https://doi.org/10.1038/nature10154
dc.relation.referencesSingh, D. (2022). Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. Journal of neuroinflammation, 19(1). https://doi.org/10.1186/S12974-022-02565-0
dc.relation.referencesSingh, S., Kushwah, A. S., Singh, R., Farswan, M., & Kaur, R. (2012). Current therapeutic strategy in Alzheimer’s disease. European review for medical and pharmacological sciences, 16(12), 1651–1664.
dc.relation.referencesSjöberg, M. K., Shestakova, E., Mansuroglu, Z., Maccioni, R. B., & Bonnefoy, E. (2006). Tau protein binds to pericentromeric DNA: A putative role for nuclear tau in nucleolar organization. Journal of Cell Science, 119(10), 2025–2034. https://doi.org/10.1242/jcs.02907
dc.relation.referencesSkerrett, R., Malm, T., & Landreth, G. (2014). Nuclear receptors in neurodegenerative diseases. Neurobiology of Disease, 72(Part A), 104–116. https://doi.org/10.1016/j.nbd.2014.05.019
dc.relation.referencesSnyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. W., Lombroso, P. J., Gouras, G. K., & Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloid-β. Nature Neuroscience, 8(8), 1051–1058. https://doi.org/10.1038/nn1503
dc.relation.referencesSoto, C. (2011). Prion hypothesis: The end of the controversy? Trends in Biochemical Sciences, 36(3), 151–158. https://doi.org/10.1016/j.tibs.2010.11.001
dc.relation.referencesSoto, C., Castano, E. M., Frangione, B., & Inestrosa, N. C. (1995). The α-helical to β-strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. Journal of Biological Chemistry, 270(7), 3063–3067. https://doi.org/10.1074/jbc.270.7.3063
dc.relation.referencesSquire, L. R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiology of learning and memory, 82(3), 171–177. https://doi.org/10.1016/J.NLM.2004.06.005
dc.relation.referencesStark, R., Grzelak, M., & Hadfield, J. (2019). RNA sequencing: the teenage years. Nature Reviews Genetics, 20(11), 631–656. https://doi.org/10.1038/s41576-019-0150-2
dc.relation.referencesStefani, M. (2010). Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. En FEBS Journal (Vol. 277, Número 22, pp. 4602–4613). John Wiley & Sons, Ltd. https://doi.org/10.1111/j.1742-4658.2010.07889.x
dc.relation.referencesSweeney, M. D., Sagare, A. P., & Zlokovic, B. V. (2018). Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 14(3), 133–150. https://doi.org/10.1038/nrneurol.2017.188
dc.relation.referencesSweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R., & Zlokovic, B. V. (2019). Blood-brain barrier: From physiology to disease and back. Physiological Reviews, 99(1), 21–78. https://doi.org/10.1152/physrev.00050.2017
dc.relation.referencesTahara, K., Kim, H. D., Jin, J. J., Maxwell, J. A., Li, L., & Fukuchi, K. I. (2006). Role of toll-like receptor signalling in Abeta uptake and clearance. Brain : a journal of neurology, 129(Pt 11), 3006–3019. https://doi.org/10.1093/BRAIN/AWL249
dc.relation.referencesTai, H. C., Serrano-Pozo, A., Hashimoto, T., Frosch, M. P., Spires-Jones, T. L., & Hyman, B. T. (2012). The synaptic accumulation of hyperphosphorylated tau oligomers in alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. American Journal of Pathology, 181(4), 1426–1435. https://doi.org/10.1016/j.ajpath.2012.06.033
dc.relation.referencesTakeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. https://doi.org/10.1016/J.CELL.2010.01.022
dc.relation.referencesTapia-Rojas, C., Cabezas-Opazo, F., Deaton, C. A., Vergara, E. H., Johnson, G. V. W., & Quintanilla, R. A. (2019). It’s all about tau. Progress in Neurobiology, 175(December 2018), 54–76. https://doi.org/10.1016/j.pneurobio.2018.12.005
dc.relation.referencesTenorio, M. (2016). Flavonoids extracted from orange peelings tangelo (Citrus reticulata x Citrus paradisi) and their application as a natural antioxidant in sacha inchi (Plukenetia volubilis) vegetable oil. Scientia Agropecuaria, 7, 419–431. https://doi.org/10.17268/SCI.AGROPECU.2016.04.07
dc.relation.referencesTerry, A. V. (2009). Spatial Navigation (Water Maze) Tasks. Methods of Behavior Analysis in Neuroscience, 153–166. https://doi.org/10.1201/noe1420052343.ch13
dc.relation.referencesTharp, W. G., & Sarkar, I. N. (2013). Origins of amyloid-β. BMC Genomics, 14(1), 290. https://doi.org/10.1186/1471-2164-14-290
dc.relation.referencesTillement, L., Lecanu, L., & Papadopoulos, V. (2011). Alzheimer’s disease: Effects of β-amyloid on mitochondria. Mitochondrion, 11(1), 13–21. https://doi.org/10.1016/j.mito.2010.08.009
dc.relation.referencesTobore, T. O. (2019). On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurological Sciences 2019 40:8, 40(8), 1527–1540. https://doi.org/10.1007/S10072-019-03863-X
dc.relation.referencesToledo, J. B., Arnold, S. E., Raible, K., Brettschneider, J., Xie, S. X., Grossman, M., Monsell, S. E., Kukull, W. A., & Trojanowski, J. Q. (2013). Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain, 136(9), 2697–2706. https://doi.org/10.1093/brain/awt188
dc.relation.referencesToniolo, S., Sen, A., & Husain, M. (2020). Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’s Disease. International journal of molecular sciences, 21(23), 1–37. https://doi.org/10.3390/IJMS21239318
dc.relation.referencesTracy, T. E., & Gan, L. (2018). Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Current Opinion in Neurobiology, 51, 134–138. https://doi.org/10.1016/J.CONB.2018.04.027
dc.relation.referencesTsai, H. H. G., Lee, J. Bin, Tseng, S. S., Pan, X. A., & Shih, Y. C. (2010). Folding and membrane insertion of amyloid-beta (25-35) peptide and its mutants: Implications for aggregation and neurotoxicity. Proteins: Structure, Function and Bioinformatics, 78(8), 1909–1925. https://doi.org/10.1002/prot.22705
dc.relation.referencesUrbanc, B., Cruz, L., Yun, S., Buldyrev, S. V., Bitan, G., Teplow, D. B., & Stanley, H. E. (2004). In silico study of amyloid β-protein folding and oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 101(50), 17345–17350. https://doi.org/10.1073/pnas.0408153101
dc.relation.referencesVerma, M., Vats, A., & Taneja, V. (2015). Toxic species in amyloid disorders: Oligomers or mature fibrils. En Annals of Indian Academy of Neurology (Vol. 18, Número 2, pp. 138–145). Medknow Publications. https://doi.org/10.4103/0972-2327.144284
dc.relation.referencesViola, K. L., & Klein, W. L. (2015). Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathologica, 129(2), 183–206. https://doi.org/10.1007/s00401-015-1386-3
dc.relation.referencesVon Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E. M., & Mandelkow, E. (2000). Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5129–5134. https://doi.org/10.1073/pnas.97.10.5129
dc.relation.referencesVorhees, C. V., & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848–858. https://doi.org/10.1038/nprot.2006.116
dc.relation.referencesWahrle, S. E., Jiang, H., Parsadanian, M., Legleiter, J., Han, X., Fryer, J. D., Kowalewski, T., & Holtzman, D. M. (2004). ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. The Journal of biological chemistry, 279(39), 40987–40993. https://doi.org/10.1074/JBC.M407963200
dc.relation.referencesWang, C., Zong, S., Cui, X., Wang, X., Wu, S., Wang, L., Liu, Y., & Lu, Z. (2023). The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Frontiers in Immunology, 14, 1117172. https://doi.org/10.3389/FIMMU.2023.1117172
dc.relation.referencesWang, L., Schuster, G. U., Hultenby, K., Zhang, Q., Andersson, S., & Gustafsson, J. Å. (2002). Liver X receptors in the central nervous system: From lipid homeostasis to neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13878–13883. https://doi.org/10.1073/pnas.172510899
dc.relation.referencesWang, Y., & Mandelkow, E. (2016). Tau in physiology and pathology. Nature Reviews Neuroscience, 17(1), 5–21. https://doi.org/10.1038/nrn.2015.1
dc.relation.referencesWang, Z. C., Zhao, J., & Li, S. (2013). Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neuroscience Bulletin, 29(6), 752–760. https://doi.org/10.1007/s12264-013-1383-2
dc.relation.referencesWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484
dc.relation.referencesWB, S., & B, M. (2000). Loss of recent memory after bilateral hippocampal lesions. 1957. The Journal of neuropsychiatry and clinical neurosciences, 12(1), 103–103. https://doi.org/10.1176/JNP.12.1.103
dc.relation.referencesWebber, C. (2011). Functional enrichment analysis with structural variants: pitfalls and strategies. Cytogenetic and genome research, 135(3–4), 277–285. https://doi.org/10.1159/000331670
dc.relation.referencesWeingarten, M. D., Lockwood, A. H., Hwo, S. Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America, 72(5), 1858–1862. https://doi.org/10.1073/pnas.72.5.1858
dc.relation.referencesWhitney, K. D., Watson, M. A., Collins, J. L., Benson, W. G., Stone, T. M., Numerick, M. J., Tippin, T. K., Wilson, J. G., Winegar, D. A., & Kliewer, S. A. (2002). Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Molecular Endocrinology, 16(6), 1378–1385. https://doi.org/10.1210/mend.16.6.0835
dc.relation.referencesWischik, C. M., Staff, R. T., Wischik, D. J., Bentham, P., Murray, A. D., Storey, J. M. D., Kook, K. A., & Harrington, C. R. (2015). Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease. Journal of Alzheimer’s Disease, 44(2), 705–720. https://doi.org/10.3233/JAD-142874
dc.relation.referencesWithanage, M. H. H., Liang, H., & Zeng, E. (2022). RNA-Seq Experiment and Data Analysis. Methods in molecular biology (Clifton, N.J.), 2418, 405–424. https://doi.org/10.1007/978-1-0716-1920-9_22
dc.relation.referencesWójtowicz, S., Strosznajder, A. K., Jeżyna, M., & Strosznajder, J. B. (2020). The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochemical Research, 45(5), 972–988. https://doi.org/10.1007/s11064-020-02993-5
dc.relation.referencesWolf, S. A., Boddeke, H. W. G. M., & Kettenmann, H. (2017). Microglia in Physiology and Disease. Annual review of physiology, 79, 619–643. https://doi.org/10.1146/ANNUREV-PHYSIOL-022516-034406
dc.relation.referencesWood, W. G., Li, L., Müller, W. E., & Eckert, G. P. (2014). Cholesterol as a causative factor in Alzheimer’s disease: a debatable hypothesis. Journal of neurochemistry, 129(4), 559–572. https://doi.org/10.1111/JNC.12637
dc.relation.referencesWoolfrey, K. M., Dell’acqua, M. L., Martinez, T. P., Larsen, M. E., & Sullivan, E. (2024). Amyloid-β-induced dendritic spine elimination requires Ca2+-permeable AMPA receptors, AKAP-Calcineurin-NFAT signaling, and the NFAT target gene Mdm2. eNeuro, 11(3). https://doi.org/10.1523/ENEURO.0175-23.2024
dc.relation.referencesWyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C., & Husemann, J. (2003). Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Medicine, 9(4), 453–457. https://doi.org/10.1038/nm838
dc.relation.referencesXiao, Q., Yan, P., Ma, X., Liu, H., Perez, R., Zhu, A., Gonzales, E., Burchett, J. M., Schuler, D. R., Cirrito, J. R., Diwan, A., & Lee, J. M. (2014). Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(29), 9607–9620. https://doi.org/10.1523/JNEUROSCI.3788-13.2014
dc.relation.referencesXiong, H., Callaghan, D., Jones, A., Walker, D. G., Lue, L. F., Beach, T. G., Sue, L. I., Woulfe, J., Xu, H., Stanimirovic, D. B., & Zhang, W. (2008). Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiology of disease, 29(3), 422–437. https://doi.org/10.1016/J.NBD.2007.10.005
dc.relation.referencesYadav, N., Toader, A., & Rajasethupathy, P. (2024). Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron, 112(7), 1045–1059. https://doi.org/10.1016/J.NEURON.2023.12.021
dc.relation.referencesYamada, R., & Kuba, H. (2016). Structural and Functional Plasticity at the Axon Initial Segment. Frontiers in cellular neuroscience, 10(OCT2016), 250. https://doi.org/10.3389/fncel.2016.00250
dc.relation.referencesYan, S. Du, Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., & Schmidt, A. M. (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature, 382(6593), 685–691. https://doi.org/10.1038/382685A0
dc.relation.referencesYang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119
dc.relation.referencesYasuda, R., Hayashi, Y., & Hell, J. W. (2022). CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nature reviews. Neuroscience, 23(11), 666–682. https://doi.org/10.1038/S41583-022-00624-2
dc.relation.referencesYe, R., Goodheart, A. E., Locascio, J. J., Peterec, E., Properzi, M., Thibault, E. G., Chuba, E., Johnson, K. A., Brickhouse, M. J., Touroutoglou, A., Growdon, J. H., Dickerson, B. C., & Gomperts, S. N. (2024). Differential Vulnerability of Hippocampal Subfields to Amyloid and Tau Deposition in the Lewy Body Diseases. Neurology, 102(12). https://doi.org/10.1212/WNL.0000000000209460
dc.relation.referencesYeh, C. T., Chang, H. W., Hsu, W. H., Huang, S. J., Wu, M. H., Tu, L. H., Lee, M. C., & Chan, J. C. C. (2023). Beta Amyloid Oligomers with Higher Cytotoxicity have Higher Sidechain Dynamics. Chemistry (Weinheim an der Bergstrasse, Germany), 29(58). https://doi.org/10.1002/CHEM.202301879
dc.relation.referencesYin, H., Duo, H., Li, S., Qin, D., Xie, L., Xiao, Y., Sun, J., Tao, J., Zhang, X., Li, Y., Zou, Y., Yang, Q., Yang, X., Hao, Y., & Li, B. (2024). Unlocking biological insights from differentially expressed genes: Concepts, methods, and future perspectives. Journal of advanced research. https://doi.org/10.1016/J.JARE.2024.12.004
dc.relation.referencesZempel, H., & Mandelkow, E. M. (2015). Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia. Molecular neurodegeneration, 10(1). https://doi.org/10.1186/S13024-015-0064-1
dc.relation.referencesZenaro, E., Piacentino, G., & Constantin, G. (2017). The blood-brain barrier in Alzheimer’s disease. Neurobiology of Disease, 107, 41–56. https://doi.org/10.1016/j.nbd.2016.07.007
dc.relation.referencesZhang, R., Wuerch, E., Yong, V. W., & Xue, M. (2024). LXR agonism for CNS diseases: promises and challenges. Journal of Neuroinflammation, 21(1), 97. https://doi.org/10.1186/S12974-024-03056-0
dc.relation.referencesZhang, Y. W., Thompson, R., Zhang, H., & Xu, H. (2011). APP processing in Alzheimer’s disease. Molecular Brain, 4(1), 3. https://doi.org/10.1186/1756-6606-4-3
dc.relation.referencesZhao, J., O’Connor, T., & Vassar, R. (2011). The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. Journal of neuroinflammation, 8. https://doi.org/10.1186/1742-2094-8-150
dc.relation.referencesZhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of alzheimer’s disease. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2013/316523
dc.relation.referencesZhou, L., McInnes, J., Wierda, K., Holt, M., Herrmann, A. G., Jackson, R. J., Wang, Y. C., Swerts, J., Beyens, J., Miskiewicz, K., Vilain, S., Dewachter, I., Moechars, D., Strooper, B. De, Spires-Jones, T. L., Wit, J. De, & Verstreken, P. (2017). Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications, 8(May), 1–13. https://doi.org/10.1038/ncomms15295
dc.relation.referencesZhou, Q., Su, X., Jing, G., Chen, S., & Ning, K. (2018). RNA-QC-chain: Comprehensive and fast quality control for RNA-Seq data. BMC Genomics, 19(1), 1–10. https://doi.org/10.1186/S12864-018-4503-6/FIGURES/4
dc.relation.referencesZhu, X., Owen, J. S., Wilson, M. D., Li, H., Griffiths, G. L., Thomas, M. J., Hiltbold, E. M., Fessler, M. B., & Parks, J. S. (2010). Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. Journal of lipid research, 51(11), 3196–3206. https://doi.org/10.1194/JLR.M006486
dc.relation.referencesZott, B., & Konnerth, A. (2023). Impairments of glutamatergic synaptic transmission in Alzheimer’s disease. Seminars in Cell & Developmental Biology, 139, 24–34. https://doi.org/10.1016/J.SEMCDB.2022.03.013
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.agrovocLauraceaeeng
dc.subject.agrovocRutaceaeeng
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología
dc.subject.decsEnfermedad de Alzheimerspa
dc.subject.decsAlzheimer diseaseeng
dc.subject.decsReceptores X del hígadospa
dc.subject.decsLiver X receptorseng
dc.subject.decsExtractos vegetalesspa
dc.subject.decsPlant extractseng
dc.subject.decsTauopatíasspa
dc.subject.decsTauopathieseng
dc.subject.decsEnfermedades neuroinflamatorias -- Terapiaspa
dc.subject.decsNeuroinflammatory diseases -- Therapyeng
dc.subject.proposalReceptores LXRspa
dc.subject.proposalAmiloide-βspa
dc.subject.proposalTauopatíaspa
dc.subject.proposalNeuroinflamaciónspa
dc.subject.proposalMetabolismo lipídicospa
dc.subject.proposalExtractos vegetales NR/ZMspa
dc.subject.proposalLiver X receptors (LXR)eng
dc.subject.proposalβ‑amyloideng
dc.subject.proposalTauopathyeng
dc.subject.proposalNeuroinflammationeng
dc.subject.proposalLipid metabolismeng
dc.subject.proposalNR/ZM plant extractseng
dc.titleEvaluación del efecto de extractos de plantas (familias lauraceae y rutaceae) con potencial agonista de receptores nucleares LXR sobre diversos cambios celulares, moleculares y transcripcionales en modelos de enfermedad de Alzheimerspa
dc.title.translatedEvaluation of plant xxtracts from the Lauraceae and Rutaceae Families with potential LXR nuclear receptor agonist activity on cellular, molecular and transcriptomic alterations in Alzheimer’s disease modelseng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
tesis doctorado.pdf
Tamaño:
10.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Biomédicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: