Estudio de las Nicotinamida Mononucleótido Adenilil Transferasas (NMNATs) de parásitos protozoos: Determinación de su bifuncionalidad como chaperonas moleculares e implementación de una metodología para su detección
dc.contributor.advisor | Ramírez Hernández, María Helena | spa |
dc.contributor.author | Gomez Osorio, Valentina | spa |
dc.contributor.orcid | Gomez Osorio, Valentina [0000-0002-0775-4361] | spa |
dc.contributor.researchgroup | Libbiq Un | spa |
dc.date.accessioned | 2025-03-25T13:12:54Z | |
dc.date.available | 2025-03-25T13:12:54Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Ciertas proteínas poseen la capacidad de ejercer más de una función, propiedad conocida como moonlighting. Las proteínas que más presentan esta característica son enzimas que tienen como actividad canónica rutas del metabolismo energético basal. Para que las proteínas puedan desempeñar su función o funciones, es necesario que tengan una conformación nativa. Para lograr esta estructura dentro de la célula, es necesario que las proteínas sean asistidas por las chaperonas moleculares. Las Nicotinamida Mononucleótido Adenilil Transferasas (NMNATs), además de su rol como paso final en la síntesis del nucleótido de nicotinamida y adenina (NAD+), les ha sido descrita una función moonlight como chaperonas moleculares en varios organismos. Dada la alta importancia de las NMNATs, estas representan un blanco farmacológico relevante para el diagnóstico y tratamiento contra parásitos protozoos como Leishmania braziliensis, Trypanosoma cruzi, y Giardia lamblia, los cuales tienen una alta incidencia en salud pública en Colombia. Por esta razón, se planteó el estudio de las NMNATs de estos parásitos, con el fin de comprobar si cuentan con actividad chaperona, y la implementación de una herramienta de detección molecular en la forma de aptámeros (oligonucleótidos de ADN). Para lograr esto, se identificaron in silico regiones compartidas entre NMNATs chaperonas y las de los parásitos. De manera in vitro, se expresó y purificó la LbNMNAT desde Escherichia coli M15 transformadas con el plásmido pQE30lbnmnat y se evaluó la actividad chaperona mediante ensayos de agregación e inactivación. Además, se utilizó la metodología SELEX para seleccionar preliminarmente aptámeros afines a la 6xHisHsNMNAT3, una de las proteínas estudiadas en este trabajo (Texto tomado de la fuente). | spa |
dc.description.abstract | Certain proteins have the ability to perform more than one function, a property known as moonlighting. The proteins that most often exhibit this characteristic are enzymes that have as canonical activity pathways of basal energy metabolism. For proteins to perform their function or functions, it is necessary for them to have a native conformation. To achieve this structure within the cell, proteins need to be assisted by molecular chaperones. Nicotinamide Mononucleotide Adenylyl Transferases (NMNATs), in addition to their role as the final step in the synthesis of nicotinamide adenine nucleotide (NAD+), have been described moonlighting as molecular chaperones in several organisms. Given the high importance of NMNATs, they represent a relevant pharmacological target for the diagnosis and treatment of protozoan parasites such as Leishmania braziliensis, Trypanosoma cruzi, and Giardia lamblia, which have a high incidence on public health in Colombia. For this reason, the study of the NMNATs of these parasites was proposed, to check if they have chaperone activity, and the implementation of a molecular detection tool in the form of aptamers (DNA oligonucleotides). To achieve this, shared regions between chaperone NMNATs and those of the parasites were identified in silico. in vitro, LbNMNAT was expressed and purified from Escherichia coli M15 transformed with the plasmid pQE30lbnmnat and the chaperone activity was evaluated by means of aggregation and inactivation assays. In addition, the SELEX methodology was used to preliminarily select aptamers related to 6xHisHsNMNAT3, one of the proteins studied in this study. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias – Bioquímica | spa |
dc.description.methods | En primer lugar, se llevaron a cabo alineamientos de secuencia entre las NMNATs de organismos a las cuales se les ha confirmado la actividad chaperona y NMNATs caracterizadas previamente por el grupo de investigación (L. braziliensis código de acceso XP_001563913.1, T. cruzi XP_816384.1, Giardia intestinalis XP_001706814.1) (189,190,198). De esta manera, se emplearon las secuencias de las tres isoenzimas de NMNATs de Homo sapiens (códigos de acceso: NP_001284707.1, NP_055854.1 y NP_001307440.1), la NMNAT de Drosophila melanogaster (código de acceso: NP_651315.2), Las 3 isoenzimas de Mus musculus (código de acceso: NP_001343286.1, NP_780669.1 y NP_653116.1) y la isoenzima 1 de Saccharomyces cerevisiae (NMA1) (Código de acceso: KZV09573.1) (176,180,199,200). Estos se compararon con cada una de las NMNATs de parásitos protozoos, tanto en alineamientos de secuencia múltiples como pareados, con el fin de encontrar la mayor cantidad de similitudes. Los análisis fueron realizados empleando los programas Clustal Omega (Clustal Omega < Multiple Sequence Alignment < EMBL-EBI), MUSCLE (MUSCLE < Multiple Sequence Alignment < EMBL-EBI) y T-Coffee (https://tcoffee.crg.eu/apps/tcoffee/do:mcoffee), a través de Jalview (Jalview Home Page - Jalview) para los alineamientos de secuencia múltiple y BLAST (Protein BLAST: search protein databases using a protein query (nih.gov)), EMBOSS para los alineamientos pareados (201–205). | spa |
dc.description.researcharea | Metabolismo energético de parásitos protozoarios | spa |
dc.format.extent | xv, 142 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87722 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.references | Jeffery CJ. Moonlighting proteins. Trends Biochem Sci. 1999;24(1):8–11. | spa |
dc.relation.references | Jia B, Cheong GW, Zhang S. Multifunctional enzymes in archaea: Promiscuity and moonlight. Extremophiles. 2013;17(2):193–203. | spa |
dc.relation.references | Jeffery CJ. What is Protein Moonlighting and Why is it Important? Moonlighting Proteins: Novel Virulence Factors in Bacterial Infections. 2016;(figure 1):1–19. | spa |
dc.relation.references | Jeffery CJ. An introduction to protein moonlighting. Biochem Soc Trans. 2014;42(6):1679–83. | spa |
dc.relation.references | Jayaraj GG, Hipp MS, Ulrich Hartl F. Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol. 2020;12(1). | spa |
dc.relation.references | Bar-lavan Y, Shemesh N, Ben-zvi A. Chaperone families and interactions in metazoa. 2016;237–53. | spa |
dc.relation.references | Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci. 2021;8(June):1–11. | spa |
dc.relation.references | Franco-Serrano L, Sánchez-Redondo D, Nájar-García A, Hernández S, Amela I, Perez-Pons JA, et al. Pathogen moonlighting proteins: From ancestral key metabolic enzymes to virulence factors. Microorganisms. 2021 Jun 1;9(6). | spa |
dc.relation.references | Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It’s an NAD+ synthase… It’s a chaperone… It’s a neuroprotector. Curr Opin Genet Dev. 2017;44:156–62. | spa |
dc.relation.references | Lau C, Niere M, Ziegler M. The NMN/NaMN adenylyltransferase (NMNAT) protein family. Frontiers in Bioscience. 2009;14(2):410–31. | spa |
dc.relation.references | Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res [Internet]. 2017;6(May):750. Available from: https://f1000research.com/articles/6-750/v1 | spa |
dc.relation.references | Onyekwelu KC. Life Cycle of Trypanosoma cruzi in the Invertebrate and the Vertebrate Hosts. In: De Souza W, editor. Biology of Trypanosoma cruzi. London: IntechOpen; 2019. p. 13. | spa |
dc.relation.references | Parra-Henao G, Vera M. Enfermedad de Chagas, logros y perspectivas en Colombia. Biomedica. 2022;42:213–7. | spa |
dc.relation.references | Bautista-Gomez MM, Doerfler J, del Mar Castro M. Barriers to cutaneous leishmaniasis care faced by indigenous communities of rural areas in Colombia: a qualitative study. BMC Infect Dis. 2022 Dec 1;22(1). | spa |
dc.relation.references | Pérez-Molina JA, Crespillo-Andújar C, Bosch-Nicolau P, Molina I. Trypanocidal treatment of Chagas disease. Vol. 39, Enfermedades Infecciosas y Microbiologia Clinica. Elsevier Doyma; 2021. p. 458–70. | spa |
dc.relation.references | Pradhan S, Schwartz RA, Patil A, Grabbe S, Goldust M. Treatment options for leishmaniasis. Vol. 47, Clinical and Experimental Dermatology. John Wiley and Sons Inc; 2022. p. 516–21. | spa |
dc.relation.references | Rojas-López L, Marques RC, Svärd SG. Giardia duodenalis. Trends Parasitol. 2022;38(7):605–6. | spa |
dc.relation.references | Mørch K, Hanevik K. Giardiasis treatment: an update with a focus on refractory disease. Vol. 33, Current Opinion in Infectious Diseases. Lippincott Williams and Wilkins; 2020. p. 355–64. | spa |
dc.relation.references | Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Vol. 69, Biotechnology and Applied Biochemistry. John Wiley and Sons Inc; 2022. p. 1771–92. | spa |
dc.relation.references | Horowitz NH. One-gene-one-enzyme: remembering biochemical genetics. Protein Sci. 1995;4(5):1017–9. | spa |
dc.relation.references | Beadle GW, Tatum EL. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A. 1941;27(11):499–506. | spa |
dc.relation.references | WANG Y, LIU J, HUANG B, XU YM, LI J, HUANG LF, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3(2):152–8. | spa |
dc.relation.references | Singh N, Bhalla N. Moonlighting Proteins. Annu Rev Genet. 2020;54:265–85. | spa |
dc.relation.references | Ingolia TD, Craig EA. Four small Drosophila heat shock proteins are related to each other and mammalian a-crystallin. Proc Natl Acad Sci U S A. 1982;79(7 I):2360–4. | spa |
dc.relation.references | Wistow GJ, Mulders JWM, De Jong WW. The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature. 1987;326(6113):622–4. | spa |
dc.relation.references | Horwitz J. α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992;89(21):10449–53. | spa |
dc.relation.references | Piatigorsky J, Wistow GJ. Enzyme/crystallins: Gene sharing as an evolutionary strategy. Cell. 1989;57(2):197–9. | spa |
dc.relation.references | Henderson B, Martin ACR. The biological and biomedical consequences of protein moonlighting. Biochem Soc Trans. 2014;42(6):1671–8. | spa |
dc.relation.references | Copley SD. An evolutionary perspective on protein moonlighting. Biochem Soc Trans. 2014;42(6):1684–91. | spa |
dc.relation.references | Espinosa-Cantú A, Ascencio D, Barona-Gómez F, De Luna A. Gene duplication and the evolution of moonlighting proteins. Front Genet. 2015;6(JUL):1–7. | spa |
dc.relation.references | Franco-Serrano L, Cedano J, Perez-Pons JA, Mozo-Villarias A, Piñol J, Amela I, et al. A hypothesis explaining why so many pathogen virulence proteins are moonlighting proteins. Pathog Dis. 2018;76(5):1–4. | spa |
dc.relation.references | Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends Biochem Sci [Internet]. 2016;41(8):712–30. Available from: http://dx.doi.org/10.1016/j.tibs.2016.05.013 | spa |
dc.relation.references | Amblee V, Jeffery CJ. Physical features of intracellular proteins that moonlight on the cell surface. PLoS One. 2015;10(6):1–16. | spa |
dc.relation.references | Sirover MA. GAPDH: A Multifunctional Moonlighting Protein in Eukaryotes and Prokaryotes. Moonlighting Proteins: Novel Virulence Factors in Bacterial Infections. 2016;147–67. | spa |
dc.relation.references | Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20(July 2019):421–35. | spa |
dc.relation.references | Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature. 1958;181:662–6. | spa |
dc.relation.references | Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol. 2021;433(20):167197. | spa |
dc.relation.references | ANFINSEN CB, HABER E. Studies on the reduction and re-formation of protein disulfide bonds. J Biol Chem. 1961 May;236:1361–3. | spa |
dc.relation.references | Braselmann E, Chaney JL, Clark PL. Folding the proteome. Trends Biochem Sci. 2013;38(7):337–44. | spa |
dc.relation.references | Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. 1st ed. Vol. 114, Advances in Protein Chemistry and Structural Biology. Elsevier Inc.; 2019. 1–60 p. | spa |
dc.relation.references | Rivas G, Minton AP. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem Sci. 2016;41(11):970–81. | spa |
dc.relation.references | Breydo L, Reddy KD, Piai A, Felli IC, Pierattelli R, Uversky VN. The crowd you’re in with: Effects of different types of crowding agents on protein aggregation. Biochim Biophys Acta Proteins Proteom. 2014;1844(2):346–57. | spa |
dc.relation.references | Ellis RJ, Minton AP. Protein aggregation in crowded environments. Biol Chem. 2006;387(5):485–97. | spa |
dc.relation.references | Jayaraj GG, Hipp MS, Ulrich Hartl F. Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol. 2020;12(1). | spa |
dc.relation.references | Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol. 2008;18(6):756–64. | spa |
dc.relation.references | Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F. Molecular chaperone functions in protein folding and proteostasis. Vol. 82, Annual Review of Biochemistry. 2013. 323–355 p. | spa |
dc.relation.references | Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett. 2020;594(17):2770–81. | spa |
dc.relation.references | Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci. 2021;8(June):1–11. | spa |
dc.relation.references | Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science (1979). 2008;319(5865):916–9. | spa |
dc.relation.references | Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science (1979). 2016;353(6294). | spa |
dc.relation.references | Ellis J. Proteins as molecular chaperones. Nature. 1987;328(30):378–9. | spa |
dc.relation.references | Rebeaud ME, Mallik S, Goloubinoff P, Tawfik DS. On the evolution of chaperones and cochaperones and the expansion of proteomes across the Tree of Life. Proc Natl Acad Sci U S A. 2021;118(21). | spa |
dc.relation.references | Pey AL. Protein homeostasis and disease. Protein Homeostasis Diseases. Elsevier Inc.; 2020. 23–37 p. | spa |
dc.relation.references | De Graff AMR, Mosedale DE, Sharp T, Dill KA, Grainger DJ. Proteostasis is adaptive: Balancing chaperone holdases against foldases. PLoS Comput Biol. 2020;16(12):1–15. | spa |
dc.relation.references | Bar-lavan Y, Shemesh N, Ben-zvi A. Chaperone families and interactions in metazoa. 2016;237–53. | spa |
dc.relation.references | Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630–42. | spa |
dc.relation.references | Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B. 2020;10(10):1904–25. | spa |
dc.relation.references | Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007;581(19):3702–10. | spa |
dc.relation.references | Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379–404. | spa |
dc.relation.references | Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630–42. | spa |
dc.relation.references | Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol. 2021;95(6):1943–70. | spa |
dc.relation.references | Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–32. | spa |
dc.relation.references | Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem. 2021;64(11):7060–82. | spa |
dc.relation.references | Alderson TRR, Kim JHH, Markley JLL. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Structure. 2016;24(7):1014–30. | spa |
dc.relation.references | Li H, Zhu H, Sarbeng EB, Liu Q, Tian X, Yang Y, et al. An unexpected second binding site for polypeptide substrates is essential for Hsp70 chaperone activity. Journal of Biological Chemistry. 2020;295(2):584–96. | spa |
dc.relation.references | Murphy ME. The HSP70 family and cancer. Carcinogenesis. 2013;34(6):1181–8. | spa |
dc.relation.references | Zhang H, Gong W, Wu S, Perrett S. Hsp70 in Redox Homeostasis. Cells. 2022;11(5):1–18. | spa |
dc.relation.references | Smock RG, Blackburn ME, Gierasch LM. Conserved, disordered C terminus of DnaK enhances cellular survival upon stress and DnaK in vitro chaperone activity. Journal of Biological Chemistry. 2011;286(36):31821–9. | spa |
dc.relation.references | Doyle SM, Genest O, Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol. 2013;14(10):617–29. | spa |
dc.relation.references | Zhuravleva A, Clerico EM, Gierasch LM. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell. 2012;151(6):1296–307. | spa |
dc.relation.references | Swain JF, Schulz EG, Gierasch LM. Direct comparison of a stable isolated Hsp70 substrate-binding domain in the empty and substrate-bound states. Journal of Biological Chemistry. 2006;281(3):1605–11. | spa |
dc.relation.references | Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20(11):665–80. | spa |
dc.relation.references | Nillegoda NB, Wentink AS, Bukau B. Protein Disaggregation in Multicellular Organisms. Trends Biochem Sci. 2018;43(4):285–300. | spa |
dc.relation.references | Bascos NAD, Landry SJ. A history of molecular chaperone structures in the protein data bank. Int J Mol Sci. 2019;20(24). | spa |
dc.relation.references | Hoter A, El-Sabban ME, Naim HY. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9). | spa |
dc.relation.references | Biebl MM, Buchner J. Structure, function, and regulation of the hsp90 machinery. Cold Spring Harb Perspect Biol. 2019;11(9). | spa |
dc.relation.references | Radons J. The Hsp90 Chaperone Machinery: An Important Hub in Protein Interaction Networks. Br J Med Med Res. 2016;14(9):1–32. | spa |
dc.relation.references | Prodromou C, Bjorklund DM. Advances towards Understanding the Mechanism of Action of the Hsp90 Complex. Biomolecules. 2022;12(5). | spa |
dc.relation.references | Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of hsp90 in cancer. Int J Mol Sci. 2021;22(19):1–19. | spa |
dc.relation.references | Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345–60. | spa |
dc.relation.references | Soti C, Vermes Á, Haystead TAJ, Csermely P. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: A distinct nucleotide specificity of the C-terminal ATP-binding site. Eur J Biochem. 2003;270(11):2421–8. | spa |
dc.relation.references | Radons J. The Hsp90 Chaperone Machinery: An Important Hub in Protein Interaction Networks. Br J Med Med Res. 2016;14(9):1–32. | spa |
dc.relation.references | Karagöz GE, Rüdiger SGD. Hsp90 interaction with clients. Trends Biochem Sci. 2015;40(2):117–25. | spa |
dc.relation.references | Johnson JL. Mutations in Hsp90 Cochaperones Result in a Wide Variety of Human Disorders. Front Mol Biosci. 2021;8(December):1–12. | spa |
dc.relation.references | Hayer-Hartl M, Bracher A, Hartl FU. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem Sci. 2016;41(1):62–76. | spa |
dc.relation.references | Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys. 2021;79(2):153–74. | spa |
dc.relation.references | Motojima F. How do chaperonins fold protein? Biophysics (Japan). 2015;11:93–102. | spa |
dc.relation.references | Sadat A, Tiwari S, Sunidhi S, Chaphalkar A, Kochar M, Ali M, et al. Conserved and divergent chaperoning effects of Hsp60/10 chaperonins on protein folding landscapes. Proc Natl Acad Sci U S A. 2022;119(18):1–11. | spa |
dc.relation.references | Camberg JL, Doyle SM, Johnston DM, Wickner S. Molecular Chaperones. Vol. 4, Brenner’s Encyclopedia of Genetics: Second Edition. Elsevier Inc.; 2013. 456–460 p. | spa |
dc.relation.references | Tang Y, Zhou Y, Fan S, Wen Q. The multiple roles and therapeutic potential of HSP60 in cancer. Biochem Pharmacol. 2022;201(March):115096. | spa |
dc.relation.references | Mayer MP. Gymnastics of molecular chaperones. Mol Cell. 2010;39(3):321–31. | spa |
dc.relation.references | orobko I, Mazal H, Haran G, Horovitz A. Measuring protein stability in the groel chaperonin cage reveals massive destabilization. Elife. 2020;9:1–23. | spa |
dc.relation.references | Yan X, Shi Q, Bracher A, Miličić G, Singh AK, Hartl FU, et al. GroEL Ring Separation and Exchange in the Chaperonin Reaction. Cell. 2018;172(3):605-617.e11. | spa |
dc.relation.references | Reinle K, Mogk A, Bukau B. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network: Functions and mechanisms of sHsps. J Mol Biol. 2022;434(1):167157. | spa |
dc.relation.references | Mymrikov E V., Daake M, Richter B, Haslbeck M, Buchner J. The chaperone activity and substrate spectrum of human small heat shock proteins. Journal of Biological Chemistry. 2017;292(2):672–84. | spa |
dc.relation.references | Webster JM, Darling AL, Uversky VN, Blair LJ. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front Pharmacol. 2019;10(September):1–18. | spa |
dc.relation.references | Kirstein J, Molière N, Dougan DA, Turgay K. Adapting the machine: Adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol. 2009;7(8):589–99. | spa |
dc.relation.references | Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci. 2021;8(May):1–14. | spa |
dc.relation.references | Mogk A, Bukau B, Kampinga HH. Cellular Handling of Protein Aggregates by Disaggregation Machines. Mol Cell. 2018;69(2):214–26. | spa |
dc.relation.references | Clark DP, Pazdernik NJ, McGehee MR. Molecular Biology. Elsevier Inc.; 2019. 1001 p. | spa |
dc.relation.references | Blanco. Chapter 13 - Metabolism. Med Biochem. 2017;275–81. | spa |
dc.relation.references | Yang PL. Metabolomics and Lipidomics: Yet More Ways Your Health is Influenced by Fat. Third Edit. Viral Pathogenesis: From Basics to Systems Biology: Third Edition. Elsevier; 2016. 181–198 p. | spa |
dc.relation.references | Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–41. | spa |
dc.relation.references | Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. | spa |
dc.relation.references | Shen Q, Zhang SJ, Xue YZ, Peng F, Cheng DY, Xue YP, et al. Biological synthesis of nicotinamide mononucleotide. Biotechnol Lett. 2021;43(12):2199–208. | spa |
dc.relation.references | Navas LE, Carnero A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther. 2021;6(1). | spa |
dc.relation.references | Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiologica. 2021;231(3):1–17. | spa |
dc.relation.references | Zapata‐Pérez R, Wanders RJA, Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease . EMBO Mol Med. 2021;13(7):1–15. | spa |
dc.relation.references | Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life. 2021;(October):1–11. | spa |
dc.relation.references | Lau C, Niere M, Ziegler M. The NMN/NaMN adenylyltransferase (NMNAT) protein family. Frontiers in Bioscience. 2009;14(2):410–31. | spa |
dc.relation.references | Contreras LE, Neme R, Ramírez MH. Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expr Purif. 2015;115:26–33. | spa |
dc.relation.references | Zhai RG, Rizzi M, Garavaglia S. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cellular and Molecular Life Sciences. 2009;66(17):2805–18. | spa |
dc.relation.references | Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. Journal of Biological Chemistry. 2010;285(24):18868–76. | spa |
dc.relation.references | Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci. 2021;24(5):371–83. | spa |
dc.relation.references | Ali YO, Li-Kroeger D, Bellen HJ, Zhai RG, Lu HC. NMNATs, Evolutionarily Conserved Neuronal Maintenance Factors. Trends Neurosci. 2013;36(11):1–7. | spa |
dc.relation.references | Felici R, Lapucci A, Ramazzotti M, Chiarugi A. Insight into Molecular and Functional Properties of NMNAT3 Reveals New Hints of NAD Homeostasis within Human Mitochondria. PLoS One. 2013;8(10). | spa |
dc.relation.references | Yue Z, Ma Y, You J, Li Z, Ding Y, He P, et al. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res. 2016;347(2):261–73. | spa |
dc.relation.references | Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mech Ageing Dev. 2021;199(August). | spa |
dc.relation.references | Tang BL. Why is NMNAT protective against neuronal cell death and axon degeneration, but inhibitory of axon regeneration? Cells. 2019;8(3). | spa |
dc.relation.references | Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50(4):284–97 | spa |
dc.relation.references | Florin-Christensen M, Schnittger L, editors. Parasitic Protozoa of Farm Animals and Pets. Cham: Springer International Publishing; 2018. 55–101 p. | spa |
dc.relation.references | Warren A, Esteban GF. Protozoa. Fourth Edi. Keys to Palaearctic Fauna: Thorp and Covich’s Freshwater Invertebrates – Volume IV. Elsevier; 2019. 7–42 p. | spa |
dc.relation.references | Küppers GC, Kosakyan A, Siemensma F, Claps MC, Paiva TS, Fernández LD, et al. Protozoa. Thorp and Covich’s Freshwater Invertebrates: Volume 5: Keys to Neotropical and Antarctic Fauna. 2020. 9–27 p. | spa |
dc.relation.references | Ginger ML. Niche metabolism in parasitic protozoa. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006;361(1465):101–18. | spa |
dc.relation.references | Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Vol. 11, Open Biology. 2021. | spa |
dc.relation.references | Yurchenko V, Butenko A, Kostygov AY. Genomics of trypanosomatidae: Where we stand and what needs to be done? Pathogens. 2021;10(9):1–15. | spa |
dc.relation.references | Rodrigues JCF, Godinho JLP, Souza W de. Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré C, editor. Proteins and Proteomics of Leishmania and Trypanosoma. 2014. p. 1–381. | spa |
dc.relation.references | Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol. 2017;7(9):170165. | spa |
dc.relation.references | Endrew N, Bonfim SMT, Calderon L de A, Scott ALB. Leishmaniasis: Molecular Aspects of Parasite Dimorphic Forms Life Cycle. In: Azevedo Calderonon L, editor. Leishmaniasis - General Aspects of a Stigmatized Disease. London: IntechOpen; 2022. p. 13. | spa |
dc.relation.references | Borghi SM, Fattori V, Conchon-Costa I, Pinge-Filho P, Pavanelli WR, Verri WA. Leishmania infection: painful or painless? Parasitol Res. 2017;116(2):465–75. | spa |
dc.relation.references | Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res. 2017;6(May):750. | spa |
dc.relation.references | Mokni M. Cutaneous leishmaniasis. Ann Dermatol Venereol. 2019;146(3):232–46. | spa |
dc.relation.references | Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr Trop Med Rep. 2021;8(2):121–32. | spa |
dc.relation.references | Ruiz-Postigo JA, Jain S, Mikhailov A, Valadas S, Warusavithana S, Osman M, et al. Global leishmaniasis suveillance: 2019-2020, a baseline for the 2030 roadmap. Wkly Epidemiol Rec. 2021;35:19. | spa |
dc.relation.references | Instituto Nacional de Salud (INS). Boletín Epidemiológico Semanal Semana Epidemiológica 41. Bogotá; 2024 Oct. | spa |
dc.relation.references | Instituto Nacional de Salud (INS). Boletín Epidemiológico Semanal Semana Epidemiológica 25. Bogotá; 2024 Jun. | spa |
dc.relation.references | Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: Asymmetric responses of bacteria to an infected blood meal. Parasit Vectors. 2016;9(1):1–11. | spa |
dc.relation.references | Onyekwelu KC. Life Cycle of Trypanosoma cruzi in the Invertebrate and the Vertebrate Hosts. In: De Souza W, editor. Biology of Trypanosoma cruzi. London: IntechOpen; 2019. p. 13. | spa |
dc.relation.references | Alves MJM, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, et al. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteomics. 2017;151:182–92. | spa |
dc.relation.references | Carrea A, Diambra L. Systems biology approach to model the life cycle of Trypanosoma cruzi. PLoS One. 2016;11(1):1–20. | spa |
dc.relation.references | Olivera MJ, Fory JA, Porras JF, Buitrago G. Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. PLoS One. 2019;14(1):1–18. | spa |
dc.relation.references | Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, et al. Chagas disease: From discovery to a worldwide health problem. J Phys Oceanogr. 2019;49(6):1–13. | spa |
dc.relation.references | Pan American Health Organization. Chagas disease in the Americas: a review of the current public health situation and its vision for the future. Paho. 2018;(May):18. | spa |
dc.relation.references | Ardila-Roldan SC. Informe de vigilancia entomológica de enfermedad de chagas Colombia 2021.pdf. Bogota, Colombia; 2021. | spa |
dc.relation.references | Instituto Nacional de Salud (INS). Boletín Epidemiológico Semanal Semana Epidemiológica 14. Bogotá; 2024 Apr. | spa |
dc.relation.references | INS IN de S. Semana epidemiológica 14 3 al 9 de abril de 2022. Boletín Epidemiológico Semanal. 2022;1–27. | spa |
dc.relation.references | Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al. A eukaryote without a mitochondrial organelle. Current Biology. 2016;26(10):1274–84. | spa |
dc.relation.references | Cernikova L, Faso C, Hehl AB. Five facts about Giardia lamblia. PLoS Pathog. 2018;14(9):1–5. | spa |
dc.relation.references | Einarsson E, Ma’ayeh S, Svärd SG. An up-date on Giardia and giardiasis. Curr Opin Microbiol. 2016;34:47–52. | spa |
dc.relation.references | Thompson RCA, Ash A. Molecular epidemiology of Giardia and Cryptosporidium infections. Infection, Genetics and Evolution. 2016;40:315–23. | spa |
dc.relation.references | Seher M, Al-Kahfaji A, Alsaadi ZH. Giardia Lamblia and Giardiasis. Journal of University of Babylon for Pure and Applied Sciences. 2019;(27):2019. | spa |
dc.relation.references | Rojas-López L, Marques RC, Svärd SG. Giardia duodenalis. Trends Parasitol. 2022;38(7):605–6. | spa |
dc.relation.references | Certad G, Viscogliosi E, Chabé M, Cacciò SM. Pathogenic Mechanisms of Cryptosporidium and Giardia. Trends Parasitol. 2017;33(7):561–76. | spa |
dc.relation.references | OMS. Report on global sexually transmitted Infection Surveillance. World Health organization Geneva. 2018. | spa |
dc.relation.references | Fusaro C, Chávez-Romero YA, Prada SLG, Serrano-Silva N, Bernal JE, González-Jiménez FE, et al. Burden and Epidemiology of Human Intestinal Giardia duodenalis Infection in Colombia: A Systematic Review. Vol. 7, Tropical Medicine and Infectious Disease. MDPI; 2022. | spa |
dc.relation.references | Scheller FW, Yarman A, Bachmann T, Hirsch T, Kubick S, Renneberg R, et al. Future of biosensors: a personal view. Adv Biochem Eng Biotechnol. 2014;140:1–28. | spa |
dc.relation.references | Ospina JD. Los aptámeros como novedosa herramienta diagnóstica y terapéutica y su potencial uso en parasitología. Biomédica. 2020;40(Supl. 1):148–65. | spa |
dc.relation.references | Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: Chemi-SELEX. Vol. 249, Science. 1990. p. 505–10. | spa |
dc.relation.references | Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. | spa |
dc.relation.references | Dong Y, Wang Z, Wang S, Wu Y, Ma2 Y, Liu J. Introduction of SELEX and Important SELEX Variants. In: Dong Y, editor. Aptamers for Analytical Applications. First Ed. Wiley-VCH Verlag GmbH & Co. KGaA.; 2018. p. 1–25. | spa |
dc.relation.references | Vorobyeva MA, Davydova AS, Vorobjev PE, Pyshnyi D V., Venyaminova AG. Key aspects of nucleic acid library design for in vitro selection. Int J Mol Sci. 2018;19(470). | spa |
dc.relation.references | Stoltenburg R, Reinemann C, Strehlitz B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403. | spa |
dc.relation.references | Gopinath SCB, Kumar PKR. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater. 2013;9(11):8932–41. | spa |
dc.relation.references | Zou X, Wu J, Gu J, Shen L, Mao L. Application of aptamers in virus detection and antiviral therapy. Front Microbiol. 2019;10(JULY). | spa |
dc.relation.references | Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, et al. Biosensors and Bioelectronics Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron. 2020;148(August 2019):111785. | spa |
dc.relation.references | Parashar A, Yadav ML, Yadav GS, Saini RK. Aptamer: The Science of Synthetic DNA. In: Singh GY, Kumar V, Aggarwal NK, editors. Aptamers. Singapore: Springer Singapore; 2019. p. 1–18. | spa |
dc.relation.references | Breaker RR. Riboswitches and the RNA World. Cold Spring Harb Perspect Biol. 2012;4(3):a003566. | spa |
dc.relation.references | Tapsin S, Sun M, Shen Y, Zhang H, Lim XN, Susanto TT, et al. Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. Nat Commun. 2018;9(1):1–10. | spa |
dc.relation.references | Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv. 2014;33(6):1141–61. | spa |
dc.relation.references | Hernandez FJ, Boter-Hincapié JA. Aptámeros : agentes diagnósticos y terapéuticos. latreia. 2012;25(2):159–68. | spa |
dc.relation.references | Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, et al. Synthetic genetic polymers capable of heredity and evolution. Science (1979). 2012;336(6079):341--344. | spa |
dc.relation.references | Komarova N, Kuznetsov A. Inside the black box: What makes Selex better? Molecules. 2019;24(3598). | spa |
dc.relation.references | Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: Molecules of great potential. Biotechnol Adv. 2013;31(8):1260–74. | spa |
dc.relation.references | Mack TGA, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci. 2001;4(12):1199–206. | spa |
dc.relation.references | MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR. The Drosophila Cell Corpse Engulfment Receptor Draper Mediates Glial Clearance of Severed Axons. Neuron. 2006;50(6):869–81. | spa |
dc.relation.references | Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature. 2008;452(7189):887–91. | spa |
dc.relation.references | Ocampo A, Liu J, Barrientos A. NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Hum Mol Genet. 2013;22(9):1699–708. | spa |
dc.relation.references | Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, et al. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol. 2016;14(6):1–36. | spa |
dc.relation.references | Ma X, Zhu Y, Lu J, Xie J, Li C, Shin WS, et al. Nicotinamide mononucleotide adenylyl transferase uses its NAD+ substrate-binding site to chaperone phosphorylated TAU. Elife. 2020;9:1–26. | spa |
dc.relation.references | Pinkerton M, Ruetenik A, Bazylianska V, Nyvltova E, Barrientos A. Salvage NAD+ biosynthetic pathway enzymes moonlight as molecular chaperones to protect against proteotoxicity. Hum Mol Genet. 2021;30(8):672–86. | spa |
dc.relation.references | Zhu Y, Lobato AG, Zhai RG, Pinto M. Human Nmnat1 Promotes Autophagic Clearance of Amyloid Plaques in a Drosophila Model of Alzheimer’s Disease. Front Aging Neurosci. 2022;14(March):1–9. | spa |
dc.relation.references | Collingridge PW, Brown RWB, Ginger ML. Moonlighting enzymes in parasitic protozoa. Parasitology. 2010;137(9):1467–75. | spa |
dc.relation.references | Kim JW, Dang C V. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005;30(3):142–50. | spa |
dc.relation.references | Gómez-Arreaza A, Acosta H, Quiñones W, Concepción JL, Michels PAM, Avilán L. Extracellular functions of glycolytic enzymes of parasites: Unpredicted use of ancient proteins. Mol Biochem Parasitol. 2014;193(2):75–81. | spa |
dc.relation.references | Castro H, Teixeira F, Romao S, Santos M, Cruz T, Flórido M, et al. Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: Insight into its novel chaperone activity. PLoS Pathog. 2011;7(10). | spa |
dc.relation.references | Ferreira ÉR, Horjales E, Bonfim-Melo A, Cortez C, Da Silva CV, De Groote M, et al. Unique behavior of Trypanosoma cruzi mevalonate kinase: A conserved glycosomal enzyme involved in host cell invasion and signaling. Sci Rep. 2016;6(June 2015):1–13. | spa |
dc.relation.references | Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. In: Advances in Parasitology. Academic Press; 2019. p. 1–50. | spa |
dc.relation.references | Aguayo-Ortiz R, Meza-Cervantez P, Castillo R, Hernández-Campos A, Dominguez L, Yépez-Mulia L. Insights into the Giardia intestinalis enolase and human plasminogen interaction. Mol Biosyst. 2017;13(10):2015–23. | spa |
dc.relation.references | Niño CH, Forero-Baena N, Contreras LE, Sánchez-Lancheros D, Figarella K, Ramírez MH. Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2015;110(7):890–7. | spa |
dc.relation.references | Forero-Baena N, Sánchez-Lancheros D, Buitrago JC, Bustos V, Ramírez-Hernández MH. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open. 2015;1:61–9. | spa |
dc.relation.references | Marín CY. Identificación, expresión y caracterización de la nicotinamida/ nicotinato mononucleótido adenililtransferasa de Plasmodium falciparum (PfNMNAT). Unversidad Nacional de Colombia Sede Bogotá; 2010. | spa |
dc.relation.references | González-Villalobos LC. El NAD + en parásitos extracelulares : Procesos biosintéticos y de transporte. Universidad Nacional de Colombia; 2021. | spa |
dc.relation.references | Ortiz-Joya L, Contreras-Rodríguez LE, Ramírez-Hernández MH. Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of leishmania braziliensis. Mem Inst Oswaldo Cruz. 2019;114(2):1–9. | spa |
dc.relation.references | González-Rodríguez S. Estudio de la actividad chaperona de las Nicotinamida/Nicotinato Mononucleótido Adenilil Transferasas (NMNATs). Universidad Nacional de Colombia; 2020. | spa |
dc.relation.references | Moreno-gonzalez PA, Díaz GJ, Ramírez MH. PRODUCCIÓN Y PURIFICACIÓN DE ANTICUERPOS AVIARES (IgYs) A PARTIR DE CUERPOS DE INCLUSIÓN DE UNA PROTEÍNA RECOMBINANTE CENTRAL EN EL METABOLISMO DEL NAD+. Revista Colombiana de Química. 2013;42(2):12–20. | spa |
dc.relation.references | Villamil-Silva SE, Ortiz-Joya LJ, Contreras-Rodríguez LE, Díaz GJ, Ramírez-Hernández MH. Identification of a cytoplas-mic tryparedoxin peroxidase from leishmania braziliensis. Revista Colombiana de Quimica. 2021;50(2):3–14. | spa |
dc.relation.references | WHO. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. CC BY-NC-S. Word Health Organization. Geneva: World Health Organization; 2020. 196 p. | spa |
dc.relation.references | Contreras LE, Neme R, Ramírez MH. Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expr Purif [Internet]. 2015;115:26–33. Available from: http://dx.doi.org/10.1016/j.pep.2015.08.022 | spa |
dc.relation.references | Huang C, Lu J, Ma X, Qiang J, Wang C, Liu C, et al. The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins. Journal of Biological Chemistry. 2022;298(5):101912. | spa |
dc.relation.references | Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It’s an NAD+ synthase… It’s a chaperone… It’s a neuroprotector. Curr Opin Genet Dev. 2017;44:156–62. | spa |
dc.relation.references | Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:1–19. | spa |
dc.relation.references | Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7(539). | spa |
dc.relation.references | Notredame C, Higgins DG, Heringa J. T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–17. | spa |
dc.relation.references | Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024 Jul 5;52(W1):W521–5. | spa |
dc.relation.references | Troshin P V., Procter JB, Barton GJ. Java bioinformatics analysis web services for multiple sequence alignment-JABAWS:MSA. Bioinformatics. 2011 Jul;27(14):2001–2. | spa |
dc.relation.references | Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science (1979). 2021 Aug 20;373(6557):871–6. | spa |
dc.relation.references | Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296–303. | spa |
dc.relation.references | Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022 Jun 1;19(6):679–82. | spa |
dc.relation.references | Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(1):12–21. | spa |
dc.relation.references | Zhang X, Kurnasov O V., Karthikeyan S, Grishin N V., Osterman AL, Zhang H. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. Journal of Biological Chemistry. 2003;278(15):13503–11. | spa |
dc.relation.references | Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science. 2018;27(1):14–25. | spa |
dc.relation.references | Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science. 2021;30(1):70–82. | spa |
dc.relation.references | Contreras Rodríguez LE. Obtención y caracterización bioquímica y funcional de la enzima recombinante nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT) [Internet]. 2016. p. 226. Available from: http://bdigital.unal.edu.co/54932/ | spa |
dc.relation.references | Palmer I, Wingfield PT. Preparation and extraction of insoluble (Inclusion-body) proteins from Escherichia coli. Curr Protoc Protein Sci. 2012;1(SUPPL.70):1–20. | spa |
dc.relation.references | Glynou K, Ioannou PC, Christopoulos TK. One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography [Internet]. Available from: www.elsevier.com/locate/yprep | spa |
dc.relation.references | Russell DW, Sambrook J. Molecular cloning: a laboratory manual. Cold Springs Harbour Laboratory Press.; 2001. | spa |
dc.relation.references | Jutinico-Shubach LM. Evaluación in vitro e in vivo de un candidato de la Quinasa del Dinucleótido de Adenina y Nicotinamida de Giardia intestinalis (GlNADK). Universidad Nacional de Colombia. Universidad Nacional de Colombia; 2015. | spa |
dc.relation.references | Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9):4350–4. | spa |
dc.relation.references | Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. | spa |
dc.relation.references | Alonso Villela SM, Kraïem H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. A protocol for recombinant protein quantification by densitometry. Microbiologyopen. 2020 Jun 1;9(6):1175–82. | spa |
dc.relation.references | Haslbeck M, Buchner J. Assays to Characterize Molecular Chaperone Function Function In Vitro Martin. In: Oslowoski CM, editor. Stress Responses: Methods and Protocols. Springer Science+Business Media; 2015. p. 39–51. | spa |
dc.relation.references | Hristozova N, Tompa P, Kovacs D. A novel method for assessing the chaperone activity of proteins. PLoS One. 2016;11(8):1–14. | spa |
dc.relation.references | Yeoh TS, Anna A, Tang TH, Citartan M. Development of an optimization pipeline of asymmetric PCR towards the generation of DNA aptamers: a guide for beginners. World J Microbiol Biotechnol. 2022 Feb 1;38(2). | spa |
dc.relation.references | Flett F, Interthal H. Separation of DNA oligonucleotides using denaturing urea PAGE. Methods in Molecular Biology. 2013;1054:173–85. | spa |
dc.relation.references | Schütze T, Arndt PF, Menger M, Wochner A, Vingron M, Erdmann VA, et al. A calibrated diversity assay for nucleic acid libraries using DiStRO-a Diversity Standard of Random Oligonucleotides. Nucleic Acids Res. 2009 Dec 3;38(4). | spa |
dc.relation.references | González-Rodríguez S. Estudio de la actividad chaperona de las Nicotinamida/Nicotinato Mononucleótido Adenilil Transferasas (NMNATs) [Trabajo de grado]. Universidad Nacional de Colombia; 2020. | spa |
dc.relation.references | Ma X, Zhu Y, Lu J, Xie J, Li C, Shin WS, et al. Nicotinamide mononucleotide adenylyl transferase uses its NAD+ substrate-binding site to chaperone phosphorylated TAU. Elife. 2020;9:1–26. | spa |
dc.relation.references | Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature. 2008;452(7189):887–91. | spa |
dc.relation.references | Zhai RG, Cao Y, Hiesinger PR, Zhou Y, Mehta SQ, Schulze KL, et al. Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biol. 2006 Dec;4(12):2336–48. | spa |
dc.relation.references | Li Y, Gao X, Chen L. GroEL recognizes an amphipathic helix and binds to the hydrophobic side. Journal of Biological Chemistry. 2009 Feb 13;284(7):4324–31. | spa |
dc.relation.references | Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones [Internet]. 1st ed. Vol. 114, Advances in Protein Chemistry and Structural Biology. Elsevier Inc.; 2019. 1–60 p. Available from: http://dx.doi.org/10.1016/bs.apcsb.2018.10.001 | spa |
dc.relation.references | Gao XC, Zhou CJ, Zhou ZR, Wu M, Cao CY, Hu HY. The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation. Journal of Biological Chemistry. 2012 Feb 17;287(8):6044–52. | spa |
dc.relation.references | Hoter A, El-Sabban ME, Naim HY. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9). | spa |
dc.relation.references | Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol. 2022 May 1;78:571–85. | spa |
dc.relation.references | Zhang X, Kurnasov O V., Karthikeyan S, Grishin N V., Osterman AL, Zhang H. Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. Journal of Biological Chemistry [Internet]. 2003;278(15):13503–11. Available from: http://dx.doi.org/10.1074/jbc.M300073200 | spa |
dc.relation.references | Sagert L, Hennig F, Thomas C, Tampé R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Elife. 2020 Mar 1;9. | spa |
dc.relation.references | Forero-Baena N, Sánchez-Lancheros D, Buitrago JC, Bustos V, Ramírez-Hernández MH. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open. 2015;1:61–9. | spa |
dc.relation.references | Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett. 2020;594(17):2770–81. | spa |
dc.relation.references | Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol. 2023 May 1;205(5). | spa |
dc.relation.references | Moghadam M, Ganji A, Varasteh A, Falak R, Sankian M. Refolding process of cysteine-rich proteins: Chitinase as a model [Internet]. Vol. 4, Reports of Biochemistry & Molecular Biology. 2015. Available from: www.RBMB.net | spa |
dc.relation.references | Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics. 2017 Oct 1;33(19):3098–100. | spa |
dc.relation.references | Thi Nha Trang N, Thi Thu Ha H, Phuong Thao N, Thi Anh Tho D, Thi Trang C, Thi Ha Thanh L, et al. EXPRESSION OF A SYNTHETIC GENE ENCODING THE ENHANCED GREEN FLUORESCENT PROTEIN IN VARIOUS ESCHERICHIA COLI STRAINS. Vol. 20, Vietnam Journal of Biotechnology. 2022. | spa |
dc.relation.references | Lozano Terol G, Gallego-Jara J, Sola Martínez RA, Martínez Vivancos A, Cánovas Díaz M, de Diego Puente T. Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front Microbiol. 2021 Jun 21;12. | spa |
dc.relation.references | Wang Z, Jin L, Yuan Z, Wegrzyn G, Wegrzyn A. Classification of plasmid vectors using replication origin, selection marker and promoter as criteria. Plasmid. 2009 Jan;61(1):47–51. | spa |
dc.relation.references | Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm [Internet]. 2012. Available from: http://www.microbialcellfactories.com/content/11/1/56 | spa |
dc.relation.references | Sorci L, Cimadamore F, Scotti S, Petrelli R, Cappellacci L, Franchetti P, et al. Initial-rate kinetics of human NMN-adenylyltransferases: Substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis. Biochemistry. 2007 Apr 24;46(16):4912–22. | spa |
dc.relation.references | Emanuelli M, Amici A, Carnevali F, Pierella F, Raffaelli N, Magni G. Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif [Internet]. 2003;27:357–64. Available from: www.elsevier.com/locate/yprep | spa |
dc.relation.references | Emanuelli M, Carnevali F, Lorenzi M, Raffaelli N, Amici A, Ruggieri S, et al. Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett. 1999 Jul 16;455(1–2):13–7. | spa |
dc.relation.references | Riguero V, Clifford R, Dawley M, Dickson M, Gastfriend B, Thompson C, et al. Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. J Chromatogr A. 2020 Oct 11;1629. | spa |
dc.relation.references | Lingg N, Öhlknecht C, Fischer A, Mozgovicz M, Scharl T, Oostenbrink C, et al. Proteomics analysis of host cell proteins after immobilized metal affinity chromatography: Influence of ligand and metal ions. J Chromatogr A. 2020 Dec 6;1633 | spa |
dc.relation.references | Bolanos-Garcia VM, Davies OR. Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Vol. 1760, Biochimica et Biophysica Acta - General Subjects. 2006. p. 1304–13. | spa |
dc.relation.references | Charlton A, Zachariou M. Immobilized Metal Ion Affinity Chromatography of Histidine-Tagged Fusion Proteins. In: Affinity Chromatography. Totowa, NJ: Humana Press; 2008. p. 137–50. | spa |
dc.relation.references | Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Vol. 9, Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A.; 2021. | spa |
dc.relation.references | Ashraf Kharaz Y, Zamboulis D, Sanders K, Comerford E, Clegg P, Peffers M. Comparison between chaotropic and detergent-based sample preparation workflow in tendon for mass spectrometry analysis. Proteomics. 2017 Jul 1;17(13–14). | spa |
dc.relation.references | Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis Roland, et al. Immobilized-Metal Affinity Chromatography (IMAC): A Review. In: Methods in enzymology. 2009. p. 439–73. | spa |
dc.relation.references | Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein Analysis Tools on the ExPASy Server. In: Walker JM, editor. The Proteomics Protocols Handbook [Internet]. Humana Press; 2005. p. 571–607. Available from: http://www.expasy.org/tools/. | spa |
dc.relation.references | Kanoh S, Shiraki K, Wada M, Tanaka T, Kitamura M, Kato K, et al. Chromatographic purification of histidine-tagged proteins using zirconia particles modified with phosphate groups. J Chromatogr A. 2023 Aug 16;1703 | spa |
dc.relation.references | Liao SM, Du QS, Meng JZ, Pang ZW, Huang RB. The multiple roles of histidine in protein interactions. Chem Cent J. 2013 Dec 14;7(1). | spa |
dc.relation.references | Pulido IY, Prieto E, Pieffet GP, Méndez L, Jiménez-Junca CA. Functional heterologous expression of mature lipase lipa from pseudomonas aeruginosa psa01 in escherichia coli shuffle and bl21 (De3): Effect of the expression host on thermal stability and solvent tolerance of the enzyme produced. Int J Mol Sci. 2020 Jun 1;21(11). | spa |
dc.relation.references | Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F. Media optimization for SHuffle T7 Escherichia coli expressing SUMO-Lispro proinsulin by response surface methodology. BMC Biotechnol. 2022 Dec 1;22(1). | spa |
dc.relation.references | Mohamed ZK, Elnagdy S. 42 E Expression, Purification and Characterization of Recombinant Histidine-tagged L-asparaginase II. Vol. 56. 2016. | spa |
dc.relation.references | Biglari Goliloo E, Tollabi A, Zarei Jaliani H. Soluble Expression and Purification of Q59L Mutant L-asparaginase in the Presence of Chaperones in SHuffleTM T7 strain. International Journal of Medical Laboratory. 2021 Jun 2; | spa |
dc.relation.references | Kamireddi M, Eisenstein E, Reddy P. Stable expression and rapid purification of Escherichia coli GroEL and GroES chaperonins. Protein Expr Purif. 1997;11(1):47–52. | spa |
dc.relation.references | Fayet O, Ziegelhoffer T, Georgopoulos C, Bukau B, Donnelly CE, Walker GC, et al. The groES and groEL Heat Shock Gene Products of Escherichia coli Are Essential for Bacterial Growth at All Temperatures Manipulations involving bacteriophage A derivatives [Internet]. Vol. 171, JOURNAL OF BACTERIOLOGY. 1989. Available from: https://journals.asm.org/journal/jb | spa |
dc.relation.references | Quaite-Randall E, Joachimiak A. Purification of GroEL from an Overproducing E. coli Strain. In: Chaperonin Protocols. 2000. p. 29–39. | spa |
dc.relation.references | Hayer-Hartl MK, Weber F, Hartil F. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Vol. 15, The EMBO Journal. 1996. | spa |
dc.relation.references | Mymrikov E V., Daake M, Richter B, Haslbeck M, Buchner J. The chaperone activity and substrate spectrum of human small heat shock proteins. Journal of Biological Chemistry. 2017 Jan 13;292(2):672–84. | spa |
dc.relation.references | Nicoll WS, Boshoff A, Ludewig MH, Hennessy F, Jung M, Blatch GL. Approaches to the isolation and characterization of molecular chaperones. Vol. 46, Protein Expression and Purification. 2006. p. 1–15. | spa |
dc.relation.references | Mares RE, Meléndez-López SG, Ramos MA. Acid-denatured green fluorescent protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase. Int J Mol Sci. 2011;12(7):4625–36. | spa |
dc.relation.references | Zhai RG, Rizzi M, Garavaglia S. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cellular and Molecular Life Sciences. 2009;66(17):2805–18. | spa |
dc.relation.references | Ortiz-Joya L, Contreras-Rodríguez LE, Ramírez-Hernández MH. Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of leishmania braziliensis. Mem Inst Oswaldo Cruz. 2019;114(2):1–9. | spa |
dc.relation.references | Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, et al. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol. 2016;14(6):1–36. | spa |
dc.relation.references | Grallert H, Rutkat K, Buchner J. GroEL Traps Dimeric and Monomeric Unfolding Intermediates of Citrate Synthase* [Internet]. 1998. Available from: http://www.jbc.org | spa |
dc.relation.references | Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. Journal of Biological Chemistry. 2005 Oct 28;280(43):36334–41. | spa |
dc.relation.references | Cheng TL, Liao CC, Tsai WH, Lin CC, Yeh CW, Teng CF, et al. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J Cell Biochem. 2009 Aug 1;107(5):1002–15. | spa |
dc.relation.references | Priya S, Sharma SK, Sood V, Mattoo RUH, Finka A, Azem A, et al. GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7199–204. | spa |
dc.relation.references | Schmitz FRW, Valério A, de Oliveira D, Hotza D. An overview and future prospects on aptamers for food safety. Appl Microbiol Biotechnol. 2020;104(16):6929–39. | spa |
dc.relation.references | Derosa MC, Lin A, Mallikaratchy P, Mcconnell EM, Mckeague M, Patel R, et al. In vitro selection of aptamers and their applications HHS Public Access. | spa |
dc.relation.references | Radko SP, Lapa SA, Chudinov A V., Khmeleva SA, Mannanova MM, Kurbatov LK, et al. Evaluation of the Diversity of Random DNA-Libraries by the Shape of Amplification Curves for Estimation of the Efficiency of Aptamer Selection. Biochem Mosc Suppl B Biomed Chem. 2020 Apr 1;14(2):159–67. | spa |
dc.relation.references | Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chemical Science. Royal Society of Chemistry; 2023. | spa |
dc.relation.references | Duan N, Ding X, Wu S, Xia Y, Ma X, Wang Z, et al. In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. J Microbiol Methods. 2013;94(3):170–4. | spa |
dc.relation.references | Shao K, Ding W, Wang F, Li H, Ma D, Wang H. Emulsion PCR: A high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS One. 2011 Sep 15;6(9). | spa |
dc.relation.references | Verma V, Gupta A, Chaudhary VK. Emulsion PCR made easy. Biotechniques. 2020 Apr 1;69(1):65–9. | spa |
dc.relation.references | Manochehry S, McConnell EM, Li Y. Unraveling Determinants of Affinity Enhancement in Dimeric Aptamers for a Dimeric Protein. Sci Rep. 2019 Dec 1;9(1). | spa |
dc.relation.references | Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Vol. 35, Biotechnology Advances. Elsevier Inc.; 2017. p. 275–301. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 500 - Ciencias naturales y matemáticas | spa |
dc.subject.ddc | 570 - Biología | spa |
dc.subject.ddc | 540 - Química y ciencias afines | spa |
dc.subject.lemb | NIACINA | spa |
dc.subject.lemb | Niacin | eng |
dc.subject.lemb | AMIDAS | spa |
dc.subject.lemb | Amides | eng |
dc.subject.lemb | Transferases | spa |
dc.subject.lemb | MICROORGANISMOS PATOGENOS | eng |
dc.subject.lemb | Micro-organisms, pathogenic | spa |
dc.subject.lemb | TRANSFERASAS | eng |
dc.subject.lemb | PROTEINAS | spa |
dc.subject.lemb | Proteins | eng |
dc.subject.proposal | NMNAT | spa |
dc.subject.proposal | Bifuncionalidad | spa |
dc.subject.proposal | Chaperonas | spa |
dc.subject.proposal | Parásitos | spa |
dc.subject.proposal | Aptámeros | spa |
dc.subject.proposal | Bifunctionality | eng |
dc.subject.proposal | Chaperones | eng |
dc.subject.proposal | Parasites | eng |
dc.subject.proposal | Aptamers | eng |
dc.title | Estudio de las Nicotinamida Mononucleótido Adenilil Transferasas (NMNATs) de parásitos protozoos: Determinación de su bifuncionalidad como chaperonas moleculares e implementación de una metodología para su detección | spa |
dc.title.translated | Study of Nicotinamide Mononucleotide Adenylyl Transferases (NMNATs) from protozoan parasites : determination of their bifunctionality as molecular chaperones and implementation of a methodology for their detection | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estudio del metabolismo del NAD en parásitos protozoos: consolidando resultados en busca de aplicaciones | spa |
oaire.fundername | Universidad Nacional de Colombia- Sede Bogotá | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1136888664.2024.pdf
- Tamaño:
- 4.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: