Comportamiento de funciones armónicas sobre variedades de curvatura negativa
dc.contributor.advisor | Cortissoz Iriarte, Jean Carlos | |
dc.contributor.author | Bravo Buitrago, John Edison | |
dc.contributor.orcid | Bravo Buitrago, John Edison [0001823088] | spa |
dc.contributor.other | Rodríguez Blanco, Guillermo | |
dc.date.accessioned | 2023-07-27T17:00:25Z | |
dc.date.available | 2023-07-27T17:00:25Z | |
dc.date.issued | 2022-07-25 | |
dc.description | ilustraciones, gráficas | spa |
dc.description.abstract | El propósito de esta tesis de maestría es estudiar la existencia de funciones armónicas acotadas no constantes, dando demostraciones novedosas con estimativos explícitos de versiones de teoremas, ahora ya clásicos, sobre la existencia de dichas funciones armónicas acotadas no constantes como demostraron Anderson y Sullivan en [1] y [17]. Entre los métodos usados en esta tesis está una generalización de la conocida desigualdad de Gronwall, la teoría de Sturm-Liouville y ecuación de Riccatti parecen dictar el comportamiento de la parte radial de las soluciones a la ecuación de Laplace obtenidas por el método de separación de variables en el caso de métricas obtenidas por productos torcidos (alabeados -warped en inglés). (Texto tomado de la fuente) | spa |
dc.description.abstract | The purpose of this master’s thesis is to study the existence of non-constant bounded harmonic functions, giving new proofs with explicit estimates of versions of theorems, now classical, on the existence of the said non-constant bounded harmonic functions as shown by Anderson and Sullivan in [1] and [17]. Among the methods used in this thesis is a generalization of the well-known Gronwall inequality, the Sturm-Liouville theory and Riccatti equation that seem to dictate the behavior of the radial part of the solutions to Laplace’s equation obtained by the method of separation of variables in the case of metrics obtained by twisted products called warped. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.format.extent | 64 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84324 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | M. Anderson. “The Dirichlet problem at infinity for manifolds of negative curvature". J. Differ. Geom. 18, 701–721, (1983). | spa |
dc.relation.references | M. Anderson and R. Schoen. “Positive harmonic functions on complete manifolds of negative curvature". Ann. Math. 2. 121, 429–461. , (1985). | spa |
dc.relation.references | S. Y. Cheng and S. T. Yau. “Differential equations on Riemannian manifolds and their geometric applications" Comm. Pure Appl. Math. 28, 333–354, (1975). | spa |
dc.relation.references | H. Choi. “In asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds" Trans. Am. Math. Soc. 281, 691–716, (1984). | spa |
dc.relation.references | J. E. Bravo. J. C. Cortissoz. D. P. Stein. “Some Observations on Liouville’s Theorem on Surfaces and the Dirichlet Problem at Infinity" Lobachevskii Journal of Mathematics, Vol. 43, No. 1, pp. 71–77, (2022) | spa |
dc.relation.references | J. C. Cortissoz. “A note on harmonic functions on surfaces" Am. Math. Mon. 123, 884–893, (2016). | spa |
dc.relation.references | J. C. Cortissoz. "An Observation on the Dirichlet Problem at Infinity on Riemannian cones" arXiv:2111.11351 [math.DG], aceptado en Nagoya Math. J. (2021). | spa |
dc.relation.references | M.A. Al-Gwaiz. “Sturm-Liouville Theory and its Applications" Springer Undergraduate Mathematics Series, (2007). | spa |
dc.relation.references | B.G. Pachpatte. “Inequalities for Differential and Integral Equations" Mathematics in science and engineering 197, (1998). | spa |
dc.relation.references | D. Gilbarg, N. S. Trudinger. “Ëlliptic Partial Differential Equations of Second Order" Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, (2001). | spa |
dc.relation.references | G. Herglotz. “Über potenzreihen mit positivem, realem Teil im Einheitskreis" Ber. Verh. Sachs, Akad. Wiss., Math.-Phys. Kl. 63, (1911). | spa |
dc.relation.references | R. Ji. “The asymptotic Dirichlet problems on manifolds with unbounded negative curvature" Math. Proc. Cambridge Phil. Soc. 167, 133–157, (2019). | spa |
dc.relation.references | P. li. “Geometric Analysis" Vol. 134 of Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, (2012). | spa |
dc.relation.references | J. Milnor. “On deciding whether a surface is parabolic or hyperbolic" Am. Math. Mon. 84, 43–46, (1977). | spa |
dc.relation.references | Jost, Jörgen. “Riemannian geometry and geometric analysis" Springer International., (2017). | spa |
dc.relation.references | L. Ni and L. F. Tam. “Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature" J. Differ. Geom. 64, 457–524, (2003). | spa |
dc.relation.references | D. Sullivan. “The Dirichlet problem at infinity for a negatively curved manifold" J. Differ. Geom. 18, 723–732, (1983). | spa |
dc.relation.references | Elias M. Stein, Rami Shakarchi. “Fourier analysis: an introduction" Princeton Lectures in Analysis, Volume 1. 18, (2003). | spa |
dc.relation.references | S. T. Yau. “Harmonic functions on complete Riemannian manifolds" JComm. Pure Appl. Math. 28, 201–228, (1975). | spa |
dc.relation.references | M. H. Protter, H. F. Weinberger,. “Maximum Principles in Differential Equations" PrenticeHall, Engle- wood Cliffs, NJ, (1967). | spa |
dc.rights | Derechos reservados al autor, 2023 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.lemb | Análisis armónico | spa |
dc.subject.lemb | Harmonic analysis | eng |
dc.subject.lemb | Análisis funcional | spa |
dc.subject.lemb | Functional analysis | eng |
dc.subject.proposal | Variedad diferenciable | spa |
dc.subject.proposal | Funciones Armónicas | spa |
dc.subject.proposal | Desigualdades diferenciales | spa |
dc.subject.proposal | Ecuación de Laplace | spa |
dc.subject.proposal | Problema de Dirichlet | spa |
dc.subject.proposal | Smooth Manifold | eng |
dc.subject.proposal | Harmonic Functions | eng |
dc.subject.proposal | Differential Inequalities | eng |
dc.subject.proposal | Laplace Equation | eng |
dc.subject.proposal | Dirichlet Problem | eng |
dc.title | Comportamiento de funciones armónicas sobre variedades de curvatura negativa | spa |
dc.title.translated | Behavior of harmonic functions on manifolds of negative curvature | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1072661695.2023.pdf
- Tamaño:
- 1.23 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: