Comportamiento de funciones armónicas sobre variedades de curvatura negativa

dc.contributor.advisorCortissoz Iriarte, Jean Carlos
dc.contributor.authorBravo Buitrago, John Edison
dc.contributor.orcidBravo Buitrago, John Edison [0001823088]spa
dc.contributor.otherRodríguez Blanco, Guillermo
dc.date.accessioned2023-07-27T17:00:25Z
dc.date.available2023-07-27T17:00:25Z
dc.date.issued2022-07-25
dc.descriptionilustraciones, gráficasspa
dc.description.abstractEl propósito de esta tesis de maestría es estudiar la existencia de funciones armónicas acotadas no constantes, dando demostraciones novedosas con estimativos explícitos de versiones de teoremas, ahora ya clásicos, sobre la existencia de dichas funciones armónicas acotadas no constantes como demostraron Anderson y Sullivan en [1] y [17]. Entre los métodos usados en esta tesis está una generalización de la conocida desigualdad de Gronwall, la teoría de Sturm-Liouville y ecuación de Riccatti parecen dictar el comportamiento de la parte radial de las soluciones a la ecuación de Laplace obtenidas por el método de separación de variables en el caso de métricas obtenidas por productos torcidos (alabeados -warped en inglés). (Texto tomado de la fuente)spa
dc.description.abstractThe purpose of this master’s thesis is to study the existence of non-constant bounded harmonic functions, giving new proofs with explicit estimates of versions of theorems, now classical, on the existence of the said non-constant bounded harmonic functions as shown by Anderson and Sullivan in [1] and [17]. Among the methods used in this thesis is a generalization of the well-known Gronwall inequality, the Sturm-Liouville theory and Riccatti equation that seem to dictate the behavior of the radial part of the solutions to Laplace’s equation obtained by the method of separation of variables in the case of metrics obtained by twisted products called warped.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extent64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84324
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesM. Anderson. “The Dirichlet problem at infinity for manifolds of negative curvature". J. Differ. Geom. 18, 701–721, (1983).spa
dc.relation.referencesM. Anderson and R. Schoen. “Positive harmonic functions on complete manifolds of negative curvature". Ann. Math. 2. 121, 429–461. , (1985).spa
dc.relation.referencesS. Y. Cheng and S. T. Yau. “Differential equations on Riemannian manifolds and their geometric applications" Comm. Pure Appl. Math. 28, 333–354, (1975).spa
dc.relation.referencesH. Choi. “In asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds" Trans. Am. Math. Soc. 281, 691–716, (1984).spa
dc.relation.referencesJ. E. Bravo. J. C. Cortissoz. D. P. Stein. “Some Observations on Liouville’s Theorem on Surfaces and the Dirichlet Problem at Infinity" Lobachevskii Journal of Mathematics, Vol. 43, No. 1, pp. 71–77, (2022)spa
dc.relation.referencesJ. C. Cortissoz. “A note on harmonic functions on surfaces" Am. Math. Mon. 123, 884–893, (2016).spa
dc.relation.referencesJ. C. Cortissoz. "An Observation on the Dirichlet Problem at Infinity on Riemannian cones" arXiv:2111.11351 [math.DG], aceptado en Nagoya Math. J. (2021).spa
dc.relation.referencesM.A. Al-Gwaiz. “Sturm-Liouville Theory and its Applications" Springer Undergraduate Mathematics Series, (2007).spa
dc.relation.referencesB.G. Pachpatte. “Inequalities for Differential and Integral Equations" Mathematics in science and engineering 197, (1998).spa
dc.relation.referencesD. Gilbarg, N. S. Trudinger. “Ëlliptic Partial Differential Equations of Second Order" Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, (2001).spa
dc.relation.referencesG. Herglotz. “Über potenzreihen mit positivem, realem Teil im Einheitskreis" Ber. Verh. Sachs, Akad. Wiss., Math.-Phys. Kl. 63, (1911).spa
dc.relation.referencesR. Ji. “The asymptotic Dirichlet problems on manifolds with unbounded negative curvature" Math. Proc. Cambridge Phil. Soc. 167, 133–157, (2019).spa
dc.relation.referencesP. li. “Geometric Analysis" Vol. 134 of Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, (2012).spa
dc.relation.referencesJ. Milnor. “On deciding whether a surface is parabolic or hyperbolic" Am. Math. Mon. 84, 43–46, (1977).spa
dc.relation.referencesJost, Jörgen. “Riemannian geometry and geometric analysis" Springer International., (2017).spa
dc.relation.referencesL. Ni and L. F. Tam. “Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature" J. Differ. Geom. 64, 457–524, (2003).spa
dc.relation.referencesD. Sullivan. “The Dirichlet problem at infinity for a negatively curved manifold" J. Differ. Geom. 18, 723–732, (1983).spa
dc.relation.referencesElias M. Stein, Rami Shakarchi. “Fourier analysis: an introduction" Princeton Lectures in Analysis, Volume 1. 18, (2003).spa
dc.relation.referencesS. T. Yau. “Harmonic functions on complete Riemannian manifolds" JComm. Pure Appl. Math. 28, 201–228, (1975).spa
dc.relation.referencesM. H. Protter, H. F. Weinberger,. “Maximum Principles in Differential Equations" PrenticeHall, Engle- wood Cliffs, NJ, (1967).spa
dc.rightsDerechos reservados al autor, 2023
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lembAnálisis armónicospa
dc.subject.lembHarmonic analysiseng
dc.subject.lembAnálisis funcionalspa
dc.subject.lembFunctional analysiseng
dc.subject.proposalVariedad diferenciablespa
dc.subject.proposalFunciones Armónicasspa
dc.subject.proposalDesigualdades diferencialesspa
dc.subject.proposalEcuación de Laplacespa
dc.subject.proposalProblema de Dirichletspa
dc.subject.proposalSmooth Manifoldeng
dc.subject.proposalHarmonic Functionseng
dc.subject.proposalDifferential Inequalitieseng
dc.subject.proposalLaplace Equationeng
dc.subject.proposalDirichlet Problemeng
dc.titleComportamiento de funciones armónicas sobre variedades de curvatura negativaspa
dc.title.translatedBehavior of harmonic functions on manifolds of negative curvatureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072661695.2023.pdf
Tamaño:
1.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: