Un modelo de pronostico con variables aleatorias escalares y funcionales temporal y espacialmente correlacionadas
| dc.contributor.advisor | Riaño Rojas, Juan Carlos | |
| dc.contributor.advisor | Serrano Suarez, Fabian Fernando | |
| dc.contributor.author | Ocampo Rodriguez, David leonardo | |
| dc.contributor.orcid | Ocampo Rodríguez, David Leonardo [0000000196986887] | |
| dc.contributor.researchgroup | Percepción y Control Inteligente (Pci) | |
| dc.date.accessioned | 2025-10-23T13:38:02Z | |
| dc.date.available | 2025-10-23T13:38:02Z | |
| dc.date.issued | 2024 | |
| dc.description | ilustraciones, mapas | spa |
| dc.description.abstract | En este trabajo se lleva a cabo los desarrollos teóricos y computacionales necesarios para la estimación e inferencia de un modelo de regresión espacio temporal con respuesta escalar y con fines de predicción espacial y pronóstico, con variables explicativas funcionales que involucre la estructura de correlación existente. El modelo propuesto considera la respuesta escalar con dependencia espacial en un dominio continuo, incorporando esta dependencia mediante modelos de semivariograma y métodos de interpolación como el kriging ordinario. Las variables predictivas forman un campo aleatorio funcional multivariado modelado utilizando métodos de interpolación por cokriging. Aplicamos los mínimos cuadrados generalizados para estimar los parámetros, y luego lo implementamos utilizando datos climáticos de la región de Caldas para la validación (Texto tomado de la fuente) | spa |
| dc.description.abstract | This work to carry out the theoretical and computational developments necessary for the estimation and inference of a spatio-temporal regression model with a scalar response, aimed at spatial prediction and forecasting. The model includes both scalar and functional explanatory variables and incorporates the existing correlation structure. The proposed model considers the scalar response with spatial dependence in a continuous domain, incorporating this dependence through semivariogram models and interpolation methods such as ordinary kriging. The predictive variables form a multivariate functional random field modeled using cokriging interpolation methods. We apply generalized least squares to estimate the parameters, and then implement it using climatic data from the Caldas region for validation. | eng |
| dc.description.curriculararea | Matemáticas Y Estadística.Sede Manizales | |
| dc.description.degreelevel | Doctorado | |
| dc.description.degreename | Doctor en Ciencias | |
| dc.description.researcharea | Estadistica matematica | |
| dc.format.extent | vi, 88 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89056 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | |
| dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | |
| dc.publisher.place | Manizales, Colombia | |
| dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Doctorado en Ciencias - Matemáticas | |
| dc.relation.references | J. O. Ramsay, C. / Dalzell, J. Some Tools for Functional Data Analysis 1991 | |
| dc.relation.references | H. Cardota, F. / P.Sarda, Ferraty Functional linear model 1999 | |
| dc.relation.references | Ferraty, F. / Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice 2003 | |
| dc.relation.references | Dey, D. K. / Ghosh, S. K. / Mallick, B. K. Generalized Linear Models: A Bayesian Perspective 2000 | |
| dc.relation.references | Müller, G. / Stadtmüller, U. Generalized functional linear models 2005 | |
| dc.relation.references | Maronnaa, A. / V.Yohaib Robust functional linear regression based on splines 2013 | |
| dc.relation.references | Goldsmith / et al. Statistical normalization techniques for magnetic resonance imaging 2014 | |
| dc.relation.references | Ríos, W. / Giraldo, R. Functional SAR Model 2016 | |
| dc.relation.references | Baladandayuthapani / et al. Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis 2008 | |
| dc.relation.references | Staicu / et al. Fast methods for spatially correlated multilevel functional data 2010 | |
| dc.relation.references | Zhang / et al. One‐Way anova for Functional Data via Globalizing the Pointwise F‐test 2015 | |
| dc.relation.references | Ivanescu / et al. Penalized function-on-function regression 2012 | |
| dc.relation.references | Morris, J. / et al. Bayesian function‐on‐function regression for multilevel functional data 2015 | |
| dc.relation.references | Bohorquez, M. / Giraldo, R. / Mateu, J. Multivariate functional random fields: prediction and optimal samplin 2017 | |
| dc.relation.references | Kyungmin, J. / Derek, T. / Wu, Wei / Srivastava, Anuj Regression models using shapes of functions as predictors 2020 | |
| dc.relation.references | Romano, E. / Mateu, J. / Butzbach, O. Heteroskedastic geographically weighted regression model for functional data 2020 | |
| dc.relation.references | Wang, Yun / Wang, Haibo / Srinivasan, Dipti / Hu, Qinghua Robust functional regression for wind speed forecasting based on Sparse Bayesian learning 2019 | |
| dc.relation.references | García, I. / Huo, S. / Prado, R. / Bravo, L. Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements 2020 | |
| dc.relation.references | Cui, Xia / Lin, Hongmei / Lian, Heng Partially functional linear regression in reproducing kernel Hilbert spaces 2020 | |
| dc.relation.references | Czado, C. / Ivanov, E. / Okhrin, Y. Modelling temporal dependence of realized variances with vines 2019 | |
| dc.relation.references | Pineda, W. / Giraldo, R. / Porcu, E. Functional SAR models: With application to spatial econometrics 2019 | |
| dc.relation.references | Mateu, J. / Romano, E. Advances in spatial functional statistics 2016 | |
| dc.relation.references | Wang, Fode / Zhang, Heng / Lian Directional regression for functional data 2020 | |
| dc.relation.references | Wang, Baoxue / Zhang, Wenhui / Liao, Baojian / Xie Estimation of functional regression model via functional dimension reduction 2020 | |
| dc.relation.references | Yang, Seong J. / Shin, Hyejin / Lee, Sang Han / Lee, Seokho. Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease 2020 | |
| dc.relation.references | Xu, W. / Ding, H. / Zhang, R. / Liang, H. Estimation and inference in partially functional linear regression with multiple functional covariates 2020 | |
| dc.relation.references | Aguilera, M. / Durbán, M. Prediction of functional data with spatial dependence: a penalized approach 2016 | |
| dc.relation.references | Bel, L. / Bar-Hen, A. / c , R. Petit / Cheddadi, R. Spatio-temporal functional regressionon paleoecological data 2010 | |
| dc.relation.references | Dabo-Niang, S. / Yao, A. F. Kernel Regression Estimationfor Continuous Spatial Processes 2007 | |
| dc.relation.references | Zhu, H. / Versace, F. / Cinciripini, M. / Rausch, P. / Morris, S. Robust and Gaussian spatial functional regression models for analysis ofevent-related potentials 2018 | |
| dc.relation.references | Beyaztasa, U. / Shang, H. Lin / Mundher, Z. A functional autoregressive model based on exogenoushydrometeorological variables for river flow prediction 2021 | |
| dc.relation.references | Rao, A. / Reimherr, M. Non-linear Functional Modeling using Neural Networks 2021 | |
| dc.relation.references | Zhu, H. / Yao, F. / Zhang, H. Structured functional additive regression in reproducing kernel hilbert spaces 2013 | |
| dc.relation.references | Sarkar, S. / Panaretos, M. Covariance Networks for Functional Dataon Multidimensional Domains 2021 | |
| dc.relation.references | Du, Peijun / Bai, Xuyu / Tan, Kun / Xue, Zhaohui / Samat, Alim / Xia, Junshi / Li, Erzhu / Su, Hongjun / Liu, Wei. Advances of Four Machine Learning Methods for Spatial DataHandling: a Review 2020 | |
| dc.relation.references | Chasco, C. / López, A. Modelos de regresión espacio-temporales en la estimaciónde la renta municipal 2004 | |
| dc.relation.references | Bongiorno, G. / Salinelli, E. / Goia, A. / Vieu., P. Contributions ininfinite-dimensional statistics and related topics. 2014 | |
| dc.relation.references | Bosq., D. Linear Processes in Function Spaces: Theory and Applications 2000 | |
| dc.relation.references | Horvath, L. / Kokoszka, P. Inference for functional data with applications. 2012 | |
| dc.relation.references | Reed, M. / Simon., B. Methods of Modern Mathematical Physics I: Functional Analysis. 1980 | |
| dc.relation.references | Ramsay, J. / Silverman, B. W. Functional data analysis 2005 | |
| dc.relation.references | Kokoszka, P. / Reimherr., M. Introduction to Functional Data Analysis 2017 | |
| dc.relation.references | Giraldo, R. / Herrera, L. / Leiva., V. Cokriging Prediction Using as Secondary Variablea Functional Random Field with Applicationin Environmental Pollution. 2020 | |
| dc.relation.references | Chen, Elynn Y. / Yun, Xin / Chen, Rong / Yao., Qiwei Modeling Multivariate Spatial-Temporal Data withLatent Low-Dimensional Dynamics. 2020 | |
| dc.relation.references | Gómez, R. Salmerón Análisis estadístico de datos espacio-temporales mediante modelos funcionales de series temporales 2008 | |
| dc.relation.references | Delicado, P. / Giraldo, R. / Comas, C. / Mateu, J. Statistics for spatial functional data: somerecent contributions 2010 | |
| dc.relation.references | Cressie, N. / Zammit, A. / Wikle, C. K. Spatio-Temporal Statistics in R 2019 | |
| dc.relation.references | Shi, Jian Qing / Choi, Taeryon Gaussian Process Regression Analysisfor Functional Data 2011 | |
| dc.relation.references | Alghamdi, S. S. Analysis of spatially correlated functional data objects 2019 | |
| dc.relation.references | Paganoni, A. M. / Sangalli, L. M. Functional regression models: Some directions of future research. 2017 | |
| dc.relation.references | Panaretos, M. / Tavakoli, S. Cramér - Karhunen - Loève representation and harmonic principal component analysis of functional time series. 2013 | |
| dc.relation.references | Salvaña, M. L. / Genton, M. G. Nonstationary cross-covariance functions for multivariate spatio-temporal random fields. 2020 | |
| dc.relation.references | French J. P. / Kokoszka, P. S. A sandwich smoother for spatio-temporal functional data. 2021 | |
| dc.relation.references | Kuenzer T., Hörmann S. / Kokoszka, P. Principal component analysis of spatially indexed functions 2020 | |
| dc.relation.references | Paganoni A. M. / Sangalli, L. M. Functional regression models: Some directions offuture research 2017 | |
| dc.relation.references | Caballero, William / Giraldo, Ramon / Mateu, Jorge A universal kriging approach for spatial functional data 2013 | |
| dc.relation.references | David L. Ocampo, R.1 / Riano-Rojas, J. C. / Lorenzo J. Martinez, H. Regression model with scalar response and temporally and spatially correlated functional predictors 2024 | |
| dc.relation.references | Li, Lixin / Losser, Travis / Yorke, Charles / Piltner, Reinhard Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree 2014 | |
| dc.relation.references | Kesavan, S. Functional Analysis 2023 | |
| dc.relation.references | Nerini, David / Monestiez., Pascal A cokriging method for spatial functional data with applications in oceanology 2008 | |
| dc.relation.references | Chiou, Jeng-Min DYNAMICAL FUNCTIONAL PREDICTION AND CLASSIFICATION, WITH APPLICATION TO TRAFFICFLOW PREDICTION 2016 | |
| dc.relation.references | Gneiting, Tilmann Nonseparable, Stationary Covariance Functions for Space–Time Data 2002 | |
| dc.relation.references | Altman, Naomi S. Kernel smoothing of data with correlated errors 1990 | |
| dc.relation.references | Wang, Yuedong Smoothing spline models with correlated random errors 1998 | |
| dc.relation.references | Kreyszig, Erwin Introductory functional analysis with applications 1978 | |
| dc.relation.references | Jain, Pawan K. / Ahuja., Om. P. Functional Analysis 2010 | |
| dc.relation.references | Dubé, Jean / Legros, Diègo Development of a spatio-Temporal Autoregressive (STAR) Model Using Spatio-Temporal Weights Matrices 2011 | |
| dc.relation.references | Sun, Ying / Genton, Marc G. Functional Boxplots 2012 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.ddc | 510 - Matemáticas | |
| dc.subject.proposal | Score | eng |
| dc.subject.proposal | Datos funcionales | spa |
| dc.subject.proposal | Campo aleatorio and Cokrigin | spa |
| dc.subject.proposal | Functional data | eng |
| dc.subject.proposal | Random field and Cokriging | eng |
| dc.subject.unesco | Estadística | |
| dc.subject.unesco | Statistics | |
| dc.subject.unesco | Datos climáticos | |
| dc.subject.unesco | Climatic data | |
| dc.title | Un modelo de pronostico con variables aleatorias escalares y funcionales temporal y espacialmente correlacionadas | |
| dc.title.translated | A forecasting model with temporally and spatially correlated scalar and functional random variables | |
| dc.type | Trabajo de grado - Doctorado | |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Doctorado en Ciencias - Matemáticas.pdf
- Tamaño:
- 14.4 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

