Un modelo de pronostico con variables aleatorias escalares y funcionales temporal y espacialmente correlacionadas

dc.contributor.advisorRiaño Rojas, Juan Carlos
dc.contributor.advisorSerrano Suarez, Fabian Fernando
dc.contributor.authorOcampo Rodriguez, David leonardo
dc.contributor.orcidOcampo Rodríguez, David Leonardo [0000000196986887]
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)
dc.date.accessioned2025-10-23T13:38:02Z
dc.date.available2025-10-23T13:38:02Z
dc.date.issued2024
dc.descriptionilustraciones, mapasspa
dc.description.abstractEn este trabajo se lleva a cabo los desarrollos teóricos y computacionales necesarios para la estimación e inferencia de un modelo de regresión espacio temporal con respuesta escalar y con fines de predicción espacial y pronóstico, con variables explicativas funcionales que involucre la estructura de correlación existente. El modelo propuesto considera la respuesta escalar con dependencia espacial en un dominio continuo, incorporando esta dependencia mediante modelos de semivariograma y métodos de interpolación como el kriging ordinario. Las variables predictivas forman un campo aleatorio funcional multivariado modelado utilizando métodos de interpolación por cokriging. Aplicamos los mínimos cuadrados generalizados para estimar los parámetros, y luego lo implementamos utilizando datos climáticos de la región de Caldas para la validación (Texto tomado de la fuente)spa
dc.description.abstractThis work to carry out the theoretical and computational developments necessary for the estimation and inference of a spatio-temporal regression model with a scalar response, aimed at spatial prediction and forecasting. The model includes both scalar and functional explanatory variables and incorporates the existing correlation structure. The proposed model considers the scalar response with spatial dependence in a continuous domain, incorporating this dependence through semivariogram models and interpolation methods such as ordinary kriging. The predictive variables form a multivariate functional random field modeled using cokriging interpolation methods. We apply generalized least squares to estimate the parameters, and then implement it using climatic data from the Caldas region for validation.eng
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias
dc.description.researchareaEstadistica matematica
dc.format.extentvi, 88 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89056
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.programManizales - Ciencias Exactas y Naturales - Doctorado en Ciencias - Matemáticas
dc.relation.referencesJ. O. Ramsay, C. / Dalzell, J. Some Tools for Functional Data Analysis 1991
dc.relation.referencesH. Cardota, F. / P.Sarda, Ferraty Functional linear model 1999
dc.relation.referencesFerraty, F. / Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice 2003
dc.relation.referencesDey, D. K. / Ghosh, S. K. / Mallick, B. K. Generalized Linear Models: A Bayesian Perspective 2000
dc.relation.referencesMüller, G. / Stadtmüller, U. Generalized functional linear models 2005
dc.relation.referencesMaronnaa, A. / V.Yohaib Robust functional linear regression based on splines 2013
dc.relation.referencesGoldsmith / et al. Statistical normalization techniques for magnetic resonance imaging 2014
dc.relation.referencesRíos, W. / Giraldo, R. Functional SAR Model 2016
dc.relation.referencesBaladandayuthapani / et al. Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis 2008
dc.relation.referencesStaicu / et al. Fast methods for spatially correlated multilevel functional data 2010
dc.relation.referencesZhang / et al. One‐Way anova for Functional Data via Globalizing the Pointwise F‐test 2015
dc.relation.referencesIvanescu / et al. Penalized function-on-function regression 2012
dc.relation.referencesMorris, J. / et al. Bayesian function‐on‐function regression for multilevel functional data 2015
dc.relation.referencesBohorquez, M. / Giraldo, R. / Mateu, J. Multivariate functional random fields: prediction and optimal samplin 2017
dc.relation.referencesKyungmin, J. / Derek, T. / Wu, Wei / Srivastava, Anuj Regression models using shapes of functions as predictors 2020
dc.relation.referencesRomano, E. / Mateu, J. / Butzbach, O. Heteroskedastic geographically weighted regression model for functional data 2020
dc.relation.referencesWang, Yun / Wang, Haibo / Srinivasan, Dipti / Hu, Qinghua Robust functional regression for wind speed forecasting based on Sparse Bayesian learning 2019
dc.relation.referencesGarcía, I. / Huo, S. / Prado, R. / Bravo, L. Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements 2020
dc.relation.referencesCui, Xia / Lin, Hongmei / Lian, Heng Partially functional linear regression in reproducing kernel Hilbert spaces 2020
dc.relation.referencesCzado, C. / Ivanov, E. / Okhrin, Y. Modelling temporal dependence of realized variances with vines 2019
dc.relation.referencesPineda, W. / Giraldo, R. / Porcu, E. Functional SAR models: With application to spatial econometrics 2019
dc.relation.referencesMateu, J. / Romano, E. Advances in spatial functional statistics 2016
dc.relation.referencesWang, Fode / Zhang, Heng / Lian Directional regression for functional data 2020
dc.relation.referencesWang, Baoxue / Zhang, Wenhui / Liao, Baojian / Xie Estimation of functional regression model via functional dimension reduction 2020
dc.relation.referencesYang, Seong J. / Shin, Hyejin / Lee, Sang Han / Lee, Seokho. Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease 2020
dc.relation.referencesXu, W. / Ding, H. / Zhang, R. / Liang, H. Estimation and inference in partially functional linear regression with multiple functional covariates 2020
dc.relation.referencesAguilera, M. / Durbán, M. Prediction of functional data with spatial dependence: a penalized approach 2016
dc.relation.referencesBel, L. / Bar-Hen, A. / c , R. Petit / Cheddadi, R. Spatio-temporal functional regressionon paleoecological data 2010
dc.relation.referencesDabo-Niang, S. / Yao, A. F. Kernel Regression Estimationfor Continuous Spatial Processes 2007
dc.relation.referencesZhu, H. / Versace, F. / Cinciripini, M. / Rausch, P. / Morris, S. Robust and Gaussian spatial functional regression models for analysis ofevent-related potentials 2018
dc.relation.referencesBeyaztasa, U. / Shang, H. Lin / Mundher, Z. A functional autoregressive model based on exogenoushydrometeorological variables for river flow prediction 2021
dc.relation.referencesRao, A. / Reimherr, M. Non-linear Functional Modeling using Neural Networks 2021
dc.relation.referencesZhu, H. / Yao, F. / Zhang, H. Structured functional additive regression in reproducing kernel hilbert spaces 2013
dc.relation.referencesSarkar, S. / Panaretos, M. Covariance Networks for Functional Dataon Multidimensional Domains 2021
dc.relation.referencesDu, Peijun / Bai, Xuyu / Tan, Kun / Xue, Zhaohui / Samat, Alim / Xia, Junshi / Li, Erzhu / Su, Hongjun / Liu, Wei. Advances of Four Machine Learning Methods for Spatial DataHandling: a Review 2020
dc.relation.referencesChasco, C. / López, A. Modelos de regresión espacio-temporales en la estimaciónde la renta municipal 2004
dc.relation.referencesBongiorno, G. / Salinelli, E. / Goia, A. / Vieu., P. Contributions ininfinite-dimensional statistics and related topics. 2014
dc.relation.referencesBosq., D. Linear Processes in Function Spaces: Theory and Applications 2000
dc.relation.referencesHorvath, L. / Kokoszka, P. Inference for functional data with applications. 2012
dc.relation.referencesReed, M. / Simon., B. Methods of Modern Mathematical Physics I: Functional Analysis. 1980
dc.relation.referencesRamsay, J. / Silverman, B. W. Functional data analysis 2005
dc.relation.referencesKokoszka, P. / Reimherr., M. Introduction to Functional Data Analysis 2017
dc.relation.referencesGiraldo, R. / Herrera, L. / Leiva., V. Cokriging Prediction Using as Secondary Variablea Functional Random Field with Applicationin Environmental Pollution. 2020
dc.relation.referencesChen, Elynn Y. / Yun, Xin / Chen, Rong / Yao., Qiwei Modeling Multivariate Spatial-Temporal Data withLatent Low-Dimensional Dynamics. 2020
dc.relation.referencesGómez, R. Salmerón Análisis estadístico de datos espacio-temporales mediante modelos funcionales de series temporales 2008
dc.relation.referencesDelicado, P. / Giraldo, R. / Comas, C. / Mateu, J. Statistics for spatial functional data: somerecent contributions 2010
dc.relation.referencesCressie, N. / Zammit, A. / Wikle, C. K. Spatio-Temporal Statistics in R 2019
dc.relation.referencesShi, Jian Qing / Choi, Taeryon Gaussian Process Regression Analysisfor Functional Data 2011
dc.relation.referencesAlghamdi, S. S. Analysis of spatially correlated functional data objects 2019
dc.relation.referencesPaganoni, A. M. / Sangalli, L. M. Functional regression models: Some directions of future research. 2017
dc.relation.referencesPanaretos, M. / Tavakoli, S. Cramér - Karhunen - Loève representation and harmonic principal component analysis of functional time series. 2013
dc.relation.referencesSalvaña, M. L. / Genton, M. G. Nonstationary cross-covariance functions for multivariate spatio-temporal random fields. 2020
dc.relation.referencesFrench J. P. / Kokoszka, P. S. A sandwich smoother for spatio-temporal functional data. 2021
dc.relation.referencesKuenzer T., Hörmann S. / Kokoszka, P. Principal component analysis of spatially indexed functions 2020
dc.relation.referencesPaganoni A. M. / Sangalli, L. M. Functional regression models: Some directions offuture research 2017
dc.relation.referencesCaballero, William / Giraldo, Ramon / Mateu, Jorge A universal kriging approach for spatial functional data 2013
dc.relation.referencesDavid L. Ocampo, R.1 / Riano-Rojas, J. C. / Lorenzo J. Martinez, H. Regression model with scalar response and temporally and spatially correlated functional predictors 2024
dc.relation.referencesLi, Lixin / Losser, Travis / Yorke, Charles / Piltner, Reinhard Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree 2014
dc.relation.referencesKesavan, S. Functional Analysis 2023
dc.relation.referencesNerini, David / Monestiez., Pascal A cokriging method for spatial functional data with applications in oceanology 2008
dc.relation.referencesChiou, Jeng-Min DYNAMICAL FUNCTIONAL PREDICTION AND CLASSIFICATION, WITH APPLICATION TO TRAFFICFLOW PREDICTION 2016
dc.relation.referencesGneiting, Tilmann Nonseparable, Stationary Covariance Functions for Space–Time Data 2002
dc.relation.referencesAltman, Naomi S. Kernel smoothing of data with correlated errors 1990
dc.relation.referencesWang, Yuedong Smoothing spline models with correlated random errors 1998
dc.relation.referencesKreyszig, Erwin Introductory functional analysis with applications 1978
dc.relation.referencesJain, Pawan K. / Ahuja., Om. P. Functional Analysis 2010
dc.relation.referencesDubé, Jean / Legros, Diègo Development of a spatio-Temporal Autoregressive (STAR) Model Using Spatio-Temporal Weights Matrices 2011
dc.relation.referencesSun, Ying / Genton, Marc G. Functional Boxplots 2012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc510 - Matemáticas
dc.subject.proposalScoreeng
dc.subject.proposalDatos funcionalesspa
dc.subject.proposalCampo aleatorio and Cokriginspa
dc.subject.proposalFunctional dataeng
dc.subject.proposalRandom field and Cokrigingeng
dc.subject.unescoEstadística
dc.subject.unescoStatistics
dc.subject.unescoDatos climáticos
dc.subject.unescoClimatic data
dc.titleUn modelo de pronostico con variables aleatorias escalares y funcionales temporal y espacialmente correlacionadas
dc.title.translatedA forecasting model with temporally and spatially correlated scalar and functional random variables
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ciencias - Matemáticas.pdf
Tamaño:
14.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: