Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.

Miniatura

Autores

Giraldo Galeano, Oscar Iván

Director

Rodríguez Nieto, José Gregorio

Tipo de contenido

Trabajo de grado - Doctorado

Idioma del documento

Español

Fecha de publicación

2021

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

El objetivo de este trabajo es probar que las laminaciones invariantes bajo un homeomorfismo final periódico f induce una estructura compleja en la superficie. Y para esto, se pasa de laminaciones medibles a foliaciones con singularidades y con medidas transversales. Luego se usa la estructura Euclidiana inducida por las foliaciones para encontrar una estructura conforme. Por último se prueba que f es una función Pseudo Anosov generalizada en el sentido de [deC-H1]. En particular, se prueba que un diferencial cuadrático asociado a las foliaciones tiene área finita. Además se presentan ejemplos particulares del teorema central. (Texto tomado de la fuente)

Abstract

The main result of this paper is to prove that the minimal invariant laminations of an irreducible generalized Pseudo-Anosov homeomorphism isotopic to an endperiodic homeomorphism induces a conformal structure on the singular surface. To have a better understanding of the given theory, three propositions are presented that are original examples, which will give us an idea of the proof of the main theorem.

Descripción Física/Lógica/Digital

ilustraciones

Palabras clave

Citación