Homeomorfismos finales periódicos y Pseudo-Anosov generalizados.

dc.contributor.advisorRodríguez Nieto, José Gregorio
dc.contributor.authorGiraldo Galeano, Oscar Iván
dc.date.accessioned2021-10-11T16:45:38Z
dc.date.available2021-10-11T16:45:38Z
dc.date.issued2021
dc.descriptionilustracionesspa
dc.description.abstractEl objetivo de este trabajo es probar que las laminaciones invariantes bajo un homeomorfismo final periódico f induce una estructura compleja en la superficie. Y para esto, se pasa de laminaciones medibles a foliaciones con singularidades y con medidas transversales. Luego se usa la estructura Euclidiana inducida por las foliaciones para encontrar una estructura conforme. Por último se prueba que f es una función Pseudo Anosov generalizada en el sentido de [deC-H1]. En particular, se prueba que un diferencial cuadrático asociado a las foliaciones tiene área finita. Además se presentan ejemplos particulares del teorema central. (Texto tomado de la fuente)spa
dc.description.abstractThe main result of this paper is to prove that the minimal invariant laminations of an irreducible generalized Pseudo-Anosov homeomorphism isotopic to an endperiodic homeomorphism induces a conformal structure on the singular surface. To have a better understanding of the given theory, three propositions are presented that are original examples, which will give us an idea of the proof of the main theorem.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.format.extent76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80486
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.references[Ahl] Ahlfors L, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co. New York (1973) MR0357743spa
dc.relation.references[Be-Ha] Bestvida M, Handel M. 1995. Train-Tracks for surfacenhomeomorphisms. Topology Vol. 34. No. I, pp. 109-MO,1995spa
dc.relation.references[deC-H1] de Carvalho A, Hall T. 2004. Unimodal generalized pseudo-Anosov maps. Geom Topol 8:1127-1188.spa
dc.relation.references[deC2] de Carvalho A. 2005. Extensions, quotients and genelized pseudo-Anosov maps. AMS Proc. Sympos. Pure Math 75:315-338.spa
dc.relation.references[deC-P3] de Carvalho A, Patermain M. 2004. Monotone quotients of surface diffeomorphisms. Math. Res. Lett 10:603-619spa
dc.relation.references[deC-H4] de Carvalho A, Hall T. 2010. Paper folding, Riemann surfaces, and convergence of pseudo-Anosov sequences, arXiv:1010.3448.spa
dc.relation.references[Fe1] Fenley S. 1990. Endperiodic surface homeomorphisms and 3-manifolds. Math Z. 224:1-24spa
dc.relation.references[Fe2] Fenley S. 1992. Asymptotic properties of depth one foliations in hyperbolic 3-manifolds. Jour. Diff. Geo. 36:269-313.spa
dc.relation.references[Forster] O. Forster, Riemann Surfaces, Springer-Verlag, 1981.spa
dc.relation.references[Ca-Bl] Casson A, Bleiler S. 1988. Automorphisms of surface after Nielsen and Thurston. London Math. Soc. student Text 9 Cambridge Univ. Press.spa
dc.relation.references[Ca-Co1] Cantwell J, Conlon L. 2011. Handel-Miller theory and finite depth foliations, arXiv:1006.4525.spa
dc.relation.references[Ca-Co2] Cantwell J, Conlon L. 2010. Examples of endperiodic maps, arXiv:1008.2549spa
dc.relation.references[Ca-Co3] Cantwell J, Conlon L. 1999. Foliations cones. Geometry and Topology Monographs, Proceedings of the Kirbyfest. 2: 35-86.spa
dc.relation.references[Ca-Co4] Cantwell J, Conlon L. 2000. Foliations I. AMSspa
dc.relation.references[Ch-Ga-La] Chamanara R, Gardiner F, Lakic N. 2006. A hyperelliptic realization of the horseshoe and baker maps. Ergod. Th. and Dynam. Sys. 26:1749-1768.spa
dc.relation.referencesFle] Fleming, W. “Nondegenerate surfaces of finite topological type.” Transactions of the American Mathematical Society 90 (1959): 323-335.spa
dc.relation.references[Ghys] E. Ghys, Laminations par surfaces de Riemann, Panorames e Synthesis, SMF, 2000.spa
dc.relation.references[Ga-La] Gardiner F, Lakic N. 2000. Quasiconformal Teichmuller Theory. AMS. Math. Sur. and Monog. Vol 76.spa
dc.relation.references[Ga-Fre] Gardiner F,Frederick P. Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152(1-2):57-76, 1984.spa
dc.relation.references[Gi-Fi] Gilbert H, Ulrich H. Introduction to the geometry of foliations. Part A. Friedr. Vieweg and Sohn, Braunschweig, second edition, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomyspa
dc.relation.referencesGaspard] Gaspard, P. (1998). Chaos, Scattering and Statistical Mechanics (Cambridge Nonlinear Science Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628856spa
dc.relation.references[Hu-Ma] Hubbard J, Masur H. 1979. Quadratic differentials and foliations. Acta Math. 142:221-274.spa
dc.relation.references[Mi] Sappala M. Foliations and Quadratic Differentials of Riemann Surface.spa
dc.relation.references[St] Strebel K. 1988. On the extremality and unique extremality of certain Teichmuller mappings. Complex Analysis, J. Hersch and A. Huber, eds. Birhhauser, Basel. 225-238.spa
dc.relation.references[St] Strebel K, Quadratic Differentials, Springer-Verlag, Berlin, 1984.spa
dc.relation.references[Th1] Thurston. W. The geometry and tology of 3-manifolds. Princeton University Notes, 1982.spa
dc.relation.references[Th2] Thurston. W. On the geometry and dynamics of diffeomorphisms of surface. Bull. AMS 19. (1988) 417-431spa
dc.relation.references[Th3] Thurston. W. Hyperbolic structures on 3-manifolds II. Surface grups and 3-manifolds that fiber over the circle. Preprint.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lemGeometría Euclidiana
dc.subject.lembEuclidean geometry
dc.subject.lembFoliations (mathematics)
dc.subject.lembFoliaciones (Matemáticas
dc.subject.proposalSuperficie final periódicaspa
dc.subject.proposalEnd periodic surfaceseng
dc.subject.proposalHomeomorfismo final periódicospa
dc.subject.proposalEnd periodic homeomorphismseng
dc.subject.proposalHomeomorfismo Pseudo-Anosov Generalizadospa
dc.subject.proposalGeneralized Pseudo-Anosov homeomorphismseng
dc.subject.proposalEntropía cerospa
dc.subject.proposalZero entropyeng
dc.titleHomeomorfismos finales periódicos y Pseudo-Anosov generalizados.spa
dc.title.translatedEnd periodic homeomorphisms and generalized pseudo-Anosov homeomorphismseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
70953160.2021.pdf
Tamaño:
3.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Matemáticas.

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: