Identificación in silico de moléculas con potencial actividad polifuncional contra blancos moleculares asociados al tratamiento de la diabesidad

dc.contributor.advisorLópez Vallejo, Fabián Harveyspa
dc.contributor.authorLuque Obando, Diana Marcelaspa
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)spa
dc.date.accessioned2025-07-14T16:13:15Z
dc.date.available2025-07-14T16:13:15Z
dc.date.issued2024
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractIdentificación in silico de moléculas con potencial actividad polifuncional contra blancos moleculares asociados al tratamiento de la diabesidad La obesidad y la diabetes mellitus 2 (DM2) son dos enfermedades crónicas que han ido aumentando a un ritmo cada vez mayor, en los últimos años alrededor del mundo, constituyendo un verdadero problema de salud pública. El término diabesidad es usado para referirse a los efectos generados tanto por la diabetes como por la obesidad, en individuos que padecen ambas enfermedades(Halpern & Mancini, 2005). El tratamiento comúnmente utilizado en pacientes con DM2, se basa en la utilización de fármacos que controlan el nivel glucémico, ya que el manejo óptimo de la concentración de azúcar en sangre es prioridad para los pacientes con diabesidad. Un control deficiente de la DM2 se asocia con complicaciones sistémicas bastante graves. Sin embargo, estos fármacos antidiabéticos tienden a tener efectos secundarios, como el aumento del peso corporal, lo cual va en contra del manejo adecuado de la diabesidad (Gorgojo-Martínez, 2014a). El tratamiento farmacológico para la diabesidad no difiere del utilizado en pacientes con DM2. Sin embargo, no se han encontrado medicamentos asociados que permitan una reducción notable de la diabesidad (Pappachan et al., 2019b). Lo que se ha demostrado, es la aparición de efectos secundarios como la hipoglucemia y el aumento de peso, cuando se usan los medicamentos antidiabéticos comúnmente utilizados como inhibidores de la α-glucosidasa, sulfonilureas, tiazolidinedionas, a excepción de la metformina (M. Decara et al., 2022). Por tal motivo, es necesario encontrar nuevos blancos terapéuticos o moléculas con actividad polifuncional que minimicen los efectos secundarios asociados a la medicación convencional y conduzcan a un control adecuado tanto de la DM2 como de la obesidad. A partir de un estudio in silico, aplicando una estrategia de reposicionamiento de fármacos, en este trabajo se identificaron 9 moléculas potencialmente activas y polifuncionales contra 3 blancos moleculares usados para el tratamiento de la obesidad y la diabetes; GPR119; receptor acoplado a proteína G119, TGR5; a menudo llamado receptor de ácidos biliares acoplado a proteína G y enteropeptidasa (Gupta et al., 2021) (Texto tomado de la fuente).spa
dc.description.abstractObesity and type 2 diabetes mellitus (DM2) are two chronic diseases that have been increasing at a growing rate in recent years around the world, constituting a true public health problem. The term diabesity is used to refer to the effects generated by both diabetes and obesity, in individuals who suffer from both diseases. The treatment commonly used in patients with DM2 is based on the use of drugs that control the glycemic level, since optimal management of blood sugar concentration is a priority for patients with diabetes. Poor control of T2DM is associated with quite serious systemic complications. However, these antidiabetic drugs tend to have side effects, such as increased body weight, which goes against the proper management of diabesity. Pharmacological treatment for diabetes does not differ from that used in patients with DM2. However, no associated medications have been found that allow a notable reduction in Diabesity (Pappachan et al., 2019a). What has been demonstrated is the appearance of side effects such as hypoglycemia and weight gain, when using antidiabetic medications used as α-glucosidase inhibitors, sulfonylureas, thiazolidinediones, with the exception of metformin (M. Decara et al., 2022). For this reason, it is necessary to find either novel molecular targets or polypharmacological drugs that minimize the side effects associated with conventional medication and lead to adequate control of both DM2 and obesity. Based on an in silico study applying a drug repositioning strategy, in this work, potentially active and polyfunctional molecules were identified against 3 molecular targets used for the treatment of obesity and diabetes; GPR119; G protein-coupled receptor 119, TGR5; often called G protein-coupled bile acid receptor and enteropeptidase (Gupta et al., 2021).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.methods1. Estado del arte de los blancos moleculares existentes para Diabesidad. Revisión bibliográfica para GPR119, EP y TGR5 2. Estudios de cribado virtual 3. Identificación de moléculas con potencial actividad polifuncional para los tres blancos terapéuticos (GPR119, EP y TGR5)spa
dc.description.researchareaQuímica medicinal y modelamiento molecularspa
dc.format.extent153 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88336
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAbdel-Magid, A. F. (2012). GPR119 Modulators for the Treatment of Diabetes, Obesity, and Related Diseases. ACS Medicinal Chemistry Letters, 3(12), 955–958. https://doi.org/10.1021/ml300296qspa
dc.relation.referencesAfanamol, M. S., Dinesh, A. D., Ali, K. S., Vengamthodi, A., & Rasheed, A. (2023). Drug repurposing by in silico prediction of cyclizine derivatives as antihyperlipemic agents. In Silico Pharmacology, 11(1), 1–13. https://doi.org/10.1007/s40203-023-00164-2spa
dc.relation.referencesAsante-Appiah, E., Patel, S., Dufresne, C., Roy, P., Wang, Q., Patel, V., Friesen, R. W., Ramachandran, C., Becker, J. W., Leblanc, Y., Kennedy, B. P., & Scapin, G. (2002). The structure of PTP-1B in complex with a peptide inhibitor reveals an alternative binding mode for bisphosphonates. Biochemistry, 41(29), 9043–9051. https://doi.org/10.1021/bi0259554spa
dc.relation.referencesAtanes, P., & Persaud, S. J. (2019). GPCR targets in type 2 diabetes. In GPCRs: Structure, Function, and Drug Discovery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816228-6.00018-0spa
dc.relation.referencesAuguin, D., Barthe, P., Augé-Sénégas, M. T., Stern, M. H., Noguchi, M., & Roumestand, C. (2004). Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates. Journal of Biomolecular NMR, 28(2), 137–155. https://doi.org/10.1023/B:JNMR.0000013836.62154.c2spa
dc.relation.referencesBae, E. J., Choi, W. G., Pagire, H. S., Pagire, S. H., Parameswaran, S., Choi, J. H., Yoon, J., Choi, W. Il, Lee, J. H., Song, J. S., Bae, M. A., Kim, M., Jeon, J. H., Lee, I. K., Kim, H., & Ahn, J. H. (2021). Peripheral Selective Oxadiazolylphenyl Alanine Derivatives as Tryptophan Hydroxylase 1 Inhibitors for Obesity and Fatty Liver Disease. Journal of Medicinal Chemistry, 64(2), 1037–1053. https://doi.org/10.1021/acs.jmedchem.0c01560spa
dc.relation.referencesBarciszewski, J., Szpotkowski, K., Wiśniewski, J., Kolodziejczyk, R., Rakus, D., Jaskolski, M., & Dzugaj, A. (2021). Structural studies of human muscle FBPase*. Acta Biochimica Polonica, 68(1), 5–14. https://doi.org/10.18388/abp.2020_5554spa
dc.relation.referencesBarciszewski, J., Wisniewski, J., Kolodziejczyk, R., Jaskolski, M., Rakus, D., & Dzugaj, A. (2016). T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure. Acta Crystallographica Section D: Structural Biology, 72(4), 536–550. https://doi.org/10.1107/S2059798316001765spa
dc.relation.referencesBazzaz, S., Myers, J. S., & Katz, l. J. (2007). Travoprost in the treatment of glaucoma. Expert Review of Ophthalmology, 2(2), 177–183. https://doi.org/10.1586/17469899.2.2.177spa
dc.relation.referencesBerger, J. P., SinhaRoy, R., Pocai, A., Kelly, T. M., Scapin, G., Gao, Y., Pryor, K. A. D., Wu, J. K., Eiermann, G. J., Xu, S. S., Zhang, X., Tatosian, D. A., Weber, A. E., Thornberry, N. A., & Carr, R. D. (2018). A comparative study of the binding properties, dipeptidyl peptidase‐4 ( DPP ‐4) inhibitory activity and glucose‐lowering efficacy of the DPP ‐4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice . Endocrinology, Diabetes & Metabolism, 1(1), 1–8. https://doi.org/10.1002/edm2.2spa
dc.relation.referencesBeyreuther, B. K., Freitag, J., Heers, C., Krebsfänger, N., Scharfenecker, U., & Stöhr, T. (2007). Lacosamide: A review of preclinical properties. CNS Drug Reviews, 13(1), 21–42. https://doi.org/10.1111/j.1527-3458.2007.00001.xspa
dc.relation.referencesBhat, R., Xue, Y., Berg, S., Hellberg, S., Ormö, M., Nilsson, Y., Radesäter, A. C., Jerning, E., Markgren, P. O., Borgegård, T., Nylöf, M., Giménez-Cassina, A., Hernández, F., Lucas, J. J., Díaz-Nido, J., & Avila, J. (2003). Structural Insights and Biological Effects of Glycogen Synthase Kinase 3-specific Inhibitor AR-A014418. Journal of Biological Chemistry, 278(46), 45937–45945. https://doi.org/10.1074/jbc.M306268200spa
dc.relation.referencesBhimanwar, R. S., Lokhande, K. B., Shrivastava, A., Singh, A., Chitlange, S. S., & Mittal, A. (2023). Identification of potential drug candidates as TGR5 agonist to combat type II diabetes using in silico docking and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 41(22), 13314–13331. https://doi.org/10.1080/07391102.2023.2173654spa
dc.relation.referencesChampion, M. C. (1988). Domperidone. General Pharmacology, 19(4), 499–505. https://doi.org/10.1016/0306-3623(88)90153-Xspa
dc.relation.referencesChen, G., Wang, X., Ge, Y., Ma, L., Chen, Q., Liu, H., Du, Y., Ye, R. D., Hu, H., & Ren, R. (2020). Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduction and Targeted Therapy, 5(1), 4–6. https://doi.org/10.1038/s41392-020-00262-zspa
dc.relation.referencesChen, T., Reich, N. W., Bell, N., Finn, P. D., Rodriguez, D., Kohler, J., Kozuka, K., He, L., Spencer, A. G., Charmot, D., Navre, M., Carreras, C. W., Koo-Mccoy, S., Tabora, J., Caldwell, J. S., Jacobs, J. W., & Lewis, J. G. (2018a). Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). Journal of Medicinal Chemistry, 61(17), 7589–7613. https://doi.org/10.1021/acs.jmedchem.8b00308spa
dc.relation.referencesChen, T., Reich, N. W., Bell, N., Finn, P. D., Rodriguez, D., Kohler, J., Kozuka, K., He, L., Spencer, A. G., Charmot, D., Navre, M., Carreras, C. W., Koo-Mccoy, S., Tabora, J., Caldwell, J. S., Jacobs, J. W., & Lewis, J. G. (2018b). Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). Journal of Medicinal Chemistry, 61(17), 7589–7613. https://doi.org/10.1021/acs.jmedchem.8b00308spa
dc.relation.referencesCianchetta, G., Stouch, T., Yu, W., Shi, Z. C., Tari, L. W., Swanson, R. V., Hunter, M. J., Hoffman, I. D., & Liu, Q. (2010). Mechanism of inhibition of novel tryptophan hydroxylase inhibitors revealed by co-crystal structures and kinetic analysis. Current Chemical Genomics, 4(1), 19–26. https://doi.org/10.2174/1875397301004010019spa
dc.relation.referencesCostantino L, Barlocco D. New perspectives on the development of antiobesity drugs. Future Med Chem. 2015;7(3):315-36. doi: 10.4155/fmc.14.167. PMID: 25826362.spa
dc.relation.referencesDavies, T. G., Verdonk, M. L., Graham, B., Saalau-Bethell, S., Hamlett, C. C. F., McHardy, T., Collins, I., Garrett, M. D., Workman, P., Woodhead, S. J., Jhoti, H., & Barford, D. (2007). A Structural Comparison of Inhibitor Binding to PKB, PKA and PKA-PKB Chimera. Journal of Molecular Biology, 367(3), 882–894. https://doi.org/10.1016/j.jmb.2007.01.004spa
dc.relation.referencesDe Rensis, F., Saleri, R., Tummaruk, P., Techakumphu, M., & Kirkwood, R. N. (2012). Prostaglandin F2α and control of reproduction in female swine: A review. Theriogenology, 77(1), 1–11. https://doi.org/10.1016/j.theriogenology.2011.07.035spa
dc.relation.referencesDing, H. X., Leverett, C. A., Kyne, R. E., Liu, K. K. C., Fink, S. J., Flick, A. C., & O’Donnell, C. J. (2015). Synthetic approaches to the 2013 new drugs. Bioorganic and Medicinal Chemistry, 23(9), 1895–1922. https://doi.org/10.1016/j.bmc.2015.02.056spa
dc.relation.referencesDing, Z., Chen, M., Tao, X., Liu, Y., He, J., Wang, T., & Li, X. (2021). Synergistic Treatment of Obesity via Locally Promoting Beige Adipogenesis and Antioxidative Defense in Adipose Tissues. ACS Biomaterials Science and Engineering, 7(2), 727–738. https://doi.org/10.1021/acsbiomaterials.0c01181spa
dc.relation.referencesDite, T. A., Langendorf, C. G., Hoque, A., Galic, S., Rebello, R. J., Ovens, A. J., Lindqvist, L. M., Ngoei, K. R. W., Ling, N. X. Y., Furic, L., Kemp, B. E., Scott, J. W., & Oakhill, J. S. (2018). AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. Journal of Biological Chemistry, 293(23), 8874–8885. https://doi.org/10.1074/jbc.RA118.003547spa
dc.relation.referencesDuan, H., Ning, M., Chen, X., Zou, Q., Zhang, L., Feng, Y., Zhang, L., Leng, Y., & Shen, J. (2012). Design, synthesis, and antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent and orally efficacious TGR5 agonists. Journal of Medicinal Chemistry, 55(23), 10475–10489. https://doi.org/10.1021/jm301071hspa
dc.relation.referencesDuan, H., Ning, M., Zou, Q., Ye, Y., Feng, Y., Zhang, L., Leng, Y., & Shen, J. (2015). Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. Journal of Medicinal Chemistry, 58(8), 3315–3328. https://doi.org/10.1021/jm500829bspa
dc.relation.referencesDuboc, H., Taché, Y., & Hofmann, A. F. (2014). The bile acid TGR5 membrane receptor: From basic research to clinical application. Digestive and Liver Disease, 46(4), 302–312. https://doi.org/10.1016/j.dld.2013.10.021spa
dc.relation.referencesElisa Cadena. (2021). Obesidad, un factor de riesgo en el covid-19. In MinSalud.spa
dc.relation.referencesFisher, L. D., & Moyé, L. A. (1999). Carvedilol and the food and drug administration approval process: An Introduction. Controlled Clinical Trials, 20(1), 1–15. https://doi.org/10.1016/S0197-2456(98)00052-Xspa
dc.relation.referencesFongemie, J., & Felix-Getzik, E. (2015). A Review of Nebivolol Pharmacology and Clinical Evidence. Drugs, 75(12), 1349–1371. https://doi.org/10.1007/s40265-015-0435-5spa
dc.relation.referencesFriesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256ospa
dc.relation.referencesGao, C., Chang, L., Xu, Z., Yan, X. F., Ding, C., Zhao, F., Wu, X., & Feng, L. S. (2019). Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. European Journal of Medicinal Chemistry, 163, 404–412. https://doi.org/10.1016/j.ejmech.2018.12.001spa
dc.relation.referencesGoldberg, D. R., De Lombaert, S., Aiello, R., Bourassa, P., Barucci, N., Zhang, Q., Paralkar, V., Stein, A. J., Holt, M., Valentine, J., & Zavadoski, W. (2017). Optimization of spirocyclic proline tryptophan hydroxylase-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 27(3), 413–419. https://doi.org/10.1016/j.bmcl.2016.12.053spa
dc.relation.referencesGoodwin, T. M. (1999). A role for estriol in human labor, term and preterm. American Journal of Obstetrics and Gynecology, 180(1 III), 208–213. https://doi.org/10.1016/s0002-9378(99)70702-7spa
dc.relation.referencesGorgojo-Martínez, J. J. (2014a). Nuevos fármacos antidiabéticos: Avanzando hacia el control integral de la diabesidad. Hipertension y Riesgo Vascular, 31(2), 45–57. https://doi.org/10.1016/j.hipert.2014.02.001spa
dc.relation.referencesGorgojo-Martínez, J. J. (2014b). Nuevos fármacos antidiabéticos: Avanzando hacia el control integral de la diabesidad. In Hipertension y Riesgo Vascular (Vol. 31, Issue 2, pp. 45–57). Ediciones Doyma, S.L. https://doi.org/10.1016/j.hipert.2014.02.001spa
dc.relation.referencesGreer, N. D. (2007). Posaconazole (Noxafil): A New Triazole Antifungal Agent. Baylor University Medical Center Proceedings, 20(2), 188–196. https://doi.org/10.1080/08998280.2007.11928283spa
dc.relation.referencesGuo, W., Sun, N., Qin, X., Pei, M., & Wang, L. (2015). A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous PtTi alloy. Biosensors and Bioelectronics, 74, 691–697. https://doi.org/10.1016/j.bios.2015.06.081spa
dc.relation.referencesGupta, A., Behl, T., Sehgal, A., Bhardwaj, S., Singh, S., Sharma, N., & Hafeez, A. (2021). Exploring the recent molecular targets for diabetes and associated complications. In Molecular Biology Reports (Vol. 48, Issue 3, pp. 2863–2879). Springer Science and Business Media B.V. https://doi.org/10.1007/s11033-021-06294-0spa
dc.relation.referencesHalpern, A., & Mancini, M. C. (2005). Diabesity Are Weight Loss Medications Effective? In Treat Endocrinol (Vol. 4, Issue 2).spa
dc.relation.referencesHeerding, D. A., Rhodes, N., Leber, J. D., Clark, T. J., Keenan, R. M., Lafrance, L. V, Li, M., Safonov, I. G., Takata, D. T., Venslavsky, J. W., Yamashita, D. S., Choudhry, A. E., Copeland, R. A., Lai, Z., Schaber, M. D., Tummino, P. J., Strum, S. L., Wood, E. R., Duckett, D. R., … Kumar, R. (2008). 1H-imidazo [ 4 , 5-c ] pyridin-4-yl ) -2-methyl-3-butyn-2-ol ( GSK690693 ), a Novel Inhibitor of AKT Kinase. Journal of Medicinal Chemistry, 51(18), 5663–5679. http://dx.doi.org/10.1021/jm8004527spa
dc.relation.referencesHodge, R. J., & Nunez, D. J. (2016). Therapeutic potential of Takeda-G-protein-receptor-5 ( TGR5 ). 5, 439–443.spa
dc.relation.referencesHumphries, T. J. (1987). Famotidine: A notable lack of drug interactions. Scandinavian Journal of Gastroenterology, 22(S134), 55–60. https://doi.org/10.3109/00365528709090142spa
dc.relation.referencesHwang, J. H., Lee, J. H., Moon, M. K., Kim, J. S., Won, K. S., & Lee, C. S. (2012). The usefulness of arbekacin compared to vancomycin. European Journal of Clinical Microbiology and Infectious Diseases, 31(7), 1663–1666. https://doi.org/10.1007/s10096-011-1490-9spa
dc.relation.referencesIkeda, Z., Kakegawa, K., Kikuchi, F., Itono, S., Oki, H., Yashiro, H., Hiyoshi, H., Tsuchimori, K., Hamagami, K., Watanabe, M., Sasaki, M., Ishihara, Y., Tohyama, K., Kitazaki, T., Maekawa, T., & Sasaki, M. (2022). Design, Synthesis, and Biological Evaluation of a Novel Series of 4-Guanidinobenzoate Derivatives as Enteropeptidase Inhibitors with Low Systemic Exposure for the Treatment of Obesity. Journal of Medicinal Chemistry, 65(12), 8456–8477. https://doi.org/10.1021/acs.jmedchem.2c00463spa
dc.relation.referencesJourdan, J. P., Bureau, R., Rochais, C., & Dallemagne, P. (2020). Drug repositioning: a brief overview. Journal of Pharmacy and Pharmacology, 72(9), 1145–1151. https://doi.org/10.1111/jphp.13273spa
dc.relation.referencesKamata, K., Mitsuya, M., Nishimura, T., Eiki, J. I., & Nagata, Y. (2004). Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure, 12(3), 429–438. https://doi.org/10.1016/j.str.2004.02.005spa
dc.relation.referencesKikuchi, F., Ikeda, Z., Kakegawa, K., Nishikawa, Y., Sasaki, S., Fukuda, K., Takami, K., Banno, Y., Nishikawa, H., Taya, N., Nakahata, T., Itono, S., Yashiro, H., Tsuchimori, K., Hiyoshi, H., Sasaki, M., Tohyama, K., Matsumiya, K., Ishihara, Y., … Sasaki, M. (2023). Discovery of a novel series of medium-sized cyclic enteropeptidase inhibitors. Bioorganic and Medicinal Chemistry, 93(July). https://doi.org/10.1016/j.bmc.2023.117462spa
dc.relation.referencesKirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection - What can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3–4), 213–228. https://doi.org/10.1007/s10822-007-9163-6spa
dc.relation.referencesKirchweger, B., Kratz, J. M., Ladurner, A., Grienke, U., Langer, T., Dirsch, V. M., & Rollinger, J. M. (2018a). In silico workflow for the discovery of natural products activating the G protein-coupled bile acid receptor 1. Frontiers in Chemistry, 6(JUL). https://doi.org/10.3389/fchem.2018.00242spa
dc.relation.referencesKirchweger, B., Kratz, J. M., Ladurner, A., Grienke, U., Langer, T., Dirsch, V. M., & Rollinger, J. M. (2018b). In silico workflow for the discovery of natural products activating the G protein-coupled bile acid receptor 1. Frontiers in Chemistry, 6(JUL), 1–14. https://doi.org/10.3389/fchem.2018.00242spa
dc.relation.referencesKjekshus, J., Pedersen, T. R., Olsson, A. G., Færgeman, O., & Pyörälä, K. (1997). The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. Journal of Cardiac Failure, 3(4), 249–254. https://doi.org/10.1016/S1071-9164(97)90022-1spa
dc.relation.referencesKoch, G. (2017). Medicinal Chemistry. Chimia, 71(10), 643. https://doi.org/10.2307/j.ctvnwc0d0.18spa
dc.relation.referencesKrueger, G. G., O’Reilly, M. A., Weidner, M., Dromgoole, S. H., & Killey, F. P. (1998). Comparative efficacy of once-daily flurandrenolide tape versus twice- daily diflorasone diacetate ointment in the treatment of psoriasis. Journal of the American Academy of Dermatology, 38(2 I), 186–190. https://doi.org/10.1016/S0190-9622(98)70238-5spa
dc.relation.referencesKubo, O., Takami, K., Kamaura, M., Watanabe, K., Miyashita, H., Abe, S., Matsuda, K., Tsujihata, Y., Odani, T., Iwasaki, S., Kitazaki, T., Murata, T., & Sato, K. (2021). Discovery of a novel series of GPR119 agonists: Design, synthesis, and biological evaluation of N-(Piperidin-4-yl)-N-(trifluoromethyl)pyrimidin-4-amine derivatives. Bioorganic and Medicinal Chemistry, 41. https://doi.org/10.1016/j.bmc.2021.116208spa
dc.relation.referencesLara, F. V.-O. de, Fernández, C. T., Zurita-Campos, J., & Hernández, J. A. M. (2024). Obesidad y sobrepeso. In Medicine - Programa de Formación Médica Continuada Acreditado (Vol. 14, Issue 15, pp. 845–854). https://doi.org/10.1016/j.med.2024.08.001spa
dc.relation.referencesLarsen, S. D., Barf, T., Liljebris, C., May, P. D., Ogg, D., O’Sullivan, T. J., Palazuk, B. J., Schostarez, H. J., Stevens, F. C., & Bleasdale, J. E. (2002). Synthesis and biological activity of a novel class of small molecular weight peptidomimetic competitive inhibitors of protein tyrosine phosphatase 1B. Journal of Medicinal Chemistry, 45(3), 598–622. https://doi.org/10.1021/jm010393sspa
dc.relation.referencesLasalle, M., Hoguet, V., Hennuyer, N., Leroux, F., Piveteau, C., Belloy, L., Lestavel, S., Vallez, E., Dorchies, E., Duplan, I., Sevin, E., Culot, M., Gosselet, F., Boulahjar, R., Herledan, A., Staels, B., Deprez, B., Tailleux, A., & Charton, J. (2017). Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. Journal of Medicinal Chemistry, 60(10), 4185–4211. https://doi.org/10.1021/acs.jmedchem.6b01873spa
dc.relation.referencesLee, S., Yang, W. K., Song, J. H., Ra, Y. M., Jeong, J. H., Choe, W., Kang, I., Kim, S. S., & Ha, J. (2013). Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochemical Pharmacology, 85(7), 965–976. https://doi.org/10.1016/j.bcp.2012.12.023spa
dc.relation.referencesLi, H., Fang, Y., Guo, S., & Yang, Z. (2021). GPR119 agonists for the treatment of type 2 diabetes: an updated patent review (2014-present). In Expert Opinion on Therapeutic Patents (Vol. 31, Issue 9, pp. 795–808). Taylor and Francis Ltd. https://doi.org/10.1080/13543776.2021.1921152spa
dc.relation.referencesLiang, G. B., Qian, X., Biftu, T., Singh, S., Gao, Y. D., Scapin, G., Patel, S., Leiting, B., Patel, R., Wu, J., Zhang, X., Thornberry, N. A., & Weber, A. E. (2008). Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design. Bioorganic and Medicinal Chemistry Letters, 18(13), 3706–3710. https://doi.org/10.1016/j.bmcl.2008.05.061spa
dc.relation.referencesLiao, W., & Jin, X. (1994). Medical Hypotheses I Medical Hypotheses (1994) 43, 234-238 0 LAmpan Lactulose-A Potential Drug for the Treatment of Inflammatory Bowel Disease. 234–238.spa
dc.relation.referencesLuo, J., Chuang, T., Cheung, J., Quan, J., Tsai, J., Sullivan, C., Hector, R. F., Reed, M. J., Meszaros, K., King, S. R., Carlson, T. J., & Reaven, G. M. (1998). Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). European Journal of Pharmacology, 346(1), 77–79. https://doi.org/10.1016/S0014-2999(98)00139-3spa
dc.relation.referencesM. Decara, J., Vázquez-Villa, H., Brea, J., Alonso, M., Kamal Srivastava, R., Orio, L., Alén, F., Suárez, J., Baixeras, E., García-Cárceles, J., Escobar-Peña, A., Lutz, B., Rodríguez, R., Codesido, E., Javier Garcia-Ladona, F., A. Bennett, T., A. Ballesteros, J., Cruces, J., I. Loza, M., … L. López-Rodríguez, M. (2022). Discovery of V-0219: A Small-Molecule Positive Allosteric Modulator of the Glucagon-Like Peptide-1 Receptor toward Oral Treatment for “Diabesity.” Journal of Medicinal Chemistry, 65(7), 5449–5461. https://doi.org/10.1021/acs.jmedchem.1c01842spa
dc.relation.referencesMa, L., Yang, F., Wu, X., Mao, C., Guo, L., Miao, T., Zang, S. K., Jiang, X., Shen, D. D., Wei, T., Zhou, H., Wei, Q., Li, S., Shu, Q., Feng, S., Jiang, C., Chu, B., Du, L., Sun, J. P., … Zhang, P. (2022). Structural basis and molecular mechanism of biased GPBAR signaling in regulating NSCLC cell growth via YAP activity. Proceedings of the National Academy of Sciences of the United States of America, 119(29), 1–12. https://doi.org/10.1073/pnas.2117054119spa
dc.relation.referencesMacena, J. C., Renzi, D. F., & Grigoletto, D. F. (2022). Chemical and biological properties of nordihydroguaiaretic acid. Brazilian Journal of Pharmaceutical Sciences, 58, 1–11. https://doi.org/10.1590/s2175-97902022e19517spa
dc.relation.referencesMaggs, D. J. (2008). Ocular Pharmacology and Therapeutics. Slatter’s Fundamentals of Veterinary Ophthalmology, 33–61. https://doi.org/10.1016/B978-072160561-6.50006-Xspa
dc.relation.referencesMaia Bosca, M., Martí, L., & Mínguez, M. (2007). Aproximación diagnóstica y terapéutica al paciente con gastroparesia. Gastroenterología y Hepatología, 30(6), 351–359. https://doi.org/10.1157/13107570spa
dc.relation.referencesManaithiya, A., Alam, O., Sharma, V., Javed Naim, M., Mittal, S., & Khan, I. A. (2021). GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. In Bioorganic Chemistry (Vol. 113). Academic Press Inc. https://doi.org/10.1016/j.bioorg.2021.104998spa
dc.relation.referencesManda, G., Rojo, A. I., Martínez-Klimova, E., Pedraza-Chaverri, J., & Cuadrado, A. (2020). Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Frontiers in Pharmacology, 11(February), 1–21. https://doi.org/10.3389/fphar.2020.00151spa
dc.relation.referencesMedina-Franco, J. L., Fernán-Dezde Gortari, E., & Jesús Naveja, J. (2015). Avances en el diseño de fármacos asistido por computadora. Educacion Quimica, 26(3), 180–186. https://doi.org/10.1016/j.eq.2015.05.002spa
dc.relation.referencesMeinertz, T., Lip, G. Y. H., Lombardi, F., Sadowski, Z. P., Kalsch, B., Camez, A., Hewkin, A., & Eberle, S. (2002). Efficacy and safety of propafenone sustained release in the prophylaxis of symptomatic paroxysmal atrial fibrillation (The European Rythmol/Rytmonorm Atrial Fibrillation Trial [ERAFT] Study). American Journal of Cardiology, 90(12), 1300–1306. https://doi.org/10.1016/S0002-9149(02)02867-9spa
dc.relation.referencesMellado-orellana, R., Salinas-lezama, E., Sánchez-herrera, D., Guajardo-lozano, J., Juan, E., & Rodríguez-weber, F. L. (2019). Tratamiento farmacológico de la diabetes mellitus tipo 2 dirigido a pacientes con sobrepeso y obesidad Pharmacological treatment of diabetes mellitus type 2 directed to patients with overweight and obesity . 35(4), 525–536.spa
dc.relation.referencesNg, A. C. T., Delgado, V., Borlaug, B. A., & Bax, J. J. (2021). Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. In Nature Reviews Cardiology (Vol. 18, Issue 4, pp. 291–304). Nature Research. https://doi.org/10.1038/s41569-020-00465-5spa
dc.relation.referencesNishimasu, H., Fushinobu, S., Shoun, H., & Wakagi, T. (2004). The first crystal structure of the novel class of fructose-1,6- bisphosphatase present in thermophilic archaea. Structure, 12(6), 949–959. https://doi.org/10.1016/j.str.2004.03.026spa
dc.relation.referencesOvens, A. J., Gee, Y. S., Ling, N. X. Y., Yu, D., Hardee, J. P., Chung, J. D., Ngoei, K. R. W., Waters, N. J., Hoffman, N. J., Scott, J. W., Loh, K., Spengler, K., Heller, R., Parker, M. W., Lynch, G. S., Huang, F., Galic, S., Kemp, B. E., Baell, J. B., … Langendorf, C. G. (2022). Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator. Biochemical Journal, 479(11), 1181–1204. https://doi.org/10.1042/BCJ20220067spa
dc.relation.referencesPablo Huidobro-Toro, J., & Verónica Donoso, M. (2004). Sympathetic co-transmission: The coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. European Journal of Pharmacology, 500(1-3 SPEC. ISS.), 27–35. https://doi.org/10.1016/j.ejphar.2004.07.008spa
dc.relation.referencesPapadia, M., Bagnis, A., Scotto, R., & Traverso, C. E. (2011). Tafluprost for glaucoma. Expert Opinion on Pharmacotherapy, 12(15), 2393–2401. https://doi.org/10.1517/14656566.2011.606810spa
dc.relation.referencesPappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019a). Molecular Aspects of Medicine Diabesity and antidiabetic drugs. Molecular Aspects of Medicine, 66(August 2018), 3–12. https://doi.org/10.1016/j.mam.2018.10.004spa
dc.relation.referencesPappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019b). Diabesity and antidiabetic drugs. In Molecular Aspects of Medicine (Vol. 66, pp. 3–12). Elsevier Ltd. https://doi.org/10.1016/j.mam.2018.10.004spa
dc.relation.referencesPautsch, A., Stadler, N., Löhle, A., Rist, W., Berg, A., Nar, H., Reinert, D., Lenter, M., Heckel, A., Schnapp, G., & Stefan, G. (2013). Supporting Information Crystal structure of glucokinase regulatory protein. Biochemistry, 52, 1–7.spa
dc.relation.referencesPellicciari, R., Gioiello, A., Macchiarulo, A., Thomas, C., Rosatelli, E., Natalini, B., Sardella, R., Pruzanski, M., Roda, A., Pastorini, E., Schoonjans, K., & Auwerx, J. (2009). Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. Journal of Medicinal Chemistry, 52(24), 7958–7961. https://doi.org/10.1021/jm901390pspa
dc.relation.referencesPonnusamy, L., Natarajan, S. R., Thangaraj, K., & Manoharan, R. (2020). Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochimica et Biophysica Acta - Reviews on Cancer, 1874(1), 188379. https://doi.org/10.1016/j.bbcan.2020.188379spa
dc.relation.referencesQian, Y., Wang, J., Yang, L., Liu, Y., Wang, L., Liu, W., Lin, Y., Yang, H., Ma, L., Ye, S., Wu, S., & Qiao, A. (2022). Activation and signaling mechanism revealed by GPR119-Gs complex structures. Nature Communications, 13(1), 1–10. https://doi.org/10.1038/s41467-022-34696-6spa
dc.relation.referencesRathod, P., & Yadav, R. P. (2021). Anti-diabesity potential of various multifunctional natural molecules. In Journal of Herbal Medicine (Vol. 27). Elsevier GmbH. https://doi.org/10.1016/j.hermed.2021.100430spa
dc.relation.referencesRaut, A., Sharma, D., & Suvarna, V. (2022). A Status Update on Pharmaceutical Analytical Methods of Aminoglycoside Antibiotic: Amikacin. Critical Reviews in Analytical Chemistry, 52(2), 375–391. https://doi.org/10.1080/10408347.2020.1803042spa
dc.relation.referencesRodríguez Bernardino, Á., Cebrián Blanco, S., & Durán García, S. (2005). Pioglitazona. Revisión de sus efectos metabólicos y sistémicos. Revista Clinica Espanola, 205(12), 610–620. https://doi.org/10.1016/S0014-2565(05)72655-2spa
dc.relation.referencesRuhrmann, S., Kissling, W., Lesch, O. M., Schmauss, M., Seemann, U., & Philipp, M. (2007). Efficacy of flupentixol and risperidone in chronic schizophrenia with predominantly negative symptoms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31(5), 1012–1022. https://doi.org/10.1016/j.pnpbp.2007.02.014spa
dc.relation.referencesSahin, C., Magomedova, L., A. M. Ferreira, T., Liu, J., Tiefenbach, J., S. Alves, P., J. G. Queiroz, F., S. de Oliveira, A., Bhattacharyya, M., Grouleff, J., C. N. Nogueira, P., R. Silveira, E., C. Moreira, D., Roberto Souza de Almeida Leite, J., D. Brand, G., Uehling, D., Poda, G., Krause, H., L. Cummins, C., & A. S. Romeiro, L. (2022). Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of Medicinal Chemistry, 65(3), 1961–1978. https://doi.org/10.1021/acs.jmedchem.1c01542spa
dc.relation.referencesSarmiento, M., Puius, Y. A., Vetter, S. W., Keng, Y. F., Wu, L., Zhao, Y., Lawrence, D. S., Almo, S. C., & Zhang, Z. Y. (2000). Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry, 39(28), 8171–8179. https://doi.org/10.1021/bi000319wspa
dc.relation.referencesScholar, E. (2007). Bicalutamide. XPharm: The Comprehensive Pharmacology Reference, 43(13), 1–5. https://doi.org/10.1016/B978-008055232-3.62975-7spa
dc.relation.referencesShiri, F., & Teymoori, M. (2017). In silico approaches to explore structure of new GPR 119 agonists for treatment of type 2 diabetes mellitus. Medicinal Chemistry Research, 26(5), 947–961. https://doi.org/10.1007/s00044-017-1808-yspa
dc.relation.referencesSieber, P. R., Keiller, D. L., Kahnoski, R. J., Gallo, J., & McFadden, S. (2004). Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. Journal of Urology, 171(6 I), 2272–2276. https://doi.org/10.1097/01.ju.0000127738.94221.daspa
dc.relation.referencesSimeonov, P., Zahn, M., Sträter, N., & Zuchner, T. (2012). Crystal structure of a supercharged variant of the human enteropeptidase light chain. Proteins: Structure, Function and Bioinformatics, 80(7), 1907–1910. https://doi.org/10.1002/prot.24084spa
dc.relation.referencesSugama, J., Moritoh, Y., Yashiro, H., Tsuchimori, K., & Watanabe, M. (2021a). Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice. Pharmacological Research, 163, 105337. https://doi.org/10.1016/j.phrs.2020.105337spa
dc.relation.referencesSugama, J., Moritoh, Y., Yashiro, H., Tsuchimori, K., & Watanabe, M. (2021b). Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice. Pharmacological Research, 163. https://doi.org/10.1016/j.phrs.2020.105337spa
dc.relation.referencesSun, W., Zhang, X., Cummings, M. D., Albarazanji, K., Wu, J., Wang, M., Alexander, R., Zhu, B., Zhang, Y., Leonard, J., Lanter, J., & Lenhard, J. (2020). Targeting enteropeptidase with reversible covalent inhibitors to achieve metabolic benefits. Journal of Pharmacology and Experimental Therapeutics, 375(3), 510–521. https://doi.org/10.1124/JPET.120.000219spa
dc.relation.referencesSutherland, R., Boon, R. J., Griffin, K. E., Masters, P. J., Slocombe, B., & White, A. R. (1985). Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrobial Agents and Chemotherapy, 27(4), 495–498. https://doi.org/10.1128/AAC.27.4.495spa
dc.relation.referencesTacon, C. L., McCaffrey, J., & Delaney, A. (2012). Dobutamine for patients with severe heart failure: A systematic review and meta-analysis of randomised controlled trials. Intensive Care Medicine, 38(3), 359–367. https://doi.org/10.1007/s00134-011-2435-6spa
dc.relation.referencesTakahashi, K., Hashimoto, N., Nakama, C., Kamata, K., Sasaki, K., Yoshimoto, R., Ohyama, S., Hosaka, H., Maruki, H., Nagata, Y., Eiki, J. ichi, & Nishimura, T. (2009). The design and optimization of a series of 2-(pyridin-2-yl)-1H-benzimidazole compounds as allosteric glucokinase activators. Bioorganic and Medicinal Chemistry, 17(19), 7042–7051. https://doi.org/10.1016/j.bmc.2009.05.037spa
dc.relation.referencesTharakan, G., Tan, T., & Bloom, S. (2011). Emerging therapies in the treatment of “diabesity”: Beyond GLP-1. Trends in Pharmacological Sciences, 32(1), 8–15. https://doi.org/10.1016/j.tips.2010.10.003spa
dc.relation.referencesTolman, K. G. (2002). The liver and lovastatin. American Journal of Cardiology, 89(12), 1374–1380. https://doi.org/10.1016/S0002-9149(02)02355-Xspa
dc.relation.referencesWacker, D. A., Wang, Y., Broekema, M., Rossi, K., Oconnor, S., Hong, Z., Wu, G., Malmstrom, S. E., Hung, C. P., Lamarre, L., Chimalakonda, A., Zhang, L., Xin, L., Cai, H., Chu, C., Boehm, S., Zalaznick, J., Ponticiello, R., Sereda, L., … Robl, J. A. (2014). Discovery of 5-chloro-4-((1-(5-chloropyrimidin-2-yl)piperidin-4-yl)oxy)-1-(2-fluoro-4-(methylsulfonyl)phenyl)pyridin-2(1 H)-one (BMS-903452), an antidiabetic clinical candidate targeting GPR119. Journal of Medicinal Chemistry, 57(18), 7499–7508. https://doi.org/10.1021/jm501175vspa
dc.relation.referencesWagner, F. F., Benajiba, L., Campbell, A. J., Weïwer, M., Sacher, J. R., Gale, J. P., Ross, L., Puissant, A., Alexe, G., Conway, A., Back, M., Pikman, Y., Galinsky, I., Deangelo, D. J., Stone, R. M., Kaya, T., Shi, X., Robers, M. B., Machleidt, T., … Holson, E. B. (2018). Exploiting an asp-glu “switch” in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Science Translational Medicine, 10(431), 1–18. https://doi.org/10.1126/scitranslmed.aam8460spa
dc.relation.referencesWagner, F. F., Bishop, J. A., Gale, J. P., Shi, X., Walk, M., Ketterman, J., Patnaik, D., Barker, D., Walpita, D., Campbell, A. J., Nguyen, S., Lewis, M., Ross, L., Weïwer, M., An, W. F., Germain, A. R., Nag, P. P., Metkar, S., Kaya, T., … Pan, J. Q. (2016). Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects. ACS Chemical Biology, 11(7), 1952–1963. https://doi.org/10.1021/acschembio.6b00306spa
dc.relation.referencesWang, L., Erlandsen, H., Haavik, J., Knappskog, P. M., & Stevens, R. C. (2002). Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. Biochemistry, 41(42), 12569–12574. https://doi.org/10.1021/bi026561fspa
dc.relation.referencesWellenzohn, B., Lessel, U., Beller, A., Isambert, T., Hoenke, C., & Nosse, B. (2012). Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry. Journal of Medicinal Chemistry, 55(24), 11031–11041. https://doi.org/10.1021/jm301549aspa
dc.relation.referencesWheeler, D. W., Carter, J. J., Murray, L. J., Degnan, B. A., Dunling, C. P., Salvador, R., Menon, D. K., & Gupta, A. K. (2008). The effect of drug concentration expression on epinephrine dosing errors: A randomized trial. Annals of Internal Medicine, 148(1), 11–14. https://doi.org/10.7326/0003-4819-148-1-200801010-00003spa
dc.relation.referencesWishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., & Hassanali, M. (2008). DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(SUPPL. 1), 901–906. https://doi.org/10.1093/nar/gkm958spa
dc.relation.referencesXiao, B., Sanders, M. J., Carmena, D., Bright, N. J., Haire, L. F., Underwood, E., Patel, B. R., Heath, R. B., Walker, P. A., Hallen, S., Giordanetto, F., Martin, S. R., Carling, D., & Gamblin, S. J. (2013). Structural basis of AMPK regulation by small molecule activators. Nature Communications, 4, 1–10. https://doi.org/10.1038/ncomms4017spa
dc.relation.referencesXu, P., Huang, S., Guo, S., Yun, Y., Cheng, X., He, X., Cai, P., Lan, Y., Zhou, H., Jiang, H., Jiang, Y., Xie, X., & Xu, H. E. (2022). Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nature Structural and Molecular Biology, 29(9), 863–870. https://doi.org/10.1038/s41594-022-00816-5spa
dc.relation.referencesYang, F., Mao, C., Guo, L., Lin, J., Ming, Q., Xiao, P., Wu, X., Shen, Q., Guo, S., Shen, D. D., Lu, R., Zhang, L., Huang, S., Ping, Y., Zhang, C., Ma, C., Zhang, K., Liang, X., Shen, Y., … Zhang, Y. (2020). Structural basis of GPBAR activation and bile acid recognition. Nature, 587(7834), 499–504. https://doi.org/10.1038/s41586-020-2569-1spa
dc.relation.referencesYang, X., Ding, Z., Peng, L., Song, Q., Zhang, D., Cui, F., Xia, C., Li, K., Yin, H., Li, S., Li, Z., & Huang, H. (2022). Cryo-EM structures reveal the activation and substrate recognition mechanism of human enteropeptidase. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-34364-9spa
dc.relation.referencesYang, X., Wang, Y., Byrne, R., Schneider, G., & Yang, S. (2019). Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery [Review-article]. Chemical Reviews, 119(18), 10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728spa
dc.relation.referencesYashiro, H., Hamagami, K., Hiyoshi, H., Sugama, J., Tsuchimori, K., Yamaguchi, F., Moritoh, Y., Sasaki, M., Maekawa, T., Yamada, Y., & Watanabe, M. (2019). SCO-792, an enteropeptidase inhibitor, improves disease status of diabetes and obesity in mice. Diabetes, Obesity and Metabolism, 21(10), 2228–2239. https://doi.org/10.1111/dom.13799spa
dc.relation.referencesYoshida, T., Akahoshi, F., Sakashita, H., Sonda, S., Takeuchi, M., Tanaka, Y., Nabeno, M., Kishida, H., Miyaguchi, I., & Hayashi, Y. (2012). Fused bicyclic heteroarylpiperazine-substituted l-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorganic and Medicinal Chemistry, 20(16), 5033–5041. https://doi.org/10.1016/j.bmc.2012.06.033spa
dc.relation.referencesZambrano, M., Yépez, G., Belén, M., Albán, J., Campoverde, R., Cajas, M., Yugsi, A., Cobo, C., & Elizabeth, N. (2020). Canagliflozin: integrando la evidencia clínica actual. In Redalyc.Org (Issue Dm). https://doi.org/10.5281/zenodo.4087233.svgspa
dc.relation.referencesZheng, C., Guo, Z., Huang, C., Wu, Z., Li, Y., Chen, X., Fu, Y., Ru, J., Ali Shar, P., Wang, Y., & Wang, Y. (2015). Large-scale Direct Targeting for Drug Repositioning and Discovery. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep11970spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.decsDiabesidadspa
dc.subject.decsDiabesityeng
dc.subject.decsComplicaciones de la Diabetesspa
dc.subject.decsDiabetes Complicationseng
dc.subject.decsObesidadspa
dc.subject.decsObesityeng
dc.subject.decsDiabetes Mellitus Tipo 2spa
dc.subject.decsDiabetes Mellitus, Type 2eng
dc.subject.decsEnfermedad Crónicaspa
dc.subject.decsChronic Diseaseeng
dc.subject.decsControl Glucémicospa
dc.subject.decsGlycemic Controleng
dc.subject.proposalDiabesidadspa
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalReposicionamiento de fármacosspa
dc.subject.proposalBlancos molecularesspa
dc.subject.proposalPolifuncionalspa
dc.subject.proposalDiabesityeng
dc.subject.proposalMolecular dockingeng
dc.subject.proposalDrug repositioningeng
dc.subject.proposalMolecular targetseng
dc.subject.proposalPolyfunctionaleng
dc.titleIdentificación in silico de moléculas con potencial actividad polifuncional contra blancos moleculares asociados al tratamiento de la diabesidadspa
dc.title.translatedIn silico identification of molecules with potential polyfunctional activity against molecular targets associated with the treatment of diabesityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070947296.2025.pdf
Tamaño:
6.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: