Identificación in silico de moléculas con potencial actividad polifuncional contra blancos moleculares asociados al tratamiento de la diabesidad
| dc.contributor.advisor | López Vallejo, Fabián Harvey | spa |
| dc.contributor.author | Luque Obando, Diana Marcela | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab) | spa |
| dc.date.accessioned | 2025-07-14T16:13:15Z | |
| dc.date.available | 2025-07-14T16:13:15Z | |
| dc.date.issued | 2024 | |
| dc.description | ilustraciones a color, diagramas | spa |
| dc.description.abstract | Identificación in silico de moléculas con potencial actividad polifuncional contra blancos moleculares asociados al tratamiento de la diabesidad La obesidad y la diabetes mellitus 2 (DM2) son dos enfermedades crónicas que han ido aumentando a un ritmo cada vez mayor, en los últimos años alrededor del mundo, constituyendo un verdadero problema de salud pública. El término diabesidad es usado para referirse a los efectos generados tanto por la diabetes como por la obesidad, en individuos que padecen ambas enfermedades(Halpern & Mancini, 2005). El tratamiento comúnmente utilizado en pacientes con DM2, se basa en la utilización de fármacos que controlan el nivel glucémico, ya que el manejo óptimo de la concentración de azúcar en sangre es prioridad para los pacientes con diabesidad. Un control deficiente de la DM2 se asocia con complicaciones sistémicas bastante graves. Sin embargo, estos fármacos antidiabéticos tienden a tener efectos secundarios, como el aumento del peso corporal, lo cual va en contra del manejo adecuado de la diabesidad (Gorgojo-Martínez, 2014a). El tratamiento farmacológico para la diabesidad no difiere del utilizado en pacientes con DM2. Sin embargo, no se han encontrado medicamentos asociados que permitan una reducción notable de la diabesidad (Pappachan et al., 2019b). Lo que se ha demostrado, es la aparición de efectos secundarios como la hipoglucemia y el aumento de peso, cuando se usan los medicamentos antidiabéticos comúnmente utilizados como inhibidores de la α-glucosidasa, sulfonilureas, tiazolidinedionas, a excepción de la metformina (M. Decara et al., 2022). Por tal motivo, es necesario encontrar nuevos blancos terapéuticos o moléculas con actividad polifuncional que minimicen los efectos secundarios asociados a la medicación convencional y conduzcan a un control adecuado tanto de la DM2 como de la obesidad. A partir de un estudio in silico, aplicando una estrategia de reposicionamiento de fármacos, en este trabajo se identificaron 9 moléculas potencialmente activas y polifuncionales contra 3 blancos moleculares usados para el tratamiento de la obesidad y la diabetes; GPR119; receptor acoplado a proteína G119, TGR5; a menudo llamado receptor de ácidos biliares acoplado a proteína G y enteropeptidasa (Gupta et al., 2021) (Texto tomado de la fuente). | spa |
| dc.description.abstract | Obesity and type 2 diabetes mellitus (DM2) are two chronic diseases that have been increasing at a growing rate in recent years around the world, constituting a true public health problem. The term diabesity is used to refer to the effects generated by both diabetes and obesity, in individuals who suffer from both diseases. The treatment commonly used in patients with DM2 is based on the use of drugs that control the glycemic level, since optimal management of blood sugar concentration is a priority for patients with diabetes. Poor control of T2DM is associated with quite serious systemic complications. However, these antidiabetic drugs tend to have side effects, such as increased body weight, which goes against the proper management of diabesity. Pharmacological treatment for diabetes does not differ from that used in patients with DM2. However, no associated medications have been found that allow a notable reduction in Diabesity (Pappachan et al., 2019a). What has been demonstrated is the appearance of side effects such as hypoglycemia and weight gain, when using antidiabetic medications used as α-glucosidase inhibitors, sulfonylureas, thiazolidinediones, with the exception of metformin (M. Decara et al., 2022). For this reason, it is necessary to find either novel molecular targets or polypharmacological drugs that minimize the side effects associated with conventional medication and lead to adequate control of both DM2 and obesity. Based on an in silico study applying a drug repositioning strategy, in this work, potentially active and polyfunctional molecules were identified against 3 molecular targets used for the treatment of obesity and diabetes; GPR119; G protein-coupled receptor 119, TGR5; often called G protein-coupled bile acid receptor and enteropeptidase (Gupta et al., 2021). | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Química | spa |
| dc.description.methods | 1. Estado del arte de los blancos moleculares existentes para Diabesidad. Revisión bibliográfica para GPR119, EP y TGR5 2. Estudios de cribado virtual 3. Identificación de moléculas con potencial actividad polifuncional para los tres blancos terapéuticos (GPR119, EP y TGR5) | spa |
| dc.description.researcharea | Química medicinal y modelamiento molecular | spa |
| dc.format.extent | 153 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88336 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
| dc.relation.references | Abdel-Magid, A. F. (2012). GPR119 Modulators for the Treatment of Diabetes, Obesity, and Related Diseases. ACS Medicinal Chemistry Letters, 3(12), 955–958. https://doi.org/10.1021/ml300296q | spa |
| dc.relation.references | Afanamol, M. S., Dinesh, A. D., Ali, K. S., Vengamthodi, A., & Rasheed, A. (2023). Drug repurposing by in silico prediction of cyclizine derivatives as antihyperlipemic agents. In Silico Pharmacology, 11(1), 1–13. https://doi.org/10.1007/s40203-023-00164-2 | spa |
| dc.relation.references | Asante-Appiah, E., Patel, S., Dufresne, C., Roy, P., Wang, Q., Patel, V., Friesen, R. W., Ramachandran, C., Becker, J. W., Leblanc, Y., Kennedy, B. P., & Scapin, G. (2002). The structure of PTP-1B in complex with a peptide inhibitor reveals an alternative binding mode for bisphosphonates. Biochemistry, 41(29), 9043–9051. https://doi.org/10.1021/bi0259554 | spa |
| dc.relation.references | Atanes, P., & Persaud, S. J. (2019). GPCR targets in type 2 diabetes. In GPCRs: Structure, Function, and Drug Discovery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816228-6.00018-0 | spa |
| dc.relation.references | Auguin, D., Barthe, P., Augé-Sénégas, M. T., Stern, M. H., Noguchi, M., & Roumestand, C. (2004). Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates. Journal of Biomolecular NMR, 28(2), 137–155. https://doi.org/10.1023/B:JNMR.0000013836.62154.c2 | spa |
| dc.relation.references | Bae, E. J., Choi, W. G., Pagire, H. S., Pagire, S. H., Parameswaran, S., Choi, J. H., Yoon, J., Choi, W. Il, Lee, J. H., Song, J. S., Bae, M. A., Kim, M., Jeon, J. H., Lee, I. K., Kim, H., & Ahn, J. H. (2021). Peripheral Selective Oxadiazolylphenyl Alanine Derivatives as Tryptophan Hydroxylase 1 Inhibitors for Obesity and Fatty Liver Disease. Journal of Medicinal Chemistry, 64(2), 1037–1053. https://doi.org/10.1021/acs.jmedchem.0c01560 | spa |
| dc.relation.references | Barciszewski, J., Szpotkowski, K., Wiśniewski, J., Kolodziejczyk, R., Rakus, D., Jaskolski, M., & Dzugaj, A. (2021). Structural studies of human muscle FBPase*. Acta Biochimica Polonica, 68(1), 5–14. https://doi.org/10.18388/abp.2020_5554 | spa |
| dc.relation.references | Barciszewski, J., Wisniewski, J., Kolodziejczyk, R., Jaskolski, M., Rakus, D., & Dzugaj, A. (2016). T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure. Acta Crystallographica Section D: Structural Biology, 72(4), 536–550. https://doi.org/10.1107/S2059798316001765 | spa |
| dc.relation.references | Bazzaz, S., Myers, J. S., & Katz, l. J. (2007). Travoprost in the treatment of glaucoma. Expert Review of Ophthalmology, 2(2), 177–183. https://doi.org/10.1586/17469899.2.2.177 | spa |
| dc.relation.references | Berger, J. P., SinhaRoy, R., Pocai, A., Kelly, T. M., Scapin, G., Gao, Y., Pryor, K. A. D., Wu, J. K., Eiermann, G. J., Xu, S. S., Zhang, X., Tatosian, D. A., Weber, A. E., Thornberry, N. A., & Carr, R. D. (2018). A comparative study of the binding properties, dipeptidyl peptidase‐4 ( DPP ‐4) inhibitory activity and glucose‐lowering efficacy of the DPP ‐4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice . Endocrinology, Diabetes & Metabolism, 1(1), 1–8. https://doi.org/10.1002/edm2.2 | spa |
| dc.relation.references | Beyreuther, B. K., Freitag, J., Heers, C., Krebsfänger, N., Scharfenecker, U., & Stöhr, T. (2007). Lacosamide: A review of preclinical properties. CNS Drug Reviews, 13(1), 21–42. https://doi.org/10.1111/j.1527-3458.2007.00001.x | spa |
| dc.relation.references | Bhat, R., Xue, Y., Berg, S., Hellberg, S., Ormö, M., Nilsson, Y., Radesäter, A. C., Jerning, E., Markgren, P. O., Borgegård, T., Nylöf, M., Giménez-Cassina, A., Hernández, F., Lucas, J. J., Díaz-Nido, J., & Avila, J. (2003). Structural Insights and Biological Effects of Glycogen Synthase Kinase 3-specific Inhibitor AR-A014418. Journal of Biological Chemistry, 278(46), 45937–45945. https://doi.org/10.1074/jbc.M306268200 | spa |
| dc.relation.references | Bhimanwar, R. S., Lokhande, K. B., Shrivastava, A., Singh, A., Chitlange, S. S., & Mittal, A. (2023). Identification of potential drug candidates as TGR5 agonist to combat type II diabetes using in silico docking and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 41(22), 13314–13331. https://doi.org/10.1080/07391102.2023.2173654 | spa |
| dc.relation.references | Champion, M. C. (1988). Domperidone. General Pharmacology, 19(4), 499–505. https://doi.org/10.1016/0306-3623(88)90153-X | spa |
| dc.relation.references | Chen, G., Wang, X., Ge, Y., Ma, L., Chen, Q., Liu, H., Du, Y., Ye, R. D., Hu, H., & Ren, R. (2020). Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduction and Targeted Therapy, 5(1), 4–6. https://doi.org/10.1038/s41392-020-00262-z | spa |
| dc.relation.references | Chen, T., Reich, N. W., Bell, N., Finn, P. D., Rodriguez, D., Kohler, J., Kozuka, K., He, L., Spencer, A. G., Charmot, D., Navre, M., Carreras, C. W., Koo-Mccoy, S., Tabora, J., Caldwell, J. S., Jacobs, J. W., & Lewis, J. G. (2018a). Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). Journal of Medicinal Chemistry, 61(17), 7589–7613. https://doi.org/10.1021/acs.jmedchem.8b00308 | spa |
| dc.relation.references | Chen, T., Reich, N. W., Bell, N., Finn, P. D., Rodriguez, D., Kohler, J., Kozuka, K., He, L., Spencer, A. G., Charmot, D., Navre, M., Carreras, C. W., Koo-Mccoy, S., Tabora, J., Caldwell, J. S., Jacobs, J. W., & Lewis, J. G. (2018b). Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). Journal of Medicinal Chemistry, 61(17), 7589–7613. https://doi.org/10.1021/acs.jmedchem.8b00308 | spa |
| dc.relation.references | Cianchetta, G., Stouch, T., Yu, W., Shi, Z. C., Tari, L. W., Swanson, R. V., Hunter, M. J., Hoffman, I. D., & Liu, Q. (2010). Mechanism of inhibition of novel tryptophan hydroxylase inhibitors revealed by co-crystal structures and kinetic analysis. Current Chemical Genomics, 4(1), 19–26. https://doi.org/10.2174/1875397301004010019 | spa |
| dc.relation.references | Costantino L, Barlocco D. New perspectives on the development of antiobesity drugs. Future Med Chem. 2015;7(3):315-36. doi: 10.4155/fmc.14.167. PMID: 25826362. | spa |
| dc.relation.references | Davies, T. G., Verdonk, M. L., Graham, B., Saalau-Bethell, S., Hamlett, C. C. F., McHardy, T., Collins, I., Garrett, M. D., Workman, P., Woodhead, S. J., Jhoti, H., & Barford, D. (2007). A Structural Comparison of Inhibitor Binding to PKB, PKA and PKA-PKB Chimera. Journal of Molecular Biology, 367(3), 882–894. https://doi.org/10.1016/j.jmb.2007.01.004 | spa |
| dc.relation.references | De Rensis, F., Saleri, R., Tummaruk, P., Techakumphu, M., & Kirkwood, R. N. (2012). Prostaglandin F2α and control of reproduction in female swine: A review. Theriogenology, 77(1), 1–11. https://doi.org/10.1016/j.theriogenology.2011.07.035 | spa |
| dc.relation.references | Ding, H. X., Leverett, C. A., Kyne, R. E., Liu, K. K. C., Fink, S. J., Flick, A. C., & O’Donnell, C. J. (2015). Synthetic approaches to the 2013 new drugs. Bioorganic and Medicinal Chemistry, 23(9), 1895–1922. https://doi.org/10.1016/j.bmc.2015.02.056 | spa |
| dc.relation.references | Ding, Z., Chen, M., Tao, X., Liu, Y., He, J., Wang, T., & Li, X. (2021). Synergistic Treatment of Obesity via Locally Promoting Beige Adipogenesis and Antioxidative Defense in Adipose Tissues. ACS Biomaterials Science and Engineering, 7(2), 727–738. https://doi.org/10.1021/acsbiomaterials.0c01181 | spa |
| dc.relation.references | Dite, T. A., Langendorf, C. G., Hoque, A., Galic, S., Rebello, R. J., Ovens, A. J., Lindqvist, L. M., Ngoei, K. R. W., Ling, N. X. Y., Furic, L., Kemp, B. E., Scott, J. W., & Oakhill, J. S. (2018). AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. Journal of Biological Chemistry, 293(23), 8874–8885. https://doi.org/10.1074/jbc.RA118.003547 | spa |
| dc.relation.references | Duan, H., Ning, M., Chen, X., Zou, Q., Zhang, L., Feng, Y., Zhang, L., Leng, Y., & Shen, J. (2012). Design, synthesis, and antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent and orally efficacious TGR5 agonists. Journal of Medicinal Chemistry, 55(23), 10475–10489. https://doi.org/10.1021/jm301071h | spa |
| dc.relation.references | Duan, H., Ning, M., Zou, Q., Ye, Y., Feng, Y., Zhang, L., Leng, Y., & Shen, J. (2015). Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. Journal of Medicinal Chemistry, 58(8), 3315–3328. https://doi.org/10.1021/jm500829b | spa |
| dc.relation.references | Duboc, H., Taché, Y., & Hofmann, A. F. (2014). The bile acid TGR5 membrane receptor: From basic research to clinical application. Digestive and Liver Disease, 46(4), 302–312. https://doi.org/10.1016/j.dld.2013.10.021 | spa |
| dc.relation.references | Elisa Cadena. (2021). Obesidad, un factor de riesgo en el covid-19. In MinSalud. | spa |
| dc.relation.references | Fisher, L. D., & Moyé, L. A. (1999). Carvedilol and the food and drug administration approval process: An Introduction. Controlled Clinical Trials, 20(1), 1–15. https://doi.org/10.1016/S0197-2456(98)00052-X | spa |
| dc.relation.references | Fongemie, J., & Felix-Getzik, E. (2015). A Review of Nebivolol Pharmacology and Clinical Evidence. Drugs, 75(12), 1349–1371. https://doi.org/10.1007/s40265-015-0435-5 | spa |
| dc.relation.references | Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o | spa |
| dc.relation.references | Gao, C., Chang, L., Xu, Z., Yan, X. F., Ding, C., Zhao, F., Wu, X., & Feng, L. S. (2019). Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. European Journal of Medicinal Chemistry, 163, 404–412. https://doi.org/10.1016/j.ejmech.2018.12.001 | spa |
| dc.relation.references | Goldberg, D. R., De Lombaert, S., Aiello, R., Bourassa, P., Barucci, N., Zhang, Q., Paralkar, V., Stein, A. J., Holt, M., Valentine, J., & Zavadoski, W. (2017). Optimization of spirocyclic proline tryptophan hydroxylase-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 27(3), 413–419. https://doi.org/10.1016/j.bmcl.2016.12.053 | spa |
| dc.relation.references | Goodwin, T. M. (1999). A role for estriol in human labor, term and preterm. American Journal of Obstetrics and Gynecology, 180(1 III), 208–213. https://doi.org/10.1016/s0002-9378(99)70702-7 | spa |
| dc.relation.references | Gorgojo-Martínez, J. J. (2014a). Nuevos fármacos antidiabéticos: Avanzando hacia el control integral de la diabesidad. Hipertension y Riesgo Vascular, 31(2), 45–57. https://doi.org/10.1016/j.hipert.2014.02.001 | spa |
| dc.relation.references | Gorgojo-Martínez, J. J. (2014b). Nuevos fármacos antidiabéticos: Avanzando hacia el control integral de la diabesidad. In Hipertension y Riesgo Vascular (Vol. 31, Issue 2, pp. 45–57). Ediciones Doyma, S.L. https://doi.org/10.1016/j.hipert.2014.02.001 | spa |
| dc.relation.references | Greer, N. D. (2007). Posaconazole (Noxafil): A New Triazole Antifungal Agent. Baylor University Medical Center Proceedings, 20(2), 188–196. https://doi.org/10.1080/08998280.2007.11928283 | spa |
| dc.relation.references | Guo, W., Sun, N., Qin, X., Pei, M., & Wang, L. (2015). A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous PtTi alloy. Biosensors and Bioelectronics, 74, 691–697. https://doi.org/10.1016/j.bios.2015.06.081 | spa |
| dc.relation.references | Gupta, A., Behl, T., Sehgal, A., Bhardwaj, S., Singh, S., Sharma, N., & Hafeez, A. (2021). Exploring the recent molecular targets for diabetes and associated complications. In Molecular Biology Reports (Vol. 48, Issue 3, pp. 2863–2879). Springer Science and Business Media B.V. https://doi.org/10.1007/s11033-021-06294-0 | spa |
| dc.relation.references | Halpern, A., & Mancini, M. C. (2005). Diabesity Are Weight Loss Medications Effective? In Treat Endocrinol (Vol. 4, Issue 2). | spa |
| dc.relation.references | Heerding, D. A., Rhodes, N., Leber, J. D., Clark, T. J., Keenan, R. M., Lafrance, L. V, Li, M., Safonov, I. G., Takata, D. T., Venslavsky, J. W., Yamashita, D. S., Choudhry, A. E., Copeland, R. A., Lai, Z., Schaber, M. D., Tummino, P. J., Strum, S. L., Wood, E. R., Duckett, D. R., … Kumar, R. (2008). 1H-imidazo [ 4 , 5-c ] pyridin-4-yl ) -2-methyl-3-butyn-2-ol ( GSK690693 ), a Novel Inhibitor of AKT Kinase. Journal of Medicinal Chemistry, 51(18), 5663–5679. http://dx.doi.org/10.1021/jm8004527 | spa |
| dc.relation.references | Hodge, R. J., & Nunez, D. J. (2016). Therapeutic potential of Takeda-G-protein-receptor-5 ( TGR5 ). 5, 439–443. | spa |
| dc.relation.references | Humphries, T. J. (1987). Famotidine: A notable lack of drug interactions. Scandinavian Journal of Gastroenterology, 22(S134), 55–60. https://doi.org/10.3109/00365528709090142 | spa |
| dc.relation.references | Hwang, J. H., Lee, J. H., Moon, M. K., Kim, J. S., Won, K. S., & Lee, C. S. (2012). The usefulness of arbekacin compared to vancomycin. European Journal of Clinical Microbiology and Infectious Diseases, 31(7), 1663–1666. https://doi.org/10.1007/s10096-011-1490-9 | spa |
| dc.relation.references | Ikeda, Z., Kakegawa, K., Kikuchi, F., Itono, S., Oki, H., Yashiro, H., Hiyoshi, H., Tsuchimori, K., Hamagami, K., Watanabe, M., Sasaki, M., Ishihara, Y., Tohyama, K., Kitazaki, T., Maekawa, T., & Sasaki, M. (2022). Design, Synthesis, and Biological Evaluation of a Novel Series of 4-Guanidinobenzoate Derivatives as Enteropeptidase Inhibitors with Low Systemic Exposure for the Treatment of Obesity. Journal of Medicinal Chemistry, 65(12), 8456–8477. https://doi.org/10.1021/acs.jmedchem.2c00463 | spa |
| dc.relation.references | Jourdan, J. P., Bureau, R., Rochais, C., & Dallemagne, P. (2020). Drug repositioning: a brief overview. Journal of Pharmacy and Pharmacology, 72(9), 1145–1151. https://doi.org/10.1111/jphp.13273 | spa |
| dc.relation.references | Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J. I., & Nagata, Y. (2004). Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure, 12(3), 429–438. https://doi.org/10.1016/j.str.2004.02.005 | spa |
| dc.relation.references | Kikuchi, F., Ikeda, Z., Kakegawa, K., Nishikawa, Y., Sasaki, S., Fukuda, K., Takami, K., Banno, Y., Nishikawa, H., Taya, N., Nakahata, T., Itono, S., Yashiro, H., Tsuchimori, K., Hiyoshi, H., Sasaki, M., Tohyama, K., Matsumiya, K., Ishihara, Y., … Sasaki, M. (2023). Discovery of a novel series of medium-sized cyclic enteropeptidase inhibitors. Bioorganic and Medicinal Chemistry, 93(July). https://doi.org/10.1016/j.bmc.2023.117462 | spa |
| dc.relation.references | Kirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection - What can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3–4), 213–228. https://doi.org/10.1007/s10822-007-9163-6 | spa |
| dc.relation.references | Kirchweger, B., Kratz, J. M., Ladurner, A., Grienke, U., Langer, T., Dirsch, V. M., & Rollinger, J. M. (2018a). In silico workflow for the discovery of natural products activating the G protein-coupled bile acid receptor 1. Frontiers in Chemistry, 6(JUL). https://doi.org/10.3389/fchem.2018.00242 | spa |
| dc.relation.references | Kirchweger, B., Kratz, J. M., Ladurner, A., Grienke, U., Langer, T., Dirsch, V. M., & Rollinger, J. M. (2018b). In silico workflow for the discovery of natural products activating the G protein-coupled bile acid receptor 1. Frontiers in Chemistry, 6(JUL), 1–14. https://doi.org/10.3389/fchem.2018.00242 | spa |
| dc.relation.references | Kjekshus, J., Pedersen, T. R., Olsson, A. G., Færgeman, O., & Pyörälä, K. (1997). The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. Journal of Cardiac Failure, 3(4), 249–254. https://doi.org/10.1016/S1071-9164(97)90022-1 | spa |
| dc.relation.references | Koch, G. (2017). Medicinal Chemistry. Chimia, 71(10), 643. https://doi.org/10.2307/j.ctvnwc0d0.18 | spa |
| dc.relation.references | Krueger, G. G., O’Reilly, M. A., Weidner, M., Dromgoole, S. H., & Killey, F. P. (1998). Comparative efficacy of once-daily flurandrenolide tape versus twice- daily diflorasone diacetate ointment in the treatment of psoriasis. Journal of the American Academy of Dermatology, 38(2 I), 186–190. https://doi.org/10.1016/S0190-9622(98)70238-5 | spa |
| dc.relation.references | Kubo, O., Takami, K., Kamaura, M., Watanabe, K., Miyashita, H., Abe, S., Matsuda, K., Tsujihata, Y., Odani, T., Iwasaki, S., Kitazaki, T., Murata, T., & Sato, K. (2021). Discovery of a novel series of GPR119 agonists: Design, synthesis, and biological evaluation of N-(Piperidin-4-yl)-N-(trifluoromethyl)pyrimidin-4-amine derivatives. Bioorganic and Medicinal Chemistry, 41. https://doi.org/10.1016/j.bmc.2021.116208 | spa |
| dc.relation.references | Lara, F. V.-O. de, Fernández, C. T., Zurita-Campos, J., & Hernández, J. A. M. (2024). Obesidad y sobrepeso. In Medicine - Programa de Formación Médica Continuada Acreditado (Vol. 14, Issue 15, pp. 845–854). https://doi.org/10.1016/j.med.2024.08.001 | spa |
| dc.relation.references | Larsen, S. D., Barf, T., Liljebris, C., May, P. D., Ogg, D., O’Sullivan, T. J., Palazuk, B. J., Schostarez, H. J., Stevens, F. C., & Bleasdale, J. E. (2002). Synthesis and biological activity of a novel class of small molecular weight peptidomimetic competitive inhibitors of protein tyrosine phosphatase 1B. Journal of Medicinal Chemistry, 45(3), 598–622. https://doi.org/10.1021/jm010393s | spa |
| dc.relation.references | Lasalle, M., Hoguet, V., Hennuyer, N., Leroux, F., Piveteau, C., Belloy, L., Lestavel, S., Vallez, E., Dorchies, E., Duplan, I., Sevin, E., Culot, M., Gosselet, F., Boulahjar, R., Herledan, A., Staels, B., Deprez, B., Tailleux, A., & Charton, J. (2017). Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. Journal of Medicinal Chemistry, 60(10), 4185–4211. https://doi.org/10.1021/acs.jmedchem.6b01873 | spa |
| dc.relation.references | Lee, S., Yang, W. K., Song, J. H., Ra, Y. M., Jeong, J. H., Choe, W., Kang, I., Kim, S. S., & Ha, J. (2013). Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochemical Pharmacology, 85(7), 965–976. https://doi.org/10.1016/j.bcp.2012.12.023 | spa |
| dc.relation.references | Li, H., Fang, Y., Guo, S., & Yang, Z. (2021). GPR119 agonists for the treatment of type 2 diabetes: an updated patent review (2014-present). In Expert Opinion on Therapeutic Patents (Vol. 31, Issue 9, pp. 795–808). Taylor and Francis Ltd. https://doi.org/10.1080/13543776.2021.1921152 | spa |
| dc.relation.references | Liang, G. B., Qian, X., Biftu, T., Singh, S., Gao, Y. D., Scapin, G., Patel, S., Leiting, B., Patel, R., Wu, J., Zhang, X., Thornberry, N. A., & Weber, A. E. (2008). Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design. Bioorganic and Medicinal Chemistry Letters, 18(13), 3706–3710. https://doi.org/10.1016/j.bmcl.2008.05.061 | spa |
| dc.relation.references | Liao, W., & Jin, X. (1994). Medical Hypotheses I Medical Hypotheses (1994) 43, 234-238 0 LAmpan Lactulose-A Potential Drug for the Treatment of Inflammatory Bowel Disease. 234–238. | spa |
| dc.relation.references | Luo, J., Chuang, T., Cheung, J., Quan, J., Tsai, J., Sullivan, C., Hector, R. F., Reed, M. J., Meszaros, K., King, S. R., Carlson, T. J., & Reaven, G. M. (1998). Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). European Journal of Pharmacology, 346(1), 77–79. https://doi.org/10.1016/S0014-2999(98)00139-3 | spa |
| dc.relation.references | M. Decara, J., Vázquez-Villa, H., Brea, J., Alonso, M., Kamal Srivastava, R., Orio, L., Alén, F., Suárez, J., Baixeras, E., García-Cárceles, J., Escobar-Peña, A., Lutz, B., Rodríguez, R., Codesido, E., Javier Garcia-Ladona, F., A. Bennett, T., A. Ballesteros, J., Cruces, J., I. Loza, M., … L. López-Rodríguez, M. (2022). Discovery of V-0219: A Small-Molecule Positive Allosteric Modulator of the Glucagon-Like Peptide-1 Receptor toward Oral Treatment for “Diabesity.” Journal of Medicinal Chemistry, 65(7), 5449–5461. https://doi.org/10.1021/acs.jmedchem.1c01842 | spa |
| dc.relation.references | Ma, L., Yang, F., Wu, X., Mao, C., Guo, L., Miao, T., Zang, S. K., Jiang, X., Shen, D. D., Wei, T., Zhou, H., Wei, Q., Li, S., Shu, Q., Feng, S., Jiang, C., Chu, B., Du, L., Sun, J. P., … Zhang, P. (2022). Structural basis and molecular mechanism of biased GPBAR signaling in regulating NSCLC cell growth via YAP activity. Proceedings of the National Academy of Sciences of the United States of America, 119(29), 1–12. https://doi.org/10.1073/pnas.2117054119 | spa |
| dc.relation.references | Macena, J. C., Renzi, D. F., & Grigoletto, D. F. (2022). Chemical and biological properties of nordihydroguaiaretic acid. Brazilian Journal of Pharmaceutical Sciences, 58, 1–11. https://doi.org/10.1590/s2175-97902022e19517 | spa |
| dc.relation.references | Maggs, D. J. (2008). Ocular Pharmacology and Therapeutics. Slatter’s Fundamentals of Veterinary Ophthalmology, 33–61. https://doi.org/10.1016/B978-072160561-6.50006-X | spa |
| dc.relation.references | Maia Bosca, M., Martí, L., & Mínguez, M. (2007). Aproximación diagnóstica y terapéutica al paciente con gastroparesia. Gastroenterología y Hepatología, 30(6), 351–359. https://doi.org/10.1157/13107570 | spa |
| dc.relation.references | Manaithiya, A., Alam, O., Sharma, V., Javed Naim, M., Mittal, S., & Khan, I. A. (2021). GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. In Bioorganic Chemistry (Vol. 113). Academic Press Inc. https://doi.org/10.1016/j.bioorg.2021.104998 | spa |
| dc.relation.references | Manda, G., Rojo, A. I., Martínez-Klimova, E., Pedraza-Chaverri, J., & Cuadrado, A. (2020). Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Frontiers in Pharmacology, 11(February), 1–21. https://doi.org/10.3389/fphar.2020.00151 | spa |
| dc.relation.references | Medina-Franco, J. L., Fernán-Dezde Gortari, E., & Jesús Naveja, J. (2015). Avances en el diseño de fármacos asistido por computadora. Educacion Quimica, 26(3), 180–186. https://doi.org/10.1016/j.eq.2015.05.002 | spa |
| dc.relation.references | Meinertz, T., Lip, G. Y. H., Lombardi, F., Sadowski, Z. P., Kalsch, B., Camez, A., Hewkin, A., & Eberle, S. (2002). Efficacy and safety of propafenone sustained release in the prophylaxis of symptomatic paroxysmal atrial fibrillation (The European Rythmol/Rytmonorm Atrial Fibrillation Trial [ERAFT] Study). American Journal of Cardiology, 90(12), 1300–1306. https://doi.org/10.1016/S0002-9149(02)02867-9 | spa |
| dc.relation.references | Mellado-orellana, R., Salinas-lezama, E., Sánchez-herrera, D., Guajardo-lozano, J., Juan, E., & Rodríguez-weber, F. L. (2019). Tratamiento farmacológico de la diabetes mellitus tipo 2 dirigido a pacientes con sobrepeso y obesidad Pharmacological treatment of diabetes mellitus type 2 directed to patients with overweight and obesity . 35(4), 525–536. | spa |
| dc.relation.references | Ng, A. C. T., Delgado, V., Borlaug, B. A., & Bax, J. J. (2021). Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. In Nature Reviews Cardiology (Vol. 18, Issue 4, pp. 291–304). Nature Research. https://doi.org/10.1038/s41569-020-00465-5 | spa |
| dc.relation.references | Nishimasu, H., Fushinobu, S., Shoun, H., & Wakagi, T. (2004). The first crystal structure of the novel class of fructose-1,6- bisphosphatase present in thermophilic archaea. Structure, 12(6), 949–959. https://doi.org/10.1016/j.str.2004.03.026 | spa |
| dc.relation.references | Ovens, A. J., Gee, Y. S., Ling, N. X. Y., Yu, D., Hardee, J. P., Chung, J. D., Ngoei, K. R. W., Waters, N. J., Hoffman, N. J., Scott, J. W., Loh, K., Spengler, K., Heller, R., Parker, M. W., Lynch, G. S., Huang, F., Galic, S., Kemp, B. E., Baell, J. B., … Langendorf, C. G. (2022). Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator. Biochemical Journal, 479(11), 1181–1204. https://doi.org/10.1042/BCJ20220067 | spa |
| dc.relation.references | Pablo Huidobro-Toro, J., & Verónica Donoso, M. (2004). Sympathetic co-transmission: The coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. European Journal of Pharmacology, 500(1-3 SPEC. ISS.), 27–35. https://doi.org/10.1016/j.ejphar.2004.07.008 | spa |
| dc.relation.references | Papadia, M., Bagnis, A., Scotto, R., & Traverso, C. E. (2011). Tafluprost for glaucoma. Expert Opinion on Pharmacotherapy, 12(15), 2393–2401. https://doi.org/10.1517/14656566.2011.606810 | spa |
| dc.relation.references | Pappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019a). Molecular Aspects of Medicine Diabesity and antidiabetic drugs. Molecular Aspects of Medicine, 66(August 2018), 3–12. https://doi.org/10.1016/j.mam.2018.10.004 | spa |
| dc.relation.references | Pappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019b). Diabesity and antidiabetic drugs. In Molecular Aspects of Medicine (Vol. 66, pp. 3–12). Elsevier Ltd. https://doi.org/10.1016/j.mam.2018.10.004 | spa |
| dc.relation.references | Pautsch, A., Stadler, N., Löhle, A., Rist, W., Berg, A., Nar, H., Reinert, D., Lenter, M., Heckel, A., Schnapp, G., & Stefan, G. (2013). Supporting Information Crystal structure of glucokinase regulatory protein. Biochemistry, 52, 1–7. | spa |
| dc.relation.references | Pellicciari, R., Gioiello, A., Macchiarulo, A., Thomas, C., Rosatelli, E., Natalini, B., Sardella, R., Pruzanski, M., Roda, A., Pastorini, E., Schoonjans, K., & Auwerx, J. (2009). Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. Journal of Medicinal Chemistry, 52(24), 7958–7961. https://doi.org/10.1021/jm901390p | spa |
| dc.relation.references | Ponnusamy, L., Natarajan, S. R., Thangaraj, K., & Manoharan, R. (2020). Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochimica et Biophysica Acta - Reviews on Cancer, 1874(1), 188379. https://doi.org/10.1016/j.bbcan.2020.188379 | spa |
| dc.relation.references | Qian, Y., Wang, J., Yang, L., Liu, Y., Wang, L., Liu, W., Lin, Y., Yang, H., Ma, L., Ye, S., Wu, S., & Qiao, A. (2022). Activation and signaling mechanism revealed by GPR119-Gs complex structures. Nature Communications, 13(1), 1–10. https://doi.org/10.1038/s41467-022-34696-6 | spa |
| dc.relation.references | Rathod, P., & Yadav, R. P. (2021). Anti-diabesity potential of various multifunctional natural molecules. In Journal of Herbal Medicine (Vol. 27). Elsevier GmbH. https://doi.org/10.1016/j.hermed.2021.100430 | spa |
| dc.relation.references | Raut, A., Sharma, D., & Suvarna, V. (2022). A Status Update on Pharmaceutical Analytical Methods of Aminoglycoside Antibiotic: Amikacin. Critical Reviews in Analytical Chemistry, 52(2), 375–391. https://doi.org/10.1080/10408347.2020.1803042 | spa |
| dc.relation.references | Rodríguez Bernardino, Á., Cebrián Blanco, S., & Durán García, S. (2005). Pioglitazona. Revisión de sus efectos metabólicos y sistémicos. Revista Clinica Espanola, 205(12), 610–620. https://doi.org/10.1016/S0014-2565(05)72655-2 | spa |
| dc.relation.references | Ruhrmann, S., Kissling, W., Lesch, O. M., Schmauss, M., Seemann, U., & Philipp, M. (2007). Efficacy of flupentixol and risperidone in chronic schizophrenia with predominantly negative symptoms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31(5), 1012–1022. https://doi.org/10.1016/j.pnpbp.2007.02.014 | spa |
| dc.relation.references | Sahin, C., Magomedova, L., A. M. Ferreira, T., Liu, J., Tiefenbach, J., S. Alves, P., J. G. Queiroz, F., S. de Oliveira, A., Bhattacharyya, M., Grouleff, J., C. N. Nogueira, P., R. Silveira, E., C. Moreira, D., Roberto Souza de Almeida Leite, J., D. Brand, G., Uehling, D., Poda, G., Krause, H., L. Cummins, C., & A. S. Romeiro, L. (2022). Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of Medicinal Chemistry, 65(3), 1961–1978. https://doi.org/10.1021/acs.jmedchem.1c01542 | spa |
| dc.relation.references | Sarmiento, M., Puius, Y. A., Vetter, S. W., Keng, Y. F., Wu, L., Zhao, Y., Lawrence, D. S., Almo, S. C., & Zhang, Z. Y. (2000). Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry, 39(28), 8171–8179. https://doi.org/10.1021/bi000319w | spa |
| dc.relation.references | Scholar, E. (2007). Bicalutamide. XPharm: The Comprehensive Pharmacology Reference, 43(13), 1–5. https://doi.org/10.1016/B978-008055232-3.62975-7 | spa |
| dc.relation.references | Shiri, F., & Teymoori, M. (2017). In silico approaches to explore structure of new GPR 119 agonists for treatment of type 2 diabetes mellitus. Medicinal Chemistry Research, 26(5), 947–961. https://doi.org/10.1007/s00044-017-1808-y | spa |
| dc.relation.references | Sieber, P. R., Keiller, D. L., Kahnoski, R. J., Gallo, J., & McFadden, S. (2004). Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. Journal of Urology, 171(6 I), 2272–2276. https://doi.org/10.1097/01.ju.0000127738.94221.da | spa |
| dc.relation.references | Simeonov, P., Zahn, M., Sträter, N., & Zuchner, T. (2012). Crystal structure of a supercharged variant of the human enteropeptidase light chain. Proteins: Structure, Function and Bioinformatics, 80(7), 1907–1910. https://doi.org/10.1002/prot.24084 | spa |
| dc.relation.references | Sugama, J., Moritoh, Y., Yashiro, H., Tsuchimori, K., & Watanabe, M. (2021a). Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice. Pharmacological Research, 163, 105337. https://doi.org/10.1016/j.phrs.2020.105337 | spa |
| dc.relation.references | Sugama, J., Moritoh, Y., Yashiro, H., Tsuchimori, K., & Watanabe, M. (2021b). Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice. Pharmacological Research, 163. https://doi.org/10.1016/j.phrs.2020.105337 | spa |
| dc.relation.references | Sun, W., Zhang, X., Cummings, M. D., Albarazanji, K., Wu, J., Wang, M., Alexander, R., Zhu, B., Zhang, Y., Leonard, J., Lanter, J., & Lenhard, J. (2020). Targeting enteropeptidase with reversible covalent inhibitors to achieve metabolic benefits. Journal of Pharmacology and Experimental Therapeutics, 375(3), 510–521. https://doi.org/10.1124/JPET.120.000219 | spa |
| dc.relation.references | Sutherland, R., Boon, R. J., Griffin, K. E., Masters, P. J., Slocombe, B., & White, A. R. (1985). Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrobial Agents and Chemotherapy, 27(4), 495–498. https://doi.org/10.1128/AAC.27.4.495 | spa |
| dc.relation.references | Tacon, C. L., McCaffrey, J., & Delaney, A. (2012). Dobutamine for patients with severe heart failure: A systematic review and meta-analysis of randomised controlled trials. Intensive Care Medicine, 38(3), 359–367. https://doi.org/10.1007/s00134-011-2435-6 | spa |
| dc.relation.references | Takahashi, K., Hashimoto, N., Nakama, C., Kamata, K., Sasaki, K., Yoshimoto, R., Ohyama, S., Hosaka, H., Maruki, H., Nagata, Y., Eiki, J. ichi, & Nishimura, T. (2009). The design and optimization of a series of 2-(pyridin-2-yl)-1H-benzimidazole compounds as allosteric glucokinase activators. Bioorganic and Medicinal Chemistry, 17(19), 7042–7051. https://doi.org/10.1016/j.bmc.2009.05.037 | spa |
| dc.relation.references | Tharakan, G., Tan, T., & Bloom, S. (2011). Emerging therapies in the treatment of “diabesity”: Beyond GLP-1. Trends in Pharmacological Sciences, 32(1), 8–15. https://doi.org/10.1016/j.tips.2010.10.003 | spa |
| dc.relation.references | Tolman, K. G. (2002). The liver and lovastatin. American Journal of Cardiology, 89(12), 1374–1380. https://doi.org/10.1016/S0002-9149(02)02355-X | spa |
| dc.relation.references | Wacker, D. A., Wang, Y., Broekema, M., Rossi, K., Oconnor, S., Hong, Z., Wu, G., Malmstrom, S. E., Hung, C. P., Lamarre, L., Chimalakonda, A., Zhang, L., Xin, L., Cai, H., Chu, C., Boehm, S., Zalaznick, J., Ponticiello, R., Sereda, L., … Robl, J. A. (2014). Discovery of 5-chloro-4-((1-(5-chloropyrimidin-2-yl)piperidin-4-yl)oxy)-1-(2-fluoro-4-(methylsulfonyl)phenyl)pyridin-2(1 H)-one (BMS-903452), an antidiabetic clinical candidate targeting GPR119. Journal of Medicinal Chemistry, 57(18), 7499–7508. https://doi.org/10.1021/jm501175v | spa |
| dc.relation.references | Wagner, F. F., Benajiba, L., Campbell, A. J., Weïwer, M., Sacher, J. R., Gale, J. P., Ross, L., Puissant, A., Alexe, G., Conway, A., Back, M., Pikman, Y., Galinsky, I., Deangelo, D. J., Stone, R. M., Kaya, T., Shi, X., Robers, M. B., Machleidt, T., … Holson, E. B. (2018). Exploiting an asp-glu “switch” in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Science Translational Medicine, 10(431), 1–18. https://doi.org/10.1126/scitranslmed.aam8460 | spa |
| dc.relation.references | Wagner, F. F., Bishop, J. A., Gale, J. P., Shi, X., Walk, M., Ketterman, J., Patnaik, D., Barker, D., Walpita, D., Campbell, A. J., Nguyen, S., Lewis, M., Ross, L., Weïwer, M., An, W. F., Germain, A. R., Nag, P. P., Metkar, S., Kaya, T., … Pan, J. Q. (2016). Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects. ACS Chemical Biology, 11(7), 1952–1963. https://doi.org/10.1021/acschembio.6b00306 | spa |
| dc.relation.references | Wang, L., Erlandsen, H., Haavik, J., Knappskog, P. M., & Stevens, R. C. (2002). Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. Biochemistry, 41(42), 12569–12574. https://doi.org/10.1021/bi026561f | spa |
| dc.relation.references | Wellenzohn, B., Lessel, U., Beller, A., Isambert, T., Hoenke, C., & Nosse, B. (2012). Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry. Journal of Medicinal Chemistry, 55(24), 11031–11041. https://doi.org/10.1021/jm301549a | spa |
| dc.relation.references | Wheeler, D. W., Carter, J. J., Murray, L. J., Degnan, B. A., Dunling, C. P., Salvador, R., Menon, D. K., & Gupta, A. K. (2008). The effect of drug concentration expression on epinephrine dosing errors: A randomized trial. Annals of Internal Medicine, 148(1), 11–14. https://doi.org/10.7326/0003-4819-148-1-200801010-00003 | spa |
| dc.relation.references | Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., & Hassanali, M. (2008). DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(SUPPL. 1), 901–906. https://doi.org/10.1093/nar/gkm958 | spa |
| dc.relation.references | Xiao, B., Sanders, M. J., Carmena, D., Bright, N. J., Haire, L. F., Underwood, E., Patel, B. R., Heath, R. B., Walker, P. A., Hallen, S., Giordanetto, F., Martin, S. R., Carling, D., & Gamblin, S. J. (2013). Structural basis of AMPK regulation by small molecule activators. Nature Communications, 4, 1–10. https://doi.org/10.1038/ncomms4017 | spa |
| dc.relation.references | Xu, P., Huang, S., Guo, S., Yun, Y., Cheng, X., He, X., Cai, P., Lan, Y., Zhou, H., Jiang, H., Jiang, Y., Xie, X., & Xu, H. E. (2022). Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nature Structural and Molecular Biology, 29(9), 863–870. https://doi.org/10.1038/s41594-022-00816-5 | spa |
| dc.relation.references | Yang, F., Mao, C., Guo, L., Lin, J., Ming, Q., Xiao, P., Wu, X., Shen, Q., Guo, S., Shen, D. D., Lu, R., Zhang, L., Huang, S., Ping, Y., Zhang, C., Ma, C., Zhang, K., Liang, X., Shen, Y., … Zhang, Y. (2020). Structural basis of GPBAR activation and bile acid recognition. Nature, 587(7834), 499–504. https://doi.org/10.1038/s41586-020-2569-1 | spa |
| dc.relation.references | Yang, X., Ding, Z., Peng, L., Song, Q., Zhang, D., Cui, F., Xia, C., Li, K., Yin, H., Li, S., Li, Z., & Huang, H. (2022). Cryo-EM structures reveal the activation and substrate recognition mechanism of human enteropeptidase. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-34364-9 | spa |
| dc.relation.references | Yang, X., Wang, Y., Byrne, R., Schneider, G., & Yang, S. (2019). Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery [Review-article]. Chemical Reviews, 119(18), 10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728 | spa |
| dc.relation.references | Yashiro, H., Hamagami, K., Hiyoshi, H., Sugama, J., Tsuchimori, K., Yamaguchi, F., Moritoh, Y., Sasaki, M., Maekawa, T., Yamada, Y., & Watanabe, M. (2019). SCO-792, an enteropeptidase inhibitor, improves disease status of diabetes and obesity in mice. Diabetes, Obesity and Metabolism, 21(10), 2228–2239. https://doi.org/10.1111/dom.13799 | spa |
| dc.relation.references | Yoshida, T., Akahoshi, F., Sakashita, H., Sonda, S., Takeuchi, M., Tanaka, Y., Nabeno, M., Kishida, H., Miyaguchi, I., & Hayashi, Y. (2012). Fused bicyclic heteroarylpiperazine-substituted l-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorganic and Medicinal Chemistry, 20(16), 5033–5041. https://doi.org/10.1016/j.bmc.2012.06.033 | spa |
| dc.relation.references | Zambrano, M., Yépez, G., Belén, M., Albán, J., Campoverde, R., Cajas, M., Yugsi, A., Cobo, C., & Elizabeth, N. (2020). Canagliflozin: integrando la evidencia clínica actual. In Redalyc.Org (Issue Dm). https://doi.org/10.5281/zenodo.4087233.svg | spa |
| dc.relation.references | Zheng, C., Guo, Z., Huang, C., Wu, Z., Li, Y., Chen, X., Fu, Y., Ru, J., Ali Shar, P., Wang, Y., & Wang, Y. (2015). Large-scale Direct Targeting for Drug Repositioning and Discovery. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep11970 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
| dc.subject.ddc | 660 - Ingeniería química | spa |
| dc.subject.decs | Diabesidad | spa |
| dc.subject.decs | Diabesity | eng |
| dc.subject.decs | Complicaciones de la Diabetes | spa |
| dc.subject.decs | Diabetes Complications | eng |
| dc.subject.decs | Obesidad | spa |
| dc.subject.decs | Obesity | eng |
| dc.subject.decs | Diabetes Mellitus Tipo 2 | spa |
| dc.subject.decs | Diabetes Mellitus, Type 2 | eng |
| dc.subject.decs | Enfermedad Crónica | spa |
| dc.subject.decs | Chronic Disease | eng |
| dc.subject.decs | Control Glucémico | spa |
| dc.subject.decs | Glycemic Control | eng |
| dc.subject.proposal | Diabesidad | spa |
| dc.subject.proposal | Acoplamiento molecular | spa |
| dc.subject.proposal | Reposicionamiento de fármacos | spa |
| dc.subject.proposal | Blancos moleculares | spa |
| dc.subject.proposal | Polifuncional | spa |
| dc.subject.proposal | Diabesity | eng |
| dc.subject.proposal | Molecular docking | eng |
| dc.subject.proposal | Drug repositioning | eng |
| dc.subject.proposal | Molecular targets | eng |
| dc.subject.proposal | Polyfunctional | eng |
| dc.title | Identificación in silico de moléculas con potencial actividad polifuncional contra blancos moleculares asociados al tratamiento de la diabesidad | spa |
| dc.title.translated | In silico identification of molecules with potential polyfunctional activity against molecular targets associated with the treatment of diabesity | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1070947296.2025.pdf
- Tamaño:
- 6.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

