Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6

dc.contributor.advisorUrquiza Martínez, Mauriciospa
dc.contributor.authorDíaz Sana, Erika Vanessaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000019953spa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2024-10-25T01:20:02Z
dc.date.available2024-10-25T01:20:02Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa invasión celular, migración y metástasis en algunos tipos de tumores es promovida por la desregulación en la señalización del factor nuclear κβ y la sobre expresión de la integrina αvβ6. La presencia de esta integrina se correlaciona con malignidad de las lesiones, por lo que se considera un biomarcador y blanco terapéutico en células tumorales. El factor nuclear κβ (NF- κβ) regula la transcripción de genes involucrados en la respuesta inmune y respuestas celulares como adhesión, diferenciación y apoptosis. La activación inapropiada o exacerbada del NF- κβ está involucrada en diversos tipos de patologías como enfermedades inflamatorias crónicas, autoinmunes, y el desarrollo y progresión del cáncer, específicamente en carcinomas de seno, pulmón, boca, estómago, endometrio, páncreas, y ovario. En esta tesis reportamos que los péptidos quiméricos P63 y P68, sintetizados con motivos de unión la integrina αvβ6 y un motivo que bloquea la señalización del NF- κβ mediada por la proteína BCL-3. (1) Son capaces de unirse en mayor proporción a células de cáncer de cérvix, seno, leucemia linfoide aguda, melanoma y pulmón (HeLa, MCF-7, CCRF-CEM, Skmel 23 y A549 respectivamente) en comparación con líneas celulares no tumorales como HEK 293, fibroblastos y células mononucleares de sangre periférica (PBMCs) de un individuo sano. (2) También, modifican el potencial de membrana mitocondrial de manera dosis y tiempo dependiente y (3) promueven la expresión de marcadores de apoptosis en las células tumorales HeLa y MCF-7 pero no en células normales. Estos resultados, permiten conocer el funcionamiento de los péptidos a nivel biológico y molecular y arrojan información sobre su potencial para controlar procesos tumorales de una manera específica y bajo efecto citotóxico en células sanas. (Texto tomado de la fuente).spa
dc.description.abstractCell invasion, migration, and metastasis in some types of tumors is promoted by deregulation of nuclear factor κβ signaling and overexpression of integrin αvβ6. The presence of this integrin correlates with the malignancy of the lesions, which is why it is considered a biomarker and therapeutic target in tumor cells. Nuclear factor κβ (NF- κβ) regulates the transcription of genes involved in the immune response and cellular responses such as adhesion, differentiation, and apoptosis. Inappropriate or exacerbated activation of NF-κβ is involved in various types of pathologies such as chronic inflammatory and autoimmune diseases, and the development and progression of cancer, specifically in carcinomas of the breast, lung, mouth, stomach, endometrium, pancreas, and ovary. In this article we report that chimeric peptides P63 and P68, synthesized with integrin αvβ6 binding motifs and a motif that blocks NF-κβ signaling mediated by the BCL-3 protein. (1) They are able to bind to a higher proportion of cervical, breast, acute lymphoid leukemia, melanoma and lung cancer cells (HeLa, MCF-7, CCRF-CEM, Skmel 23 and A549 respectively) compared to non-tumor cell lines as HEK 293, fibroblasts and peripheral blood mononuclear cells (PBMCs) from a healthy individual. (2) Also, they modify the mitochondrial membrane potential in a dose- and time-dependent manner and (3) they promote the expression of apoptosis markers in HeLa and MCF-7 tumor cells but not in normal cells. These results allow us to know the functioning of the peptides at a biological and molecular level and shed information on their potential to control tumor processes in a specific way and with a low cytotoxic effect on healthy cells.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.format.extentxii, 52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87057
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.indexedBiremespa
dc.relation.referencesAlbert, J. M., Kim, K. W., Cao, C., & Lu, B. (2006). Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Molecular Cancer Therapeutics, 5(5), 1183–1189. https://doi.org/10.1158/1535-7163.MCT-05-0400spa
dc.relation.referencesArias-Mejias, S. M., Warda, K. Y., Quattrocchi, E., Alonso-Quinones, H., Sominidi-Damodaran, S., & Meves, A. (2020). The role of integrins in melanoma: a review. In International Journal of Dermatology (Vol. 59, Issue 5, pp. 525–534). Blackwell Publishing Ltd. https://doi.org/10.1111/ijd.14850spa
dc.relation.referencesBandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. Current Drug Targets, 10(7), 645–652.spa
dc.relation.referencesBeg, A., & Jr, A. S. B. (1993). The IKB proteins : multifunctional egulators of Rel / NF-KB transcription actors. 2064–2070.spa
dc.relation.referencesCapozzi, A., Mantuano, E., Matarrese, P., Saccomanni, G., Manera, C., Mattei, V., Gambardella, L., Malorni, W., Sorice, M., & Misasi, R. (2012). A New 4-phenyl-1,8-naphthyridine Derivative Affects Carcinoma Cell Proliferation by Impairing Cell Cycle Progression and Inducing Apoptosis. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 653–662. https://doi.org/10.2174/187152012800617731spa
dc.relation.referencesCaswell, P., & Norman, J. (2008). Endocytic transport of integrins during cell migration and invasion. Current Drug Targets, May, 257–263. https://doi.org/10.1016/j.tcb.2008.03.004spa
dc.relation.referencesCell line - ITGB6 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000115221-ITGB6/cell+linespa
dc.relation.referencesCell line - ITGB8 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000105855-ITGB8/cell+line#brain_cancerspa
dc.relation.referencesChen, J., Rowe, C. L., Jardetzky, T. S., & Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio, 3(1), 1–9. https://doi.org/10.1128/mBio.00290-11spa
dc.relation.referencesChesnokova, L. S., Nishimura, S. L., & Hutt-Fletcher, L. M. (2009). Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins v 6 or v 8. Proceedings of the National Academy of Sciences, 106(48), 20464–20469. https://doi.org/10.1073/pnas.0907508106spa
dc.relation.referencesChetoui, N., Gendron, S., Chamoux, E., & Aoudjit, F. (2006). Collagen type I-mediated activation of ERK/MAP Kinase is dependent on Ras, Raf-1 and protein phosphatase 2A in Jurkat T cells. Molecular Immunology, 43(10), 1687–1693. https://doi.org/10.1016/J.MOLIMM.2005.09.010spa
dc.relation.referencesCollins, P., Grassia, G., Colleran, A., … P. K.-J. of B., & 2015. (n.d.). Mapping the interaction of B cell leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide. ASBMB. Retrieved January 9, 2023, from https://www.jbc.org/article/S0021-9258(20)35065-1/abstractspa
dc.relation.referencesCollins, P., Kiely, P., Chemistry, R. C.-J. of B., & 2014, undefined. (n.d.). Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50. ASBMB. Retrieved January 10, 2023, from https://www.jbc.org/article/S0021-9258(20)44522-3/abstractspa
dc.relation.referencesDodagatta-Marri, E., Ma, H. Y., Liang, B., Li, J., Meyer, D. S., Chen, S. Y., Sun, K. H., Ren, X., Zivak, B., Rosenblum, M. D., Headley, M. B., Pinzas, L., Reed, N. I., del Cid, J. S., Hann, B. C., Yang, S., Giddabasappa, A., Noorbehesht, K., Yang, B., … Sheppard, D. (2021). Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Reports, 36(1). https://doi.org/10.1016/J.CELREP.2021.109309spa
dc.relation.referencesEmonard, H., Dedieu, S., Dontenwill, M., Blandin, A.-F., Renner, G., Lehmann, M., Lelong-Rebel, I., & Martin, S. (2015). β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Frontiers in Pharmacology | Www.Frontiersin.Org, 6, 279. https://doi.org/10.3389/fphar.2015.00279spa
dc.relation.referencesFedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. v., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. Journal of Biological Chemistry, 290(8), 4545–4551. https://doi.org/10.1074/JBC.C114.617662spa
dc.relation.referencesGalletti, P., Soldati, R., Pori, M., Durso, M., Tolomelli, A., Gentilucci, L., Dattoli, S. D., Baiula, M., Spampinato, S., & Giacomini, D. (2014). Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. European Journal of Medicinal Chemistry, 83, 284–293. https://doi.org/10.1016/j.ejmech.2014.06.041spa
dc.relation.referencesGalluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. In Cell Death and Differentiation (Vol. 14, Issue 7, pp. 1237–1243). https://doi.org/10.1038/sj.cdd.4402148spa
dc.relation.referencesGendron, S., Couture, J., & Aoudjit, F. (2003). Integrin α2β1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway. Journal of Biological Chemistry, 278(49), 48633–48643. https://doi.org/10.1074/JBC.M305169200spa
dc.relation.referencesGong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., Cheng, H., Jin, K., Ni, Q., Yu, X., & Liu, C. (2019). The role of necroptosis in cancer biology and therapy. In Molecular Cancer (Vol. 18, Issue 1, pp. 1–17). BioMed Central Ltd. https://doi.org/10.1186/s12943-019-1029-8spa
dc.relation.referencesGoswami, S. (2013). Importance of integrin receptors in the field of pharmaceutical & medical science. Advances in Biological Chemistry, 03(02), 224–252. https://doi.org/10.4236/abc.2013.32028spa
dc.relation.referencesGupta, S. C., Prasad, S., Reuter, S., Kannappan, R., Yadav, V. R., Ravindran, J., Hema, P. S., Chaturvedi, M. M., Nair, M., & Aggarwal, B. B. (2010). Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. Journal of Biological Chemistry, 285(46), 35406–35417. https://doi.org/10.1074/jbc.M110.161984spa
dc.relation.referencesGupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010a). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1799(10–12), 775–787. https://doi.org/10.1016/j.bbagrm.2010.05.004spa
dc.relation.referencesGupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010b). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. In Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (Vol. 1799, Issues 10–12, pp. 775–787). Elsevier. https://doi.org/10.1016/j.bbagrm.2010.05.004spa
dc.relation.referencesHernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., Luria-Pérez, R., Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., & Luria-Pérez, R. (2016). Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells. Boletín Médico Del Hospital Infantil de México, 73(6), 388–396. https://doi.org/10.1016/J.BMHIMX.2016.10.002spa
dc.relation.referencesKarin, M., & Greten, F. R. (2005a). NF-κB: Linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759. https://doi.org/10.1038/nri1703spa
dc.relation.referencesKarin, M., & Greten, F. R. (2005b). NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749.spa
dc.relation.referencesKopatz, V., & Selzer, E. (2020). Quantitative and qualitative analysis of integrin subtype expression in melanocytes and melanoma cells. Journal of Receptors and Signal Transduction, 40(3), 237–245. https://doi.org/10.1080/10799893.2020.1727923spa
dc.relation.referencesKuroda, H., Tachikawa, M., Yagi, Y., Umetsu, M., Nurdin, A., Miyauchi, E., Watanabe, M., Uchida, Y., & Terasaki, T. (2019). Cluster of Differentiation 46 Is the Major Receptor in Human Blood-Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Molecular Pharmaceutics, 16(1), 292–304. https://doi.org/10.1021/acs.molpharmaceut.8b00985spa
dc.relation.referencesLanzetti, L., & di Fiore, P. P. (2008). Endocytosis and cancer: An “Insider” network with dangerous liaisons. Traffic, 9(12), 2011–2021. https://doi.org/10.1111/j.1600-0854.2008.00816.xspa
dc.relation.referencesLegge, D. N., Chambers, A. C., Parker, C. T., Timms, P., Collard, T. J., & Williams, A. C. (2020). The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis, 41(3), 249–256. https://doi.org/10.1093/carcin/bgaa003spa
dc.relation.referencesMatsuura, H., Kirschner, A. N., Longnecker, R., & Jardetzky, T. S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proceedings of the National Academy of Sciences, 107(52), 22641–22646. https://doi.org/10.1073/pnas.1011806108spa
dc.relation.referencesMay, M. J., D'Acquisto, F., Madge, L. A., Glöckner, J., Pober, J. S., & Ghosh, S. (2000). Selective Inhibition of NF-κB Activation by a Peptide That Blocks the Interaction of NEMO with the IκB Kinase Complex. Science, 289(5484), 1550 LP – 1554. http://science.sciencemag.org/content/289/5484/1550.abstractspa
dc.relation.referencesMeyer, T., Marshall, J. F., & Hart, I. R. (1998). Expression of xv integrins and vitronectin receptor identity in breast cancer cells. In British Joumal of Cancer (Vol. 77, Issue 4).spa
dc.relation.referencesMohazab, L., Koivisto, L., Jiang, G., Kytomaki, L., Haapasalo, M., Owen, G. R., Wiebe, C., Xie, Y., Heikinheimo, K., Yoshida, T., Smith, C. E., Heino, J., Hakkinen, L., McKee, M. D., & Larjava, H. (2013). Critical role for v 6 integrin in enamel biomineralization. Journal of Cell Science, 126(3), 732–744. https://doi.org/10.1242/jcs.112599spa
dc.relation.referencesNaci, D., el Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Al-Daccak, R., & Aoudjit, F. (2012). α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). The Journal of Biological Chemistry, 287(21), 17065–17076. https://doi.org/10.1074/JBC.M112.349365spa
dc.relation.referencesNieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H. J., Schwaiger, M., Weinmüller, M., Räder, A., Steiger, K., & Kessler, H. (2017). Exploring the role of RGD-recognizing integrins in cancer. Cancers, 9(9), 1–33. https://doi.org/10.3390/cancers9090116spa
dc.relation.referencesOeckinghaus, A., & Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), 1–15. https://doi.org/10.1101/cshperspect.a000034spa
dc.relation.referencesPahl, H. L. (1999). Activators and target genes of Rel / NF- k B transcription factors. Oncogene, 18(49), 6853, 18.spa
dc.relation.referencesPallis, M., Grundy, M., Turzanski, J., Kofler, R., & Russell, N. (2001). Mitochondrial membrane sensitivity to depolarization in acute myeloblastic leukemia is associated with spontaneous in vitro apoptosis, wild-type TP53, and vicinal thiol/disulfide status. Blood, 98(2), 405–413. https://doi.org/10.1182/blood.V98.2.405spa
dc.relation.referencesPaolillo, M., & Schinelli, S. (n.d.). cancers Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. https://doi.org/10.3390/cancers9080095spa
dc.relation.referencesPark, S. H., Riley, P., & Frisch, S. M. (2013). Regulation of anoikis by deleted in breast cancer-1 (DBC1) through NF-κB. Apoptosis, 18(8), 949–962. https://doi.org/10.1007/s10495-013-0847-1spa
dc.relation.referencesPhanie Charrin, S., Phanie Jouannet, S., Boucheix, C., & Rubinstein, E. (n.d.). Tetraspanins at a glance. Journal of Cell Science CELL SCIENCE AT A GLANCE. https://doi.org/10.1242/jcs.154906spa
dc.relation.referencesPlaczek, W. J., Wei, J., Kitada, S., Zhai, D., Reed, J. C., & Pellecchia, M. (2010). A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death & Disease, 1(5), e40. https://doi.org/10.1038/CDDIS.2010.18spa
dc.relation.referencesRaghavan, A. B. and S. (2010). Defining the Role of Integrin αvβ6 in Cancer. 10(7), 645–652. Saviola, A. J., Burns, P. D., Mukherjee, A. K., & Mackessy, S. P. (2016). The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. International Journal of Biological Macromolecules, 88, 457–464. https://doi.org/10.1016/j.ijbiomac.2016.04.008spa
dc.relation.referencesSchirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. https://doi.org/10.3892/IJO.2018.4661/HTMLspa
dc.relation.referencesSeguin, L., Desgrosellier, J., Weis, S., biology, D. C.-T. in cell, & 2015, undefined. (n.d.). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Elsevier. Retrieved December 28, 2022, from https://www.sciencedirect.com/science/article/pii/S0962892414002165spa
dc.relation.referencesShih, V. F., Tsui, R., Caldwell, A., & Hoffmann, A. (2011). A single NF κ B system for both canonical and non-canonical signaling. Nature Publishing Group, 21(1), 86–102. https://doi.org/10.1038/cr.2010.161spa
dc.relation.referencesTaherian, A., Li, X., Liu, Y., & Haas, T. A. (2011). Differences in integrin expression and signaling within human breast cancer cells.spa
dc.relation.referencesTao, Y., Liu, Z., Hou, Y., Wang, S., Liu, S., Jiang, Y., Tan, D., Ge, Q., Li, C., Hu, Y., Liu, Z., Chen, X., Wang, Q., Wang, M., & Zhang, X. (2018). Alternative NF- κ B signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene, 3. https://doi.org/10.1038/s41388-018-0363-4spa
dc.relation.referencesUgarte-Alvarez, O., Muñoz-López, P., Moreno-Vargas, L. M., Prada-Gracia, D., Mateos-Chávez, A. A., Becerra-Báez, E. I., & Luria-Pérez, R. (2020). Cell-permeable BAK BH3 peptide induces chemosensitization of hematologic malignant cells. Journal of Oncology, 2020. https://doi.org/10.1155/2020/2679046spa
dc.relation.referencesUhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue-based map of the human proteome. Science, 347(6220). https://doi.org/10.1126/SCIENCE.1260419spa
dc.relation.referencesUrquiza, M., Suarez, J., Lopez, R., Vega, E., Patino, H., Garcia, J., Patarroyo, M. A., Guzman, F., & Patarroyo, M. E. (2004). Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochemical and Biophysical Research Communications, 319(1), 221–229. https://doi.org/10.1016/j.bbrc.2004.04.177spa
dc.relation.referencesWen, S., Zhu, D., & Huang, P. (2013). Targeting cancer cell mitochondria as a therapeutic approach. In Future Medicinal Chemistry (Vol. 5, Issue 1, pp. 53–67). Future Science Ltd London, UK . https://doi.org/10.4155/fmc.12.190spa
dc.relation.referencesWerner, J., Decarlo, C. A., Escott, N., Zehbe, I., & Ulanova, M. (2012). Expression of integrins and Toll-like receptors in cervical cancer: Effect of infectious agents. Innate Immunity, 18(1), 55–69. https://doi.org/10.1177/1753425910392934spa
dc.relation.referencesXie, Y., McElwee, K., Owen, G., … L. H.-J. of I., & 2012, U. (2012). Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. Journal of Investigative Dermatology, 132(3), 547–555.spa
dc.relation.referencesYing, S., & Häcker, G. (2007). Apoptosis induced by direct triggering of mitochondrial apoptosis proceeds in the near-absence of some apoptotic markers. Apoptosis, 12(11), 2003–2011. https://doi.org/10.1007/s10495-007-0117-1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsPéptidosspa
dc.subject.decsPeptideseng
dc.subject.decsNeoplasias del Cuello Uterinospa
dc.subject.decsUterine Cervical Neoplasmseng
dc.subject.decsNeoplasias de la Mamaspa
dc.subject.decsBreast Neoplasmseng
dc.subject.decsIntegrinasspa
dc.subject.decsIntegrinseng
dc.subject.proposalFactor Nuclear κβspa
dc.subject.proposalIntegrina αvβ6spa
dc.subject.proposalPéptidos quiméricosspa
dc.subject.proposalMuerte celularspa
dc.subject.proposalNuclear factor κβeng
dc.subject.proposalIntegrin αvβ6eng
dc.subject.proposalChimeric peptideseng
dc.subject.proposalCell deatheng
dc.titleEfecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6spa
dc.title.translatedEffect of chimeric peptides on the proliferation and apoptosis of cancer cell lines and its correlation with the expression levels of the αVβ6 integrineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018448541.2022.pdf
Tamaño:
1.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: