Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6
dc.contributor.advisor | Urquiza Martínez, Mauricio | spa |
dc.contributor.author | Díaz Sana, Erika Vanessa | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000019953 | spa |
dc.contributor.researchgroup | Grupo de Investigación en Hormonas | spa |
dc.date.accessioned | 2024-10-25T01:20:02Z | |
dc.date.available | 2024-10-25T01:20:02Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La invasión celular, migración y metástasis en algunos tipos de tumores es promovida por la desregulación en la señalización del factor nuclear κβ y la sobre expresión de la integrina αvβ6. La presencia de esta integrina se correlaciona con malignidad de las lesiones, por lo que se considera un biomarcador y blanco terapéutico en células tumorales. El factor nuclear κβ (NF- κβ) regula la transcripción de genes involucrados en la respuesta inmune y respuestas celulares como adhesión, diferenciación y apoptosis. La activación inapropiada o exacerbada del NF- κβ está involucrada en diversos tipos de patologías como enfermedades inflamatorias crónicas, autoinmunes, y el desarrollo y progresión del cáncer, específicamente en carcinomas de seno, pulmón, boca, estómago, endometrio, páncreas, y ovario. En esta tesis reportamos que los péptidos quiméricos P63 y P68, sintetizados con motivos de unión la integrina αvβ6 y un motivo que bloquea la señalización del NF- κβ mediada por la proteína BCL-3. (1) Son capaces de unirse en mayor proporción a células de cáncer de cérvix, seno, leucemia linfoide aguda, melanoma y pulmón (HeLa, MCF-7, CCRF-CEM, Skmel 23 y A549 respectivamente) en comparación con líneas celulares no tumorales como HEK 293, fibroblastos y células mononucleares de sangre periférica (PBMCs) de un individuo sano. (2) También, modifican el potencial de membrana mitocondrial de manera dosis y tiempo dependiente y (3) promueven la expresión de marcadores de apoptosis en las células tumorales HeLa y MCF-7 pero no en células normales. Estos resultados, permiten conocer el funcionamiento de los péptidos a nivel biológico y molecular y arrojan información sobre su potencial para controlar procesos tumorales de una manera específica y bajo efecto citotóxico en células sanas. (Texto tomado de la fuente). | spa |
dc.description.abstract | Cell invasion, migration, and metastasis in some types of tumors is promoted by deregulation of nuclear factor κβ signaling and overexpression of integrin αvβ6. The presence of this integrin correlates with the malignancy of the lesions, which is why it is considered a biomarker and therapeutic target in tumor cells. Nuclear factor κβ (NF- κβ) regulates the transcription of genes involved in the immune response and cellular responses such as adhesion, differentiation, and apoptosis. Inappropriate or exacerbated activation of NF-κβ is involved in various types of pathologies such as chronic inflammatory and autoimmune diseases, and the development and progression of cancer, specifically in carcinomas of the breast, lung, mouth, stomach, endometrium, pancreas, and ovary. In this article we report that chimeric peptides P63 and P68, synthesized with integrin αvβ6 binding motifs and a motif that blocks NF-κβ signaling mediated by the BCL-3 protein. (1) They are able to bind to a higher proportion of cervical, breast, acute lymphoid leukemia, melanoma and lung cancer cells (HeLa, MCF-7, CCRF-CEM, Skmel 23 and A549 respectively) compared to non-tumor cell lines as HEK 293, fibroblasts and peripheral blood mononuclear cells (PBMCs) from a healthy individual. (2) Also, they modify the mitochondrial membrane potential in a dose- and time-dependent manner and (3) they promote the expression of apoptosis markers in HeLa and MCF-7 tumor cells but not in normal cells. These results allow us to know the functioning of the peptides at a biological and molecular level and shed information on their potential to control tumor processes in a specific way and with a low cytotoxic effect on healthy cells. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Bioquímica | spa |
dc.format.extent | xii, 52 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87057 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Albert, J. M., Kim, K. W., Cao, C., & Lu, B. (2006). Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Molecular Cancer Therapeutics, 5(5), 1183–1189. https://doi.org/10.1158/1535-7163.MCT-05-0400 | spa |
dc.relation.references | Arias-Mejias, S. M., Warda, K. Y., Quattrocchi, E., Alonso-Quinones, H., Sominidi-Damodaran, S., & Meves, A. (2020). The role of integrins in melanoma: a review. In International Journal of Dermatology (Vol. 59, Issue 5, pp. 525–534). Blackwell Publishing Ltd. https://doi.org/10.1111/ijd.14850 | spa |
dc.relation.references | Bandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. Current Drug Targets, 10(7), 645–652. | spa |
dc.relation.references | Beg, A., & Jr, A. S. B. (1993). The IKB proteins : multifunctional egulators of Rel / NF-KB transcription actors. 2064–2070. | spa |
dc.relation.references | Capozzi, A., Mantuano, E., Matarrese, P., Saccomanni, G., Manera, C., Mattei, V., Gambardella, L., Malorni, W., Sorice, M., & Misasi, R. (2012). A New 4-phenyl-1,8-naphthyridine Derivative Affects Carcinoma Cell Proliferation by Impairing Cell Cycle Progression and Inducing Apoptosis. Anti-Cancer Agents in Medicinal Chemistry, 12(6), 653–662. https://doi.org/10.2174/187152012800617731 | spa |
dc.relation.references | Caswell, P., & Norman, J. (2008). Endocytic transport of integrins during cell migration and invasion. Current Drug Targets, May, 257–263. https://doi.org/10.1016/j.tcb.2008.03.004 | spa |
dc.relation.references | Cell line - ITGB6 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000115221-ITGB6/cell+line | spa |
dc.relation.references | Cell line - ITGB8 - The Human Protein Atlas. (n.d.). Retrieved February 1, 2023, from https://www.proteinatlas.org/ENSG00000105855-ITGB8/cell+line#brain_cancer | spa |
dc.relation.references | Chen, J., Rowe, C. L., Jardetzky, T. S., & Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio, 3(1), 1–9. https://doi.org/10.1128/mBio.00290-11 | spa |
dc.relation.references | Chesnokova, L. S., Nishimura, S. L., & Hutt-Fletcher, L. M. (2009). Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins v 6 or v 8. Proceedings of the National Academy of Sciences, 106(48), 20464–20469. https://doi.org/10.1073/pnas.0907508106 | spa |
dc.relation.references | Chetoui, N., Gendron, S., Chamoux, E., & Aoudjit, F. (2006). Collagen type I-mediated activation of ERK/MAP Kinase is dependent on Ras, Raf-1 and protein phosphatase 2A in Jurkat T cells. Molecular Immunology, 43(10), 1687–1693. https://doi.org/10.1016/J.MOLIMM.2005.09.010 | spa |
dc.relation.references | Collins, P., Grassia, G., Colleran, A., … P. K.-J. of B., & 2015. (n.d.). Mapping the interaction of B cell leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide. ASBMB. Retrieved January 9, 2023, from https://www.jbc.org/article/S0021-9258(20)35065-1/abstract | spa |
dc.relation.references | Collins, P., Kiely, P., Chemistry, R. C.-J. of B., & 2014, undefined. (n.d.). Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50. ASBMB. Retrieved January 10, 2023, from https://www.jbc.org/article/S0021-9258(20)44522-3/abstract | spa |
dc.relation.references | Dodagatta-Marri, E., Ma, H. Y., Liang, B., Li, J., Meyer, D. S., Chen, S. Y., Sun, K. H., Ren, X., Zivak, B., Rosenblum, M. D., Headley, M. B., Pinzas, L., Reed, N. I., del Cid, J. S., Hann, B. C., Yang, S., Giddabasappa, A., Noorbehesht, K., Yang, B., … Sheppard, D. (2021). Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Reports, 36(1). https://doi.org/10.1016/J.CELREP.2021.109309 | spa |
dc.relation.references | Emonard, H., Dedieu, S., Dontenwill, M., Blandin, A.-F., Renner, G., Lehmann, M., Lelong-Rebel, I., & Martin, S. (2015). β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Frontiers in Pharmacology | Www.Frontiersin.Org, 6, 279. https://doi.org/10.3389/fphar.2015.00279 | spa |
dc.relation.references | Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. v., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. Journal of Biological Chemistry, 290(8), 4545–4551. https://doi.org/10.1074/JBC.C114.617662 | spa |
dc.relation.references | Galletti, P., Soldati, R., Pori, M., Durso, M., Tolomelli, A., Gentilucci, L., Dattoli, S. D., Baiula, M., Spampinato, S., & Giacomini, D. (2014). Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. European Journal of Medicinal Chemistry, 83, 284–293. https://doi.org/10.1016/j.ejmech.2014.06.041 | spa |
dc.relation.references | Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. In Cell Death and Differentiation (Vol. 14, Issue 7, pp. 1237–1243). https://doi.org/10.1038/sj.cdd.4402148 | spa |
dc.relation.references | Gendron, S., Couture, J., & Aoudjit, F. (2003). Integrin α2β1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway. Journal of Biological Chemistry, 278(49), 48633–48643. https://doi.org/10.1074/JBC.M305169200 | spa |
dc.relation.references | Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., Cheng, H., Jin, K., Ni, Q., Yu, X., & Liu, C. (2019). The role of necroptosis in cancer biology and therapy. In Molecular Cancer (Vol. 18, Issue 1, pp. 1–17). BioMed Central Ltd. https://doi.org/10.1186/s12943-019-1029-8 | spa |
dc.relation.references | Goswami, S. (2013). Importance of integrin receptors in the field of pharmaceutical & medical science. Advances in Biological Chemistry, 03(02), 224–252. https://doi.org/10.4236/abc.2013.32028 | spa |
dc.relation.references | Gupta, S. C., Prasad, S., Reuter, S., Kannappan, R., Yadav, V. R., Ravindran, J., Hema, P. S., Chaturvedi, M. M., Nair, M., & Aggarwal, B. B. (2010). Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. Journal of Biological Chemistry, 285(46), 35406–35417. https://doi.org/10.1074/jbc.M110.161984 | spa |
dc.relation.references | Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010a). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1799(10–12), 775–787. https://doi.org/10.1016/j.bbagrm.2010.05.004 | spa |
dc.relation.references | Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010b). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. In Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (Vol. 1799, Issues 10–12, pp. 775–787). Elsevier. https://doi.org/10.1016/j.bbagrm.2010.05.004 | spa |
dc.relation.references | Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., Luria-Pérez, R., Hernández-Luna, M. A., Díaz de León-Ortega, R., Hernández-Cueto, D. D., Gaxiola-Centeno, R., Castro-Luna, R., Martínez-Cristóbal, L., Huerta-Yépez, S., & Luria-Pérez, R. (2016). Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells. Boletín Médico Del Hospital Infantil de México, 73(6), 388–396. https://doi.org/10.1016/J.BMHIMX.2016.10.002 | spa |
dc.relation.references | Karin, M., & Greten, F. R. (2005a). NF-κB: Linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759. https://doi.org/10.1038/nri1703 | spa |
dc.relation.references | Karin, M., & Greten, F. R. (2005b). NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749. | spa |
dc.relation.references | Kopatz, V., & Selzer, E. (2020). Quantitative and qualitative analysis of integrin subtype expression in melanocytes and melanoma cells. Journal of Receptors and Signal Transduction, 40(3), 237–245. https://doi.org/10.1080/10799893.2020.1727923 | spa |
dc.relation.references | Kuroda, H., Tachikawa, M., Yagi, Y., Umetsu, M., Nurdin, A., Miyauchi, E., Watanabe, M., Uchida, Y., & Terasaki, T. (2019). Cluster of Differentiation 46 Is the Major Receptor in Human Blood-Brain Barrier Endothelial Cells for Uptake of Exosomes Derived from Brain-Metastatic Melanoma Cells (SK-Mel-28). Molecular Pharmaceutics, 16(1), 292–304. https://doi.org/10.1021/acs.molpharmaceut.8b00985 | spa |
dc.relation.references | Lanzetti, L., & di Fiore, P. P. (2008). Endocytosis and cancer: An “Insider” network with dangerous liaisons. Traffic, 9(12), 2011–2021. https://doi.org/10.1111/j.1600-0854.2008.00816.x | spa |
dc.relation.references | Legge, D. N., Chambers, A. C., Parker, C. T., Timms, P., Collard, T. J., & Williams, A. C. (2020). The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis, 41(3), 249–256. https://doi.org/10.1093/carcin/bgaa003 | spa |
dc.relation.references | Matsuura, H., Kirschner, A. N., Longnecker, R., & Jardetzky, T. S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proceedings of the National Academy of Sciences, 107(52), 22641–22646. https://doi.org/10.1073/pnas.1011806108 | spa |
dc.relation.references | May, M. J., D'Acquisto, F., Madge, L. A., Glöckner, J., Pober, J. S., & Ghosh, S. (2000). Selective Inhibition of NF-κB Activation by a Peptide That Blocks the Interaction of NEMO with the IκB Kinase Complex. Science, 289(5484), 1550 LP – 1554. http://science.sciencemag.org/content/289/5484/1550.abstract | spa |
dc.relation.references | Meyer, T., Marshall, J. F., & Hart, I. R. (1998). Expression of xv integrins and vitronectin receptor identity in breast cancer cells. In British Joumal of Cancer (Vol. 77, Issue 4). | spa |
dc.relation.references | Mohazab, L., Koivisto, L., Jiang, G., Kytomaki, L., Haapasalo, M., Owen, G. R., Wiebe, C., Xie, Y., Heikinheimo, K., Yoshida, T., Smith, C. E., Heino, J., Hakkinen, L., McKee, M. D., & Larjava, H. (2013). Critical role for v 6 integrin in enamel biomineralization. Journal of Cell Science, 126(3), 732–744. https://doi.org/10.1242/jcs.112599 | spa |
dc.relation.references | Naci, D., el Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Al-Daccak, R., & Aoudjit, F. (2012). α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). The Journal of Biological Chemistry, 287(21), 17065–17076. https://doi.org/10.1074/JBC.M112.349365 | spa |
dc.relation.references | Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H. J., Schwaiger, M., Weinmüller, M., Räder, A., Steiger, K., & Kessler, H. (2017). Exploring the role of RGD-recognizing integrins in cancer. Cancers, 9(9), 1–33. https://doi.org/10.3390/cancers9090116 | spa |
dc.relation.references | Oeckinghaus, A., & Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), 1–15. https://doi.org/10.1101/cshperspect.a000034 | spa |
dc.relation.references | Pahl, H. L. (1999). Activators and target genes of Rel / NF- k B transcription factors. Oncogene, 18(49), 6853, 18. | spa |
dc.relation.references | Pallis, M., Grundy, M., Turzanski, J., Kofler, R., & Russell, N. (2001). Mitochondrial membrane sensitivity to depolarization in acute myeloblastic leukemia is associated with spontaneous in vitro apoptosis, wild-type TP53, and vicinal thiol/disulfide status. Blood, 98(2), 405–413. https://doi.org/10.1182/blood.V98.2.405 | spa |
dc.relation.references | Paolillo, M., & Schinelli, S. (n.d.). cancers Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. https://doi.org/10.3390/cancers9080095 | spa |
dc.relation.references | Park, S. H., Riley, P., & Frisch, S. M. (2013). Regulation of anoikis by deleted in breast cancer-1 (DBC1) through NF-κB. Apoptosis, 18(8), 949–962. https://doi.org/10.1007/s10495-013-0847-1 | spa |
dc.relation.references | Phanie Charrin, S., Phanie Jouannet, S., Boucheix, C., & Rubinstein, E. (n.d.). Tetraspanins at a glance. Journal of Cell Science CELL SCIENCE AT A GLANCE. https://doi.org/10.1242/jcs.154906 | spa |
dc.relation.references | Placzek, W. J., Wei, J., Kitada, S., Zhai, D., Reed, J. C., & Pellecchia, M. (2010). A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death & Disease, 1(5), e40. https://doi.org/10.1038/CDDIS.2010.18 | spa |
dc.relation.references | Raghavan, A. B. and S. (2010). Defining the Role of Integrin αvβ6 in Cancer. 10(7), 645–652. Saviola, A. J., Burns, P. D., Mukherjee, A. K., & Mackessy, S. P. (2016). The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. International Journal of Biological Macromolecules, 88, 457–464. https://doi.org/10.1016/j.ijbiomac.2016.04.008 | spa |
dc.relation.references | Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. https://doi.org/10.3892/IJO.2018.4661/HTML | spa |
dc.relation.references | Seguin, L., Desgrosellier, J., Weis, S., biology, D. C.-T. in cell, & 2015, undefined. (n.d.). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Elsevier. Retrieved December 28, 2022, from https://www.sciencedirect.com/science/article/pii/S0962892414002165 | spa |
dc.relation.references | Shih, V. F., Tsui, R., Caldwell, A., & Hoffmann, A. (2011). A single NF κ B system for both canonical and non-canonical signaling. Nature Publishing Group, 21(1), 86–102. https://doi.org/10.1038/cr.2010.161 | spa |
dc.relation.references | Taherian, A., Li, X., Liu, Y., & Haas, T. A. (2011). Differences in integrin expression and signaling within human breast cancer cells. | spa |
dc.relation.references | Tao, Y., Liu, Z., Hou, Y., Wang, S., Liu, S., Jiang, Y., Tan, D., Ge, Q., Li, C., Hu, Y., Liu, Z., Chen, X., Wang, Q., Wang, M., & Zhang, X. (2018). Alternative NF- κ B signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene, 3. https://doi.org/10.1038/s41388-018-0363-4 | spa |
dc.relation.references | Ugarte-Alvarez, O., Muñoz-López, P., Moreno-Vargas, L. M., Prada-Gracia, D., Mateos-Chávez, A. A., Becerra-Báez, E. I., & Luria-Pérez, R. (2020). Cell-permeable BAK BH3 peptide induces chemosensitization of hematologic malignant cells. Journal of Oncology, 2020. https://doi.org/10.1155/2020/2679046 | spa |
dc.relation.references | Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue-based map of the human proteome. Science, 347(6220). https://doi.org/10.1126/SCIENCE.1260419 | spa |
dc.relation.references | Urquiza, M., Suarez, J., Lopez, R., Vega, E., Patino, H., Garcia, J., Patarroyo, M. A., Guzman, F., & Patarroyo, M. E. (2004). Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochemical and Biophysical Research Communications, 319(1), 221–229. https://doi.org/10.1016/j.bbrc.2004.04.177 | spa |
dc.relation.references | Wen, S., Zhu, D., & Huang, P. (2013). Targeting cancer cell mitochondria as a therapeutic approach. In Future Medicinal Chemistry (Vol. 5, Issue 1, pp. 53–67). Future Science Ltd London, UK . https://doi.org/10.4155/fmc.12.190 | spa |
dc.relation.references | Werner, J., Decarlo, C. A., Escott, N., Zehbe, I., & Ulanova, M. (2012). Expression of integrins and Toll-like receptors in cervical cancer: Effect of infectious agents. Innate Immunity, 18(1), 55–69. https://doi.org/10.1177/1753425910392934 | spa |
dc.relation.references | Xie, Y., McElwee, K., Owen, G., … L. H.-J. of I., & 2012, U. (2012). Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. Journal of Investigative Dermatology, 132(3), 547–555. | spa |
dc.relation.references | Ying, S., & Häcker, G. (2007). Apoptosis induced by direct triggering of mitochondrial apoptosis proceeds in the near-absence of some apoptotic markers. Apoptosis, 12(11), 2003–2011. https://doi.org/10.1007/s10495-007-0117-1 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Péptidos | spa |
dc.subject.decs | Peptides | eng |
dc.subject.decs | Neoplasias del Cuello Uterino | spa |
dc.subject.decs | Uterine Cervical Neoplasms | eng |
dc.subject.decs | Neoplasias de la Mama | spa |
dc.subject.decs | Breast Neoplasms | eng |
dc.subject.decs | Integrinas | spa |
dc.subject.decs | Integrins | eng |
dc.subject.proposal | Factor Nuclear κβ | spa |
dc.subject.proposal | Integrina αvβ6 | spa |
dc.subject.proposal | Péptidos quiméricos | spa |
dc.subject.proposal | Muerte celular | spa |
dc.subject.proposal | Nuclear factor κβ | eng |
dc.subject.proposal | Integrin αvβ6 | eng |
dc.subject.proposal | Chimeric peptides | eng |
dc.subject.proposal | Cell death | eng |
dc.title | Efecto de péptidos quiméricos en la proliferación y apoptosis de líneas celulares de cáncer y su correlación con los niveles de expresión de la integrina αVβ6 | spa |
dc.title.translated | Effect of chimeric peptides on the proliferation and apoptosis of cancer cell lines and its correlation with the expression levels of the αVβ6 integrin | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018448541.2022.pdf
- Tamaño:
- 1.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: