Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP

dc.contributor.advisorChacón Sánchez, María Isabel
dc.contributor.advisorMayor Durán, Victor Manuel
dc.contributor.authorTorres González, Laura Marcela
dc.date.accessioned2023-08-10T16:47:42Z
dc.date.available2023-08-10T16:47:42Z
dc.date.issued2023
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractUno de los objetivos principales de los programas de mejoramiento genético de maíz es desarrollar líneas parentales endocriadas de alto valor genético que al ser cruzadas puedan producir híbridos con características agronómicas superiores. En Colombia, la obtención de este tipo de híbridos es de alto interés ya que pueden ayudar a aumentar el rendimiento y la producción de maíz y cerrar la brecha que existe entre la producción nacional y la importación de maíz que actualmente es del 74%. Actualmente el programa de mejoramiento genético de maíz de Semillas Valle no cuenta con una caracterización del germoplasma que le permita establecer estrategias eficientes para la obtención de híbridos de alto rendimiento. En el presente estudio se llevó a cabo la clasificación de líneas endocriadas en grupos heteróticos a partir de datos genómicos empleando marcadores moleculares tipo SNP y variables fenotípicas en 66 líneas del programa de mejoramiento de Semillas Valle S.A., y a partir de datos de campo de un ensayo de tipo dialelo donde participaron 30 parentales. A partir de un análisis de clúster de los datos SNPs se identificaron tres grupos heteróticos o subpoblaciones. Por otra parte, los resultados del dialelo permitieron clasificar las líneas en dos grupos heteróticos basados en los efectos de la habilidad combinatoria específica (HCE), y en tres grupos basados en la habilidad combinatoria general para múltiples rasgos (HGCAMT). Sin embargo, la integración de las metodologías podría proveer más información respecto a los grupos heteróticos presentes en la población evaluada. (Texto tomado de la fuente)spa
dc.description.abstractOne of the main objectives on the maize breeding programs is the development of parental inbred lines of high genetic value, which crossings could produce new hybrids with improved agronomic characteristics. In Colombia, obtaining this kind of hybrids is highly interesting because it can help to obtain better yielding and improve the maize production, to close the gap between the national production and the maize imports, which currently represents the 74% of the internal consume. Currently, the Semillas Valle maize breeding program does not have with the characterization of the germplasm to be used in the establishment efficient strategies for the high yielding hybrids. In this study, we are going to evaluate the classification of inbred lines into heterotic groups using SNP molecular markers, and field data of 66 lines from the Semillas Valle S.A. maize breeding program, and from field data of a diallel crossing essay where 30 parental lines participate. From a cluster analysis of the SNPs data, we identify three heterotic groups or subpopulations. In the other hand, diallel results allows us to infer three different groups. Nevertheless, the integration of both methodologies could provide additional information about the heterotic groups present in the population.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsEn el ensayo se incluyeron 30 líneas élite del programa de mejoramiento de Semillas Valle S.A como parentales, 15 líneas de grano color blanco y 15 líneas de grano color amarillo. Las líneas fueron seleccionadas por ser las líneas parentales con mayor cantidad de híbridos experimentales formados desde 2013. Con ayuda de la herramienta informática Semillas (v. 2018) (Semillas Valle S.A.), se programaron cruzamientos entre los 30 parentales, sin incluir los recíprocos, de acuerdo con el método II descrito por Griffing (1956), para un total de 435 cruzamientos [(P(P-1)) /2] y los 30 parentales. La obtención de semilla se realizó en las instalaciones del Centro Experimental Guillermo Paz Casas de Semillas Valle S.A. ubicado en el municipio de El Cerrito, Valle del Cauca. Los cruzamientos fueron formados mediante polinizaciones manuales para asegurar la integridad genética de los materiales. Para ello, las líneas hembra y macho se sembraron en una relación de 2 surcos a 1, respectivamente. Cada hembra se dispuso en campo en 2 surcos de 2 metros, separados a 0,8 m entre surcos, en grupos de 10 a 15 hembras seguidas por el macho correspondiente para la formación del híbrido. Los parentales se obtuvieron mediante autopolinizaciones manuales, en 2 surcos de 2 metros cada uno. La trazabilidad de los procesos de campo se realizó identificando cada genotipo con un código QR sobre el cual se registraron, además de la información de los cruzamientos realizados, los datos fenotípicos recolectados para cada material. La cosecha de dichos materiales se realizó de forma manual al momento de madurez fisiológica (aprox. 105 días después de siembra). La semilla fue llevada a secamiento en las celdas de secado de la planta de beneficio de semillas de Semillas Valle S.A., ubicada en el municipio de Yumbo, Valle del Cauca, hasta alcanzar el 14% de humedad. Posteriormente se seleccionó manualmente por el equipo experimentado de Semillas Valle y fue almacenada en cuarto frío a 4°C hasta la siembra para garantizar su calidad fisiológica.spa
dc.description.researchareaGenética y Fitomejoramientospa
dc.description.sponsorshipSemillas Valle S.A.spa
dc.format.extentxix, 91 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84523
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesZhao, J., Li, C., Song, W., Wang, Y., Zhang, R., Wang, J., Wang, F., Tian, H., & Wang, R. (2018). Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-chips. Scientia Agricultura Sinica, 51(4), 626–634. https://doi.org/10.3864/j.issn.0578-1752.2018.04.003spa
dc.relation.referencesAdu, G. B., Badu-Apraku, B., Akromah, R., & Awuku, F. J. (2022). Combining Abilities and Heterotic Patterns among Early Maturing Maize Inbred Lines under Optimal and Striga-Infested Environments. Genes, 13(12). https://doi.org/10.3390/genes13122289spa
dc.relation.referencesAdu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Awuku, F. J., & Gedil, M. (2019). Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE, 14(4), 1–12. https://doi.org/10.1371/journal.pone.0214810spa
dc.relation.referencesAguiar, C. G., Schuster, I., Amaral, A. T., Scapim, C. A., & Vieira, E. S. N. (2008). Heterotic groups in tropical maize germplasm by test crosses and simple sequence repeat markers. Genetics and Molecular Research, 7(4), 1233–1244. https://doi.org/10.4238/vol7-4gmr495spa
dc.relation.referencesAlika, J. E., Aken’ova, M. E., & Fatokun, C. A. (1993). Variation among maize (Zea mays L.) accessions of Bendel State, Nigeria. Multivariate analysis of agronomic data. In Euphytica (Vol. 66).spa
dc.relation.referencesAl-Naggar, A. M. M., Shafik, M. M., & Musa, R. Y. M. (2020). Genetic Diversity Based on Morphological Traits of 19 Maize Genotypes Using Principal Component Analysis and GT Biplot. Annual Research & Review in Biology, 68–85. https://doi.org/10.9734/arrb/2020/v35i230191spa
dc.relation.referencesAl-samarai, R., & Al-Kazaz, A. (2015). Molecular Markers: an Introduction and Applications. European Journal of Molecular Biotechnology, 9(3), 118–130. https://doi.org/10.13187/ejmb.2015.9.118spa
dc.relation.referencesAwata, L. A. O., Tongoona, P., Danquah, E., Efie, B. E., & Marchelo-Dragga, P. W. (2018). Common Mating Designs in Agricultural Research and Their Reliability in Estimation of Genetic Parameters. 11(7), 16–36. https://doi.org/10.9790/2380-1107021636spa
dc.relation.referencesBadu-Apraku, B., Annor, B., Oyekunle, M., Akinwale, R. O., Fakorede, M. A. B., Talabi, A. O., Akaogu, I. C., Melaku, G., & Fasanmade, Y. (2015). Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research, 183, 169–183. https://doi.org/10.1016/j.fcr.2015.07.015spa
dc.relation.referencesBadu-Apraku, B., Oyekunle, M., Fakorede, M. A. B., Vroh, I., O Akinwale, R., & Aderounmu, M. (2013). Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica, 192(3), 413–433. https://doi.org/10.1007/s10681-013-0876-4spa
dc.relation.referencesBarata, C., & Carena, M. J. (2006). Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica, 151(3), 339–349. https://doi.org/10.1007/s10681-006-9155-yspa
dc.relation.referencesBarroso, P. A., Medeiros, A. M., Santos, N. P. S. dos, Silva, D. C. Q., Silva, S. da C., & Gomes, R. L. F. (2019). Phenotypic Dispersion of Landrace Lima Bean Varieties Using Multidimensional Scaling. Journal of Agricultural Science, 11(13), 178. https://doi.org/10.5539/jas.v11n13p178spa
dc.relation.referencesBegum, S., Alam, S. S., Omy, S. H., Amiruzzaman, M., & Rohman, M. M. (2018). Inheritance and combing ability in maize using a 7x7 diallel cross. Journal of Plant Breeding and Crop Science, 10(9), 239–248. https://doi.org/10.5897/jpbcs2018.0750spa
dc.relation.referencesBeiragi, M. A., Siah Sar, B. A., Sadeghi Geive, H., Nasrolah Alhossini, M., Rahmani, A., & Bakhtiari Gharibdoosti, A. (2012). Application of the multivariate analysis method for some traits in maize. AFRICAN JOURNAL OF AGRICULTURAL RESEEARCH, 7(10). https://doi.org/10.5897/ajar11.1595spa
dc.relation.referencesBello, O. B., Abdulmaliq, S. Y., & Ige. (2010). Correlation and path coefficient analysis of yield and agronomic characters among open pollinated maize varieties and their F 1 hybrids in a diallel cross. African Journal of Biotechnology, 9(18), 2633–2639. http://www.academicjournals.org/AJBspa
dc.relation.referencesBeyene, T., Botha, A. M., & Myburg, A. A. (2005). Phenotypic diversity for morphological and agronomic traits in traditional ethiopian highland maize accessions. South African Journal of Plant and Soil, 22(2), 100–105. https://doi.org/10.1080/02571862.2005.10634689spa
dc.relation.referencesBfinziger, M., & Lafitte, H. R. (1997). Efficiency of Secondary Traits for Improving Maize for Low-Nitrogen Target Environments. Crop Science, 37.spa
dc.relation.referencesBidhendi, M., Mostafavi, K., Choukan, R., Darvish, F., & Majidi, E. (2009). Classifying of maize inbred iines into heterotic groups using diallel analysis. World Acad Sci Eng Technol, 6(7), 1161–1164.spa
dc.relation.referencesBirchler, J. A., Auger, D. L., & Riddle, N. C. (2003). In Search of the Molecular Basis of Heterosis. Plant Cell, 15(10), 2236–2239. https://doi.org/10.1105/tpc.151030spa
dc.relation.referencesBorg, I., & Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications. Springer-Verlag.spa
dc.relation.referencesBradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308spa
dc.relation.referencesChandel, U., Kumar, D., & Guleria, S. K. (2019). Combining ability effects and heterotic grouping in newly developed early maturing yellow maize (Zea mays L.) inbreds under sub-tropical conditions. Electronic Journal of Plant Breeding, 10(3), 1049–1059. https://doi.org/10.5958/0975-928X.2019.00134.0spa
dc.relation.referencesChengsong, Z., & Jianming, Y. (2009). Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics, 182(3), 875–888. https://doi.org/10.1534/genetics.108.098863spa
dc.relation.referencesChing, A., Caldwell, K. S., Jung, M., Dolan, M., Smith, O. S., Tingey, S., Morgante, M., & Rafalski, A. J. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. http://www.arabidopsis.org/cereon/].spa
dc.relation.referencesChristie, B. R., & Shattuck, V. I. (2010). The Diallel Cross: Design, Analysis, and Use for Plant Breeders. Plant Breeding Reviews, 9(736), 9–36. https://doi.org/10.1002/9780470650363.ch2spa
dc.relation.referencesda Silva, A. R., Cecon, P. R., Días, C. T. dos S., Puiatti, M., Finger, F. L., & Souza Carneiro, A. P. (2014). Morphological phenotypic dispersion of garlic cultivars by cluster analysis and multidimensional scaling. Scientia Agricola, 71(1), 38–43.spa
dc.relation.referencesDerera, J., Tongoona, P., Vivek, B. S., & Laing, M. D. (2008). Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica, 162(3), 411–422. https://doi.org/10.1007/s10681-007-9582-4spa
dc.relation.referencesDuitama, J., Quintero, J. C., Cruz, D. F., Quintero, C., Hubmann, G., Foulquié-Moreno, M. R., Verstrepen, K. J., Thevelein, J. M., & Tohme, J. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research, 42(6). https://doi.org/10.1093/nar/gkt1381spa
dc.relation.referencesEarl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7spa
dc.relation.referencesEl-Badawy, M. E. M. (2013). Heterosis and combining ability in maize using diallel crosses among seven new inbred lines. Asian Journal of Crop Science, 5(1), 1–13. https://doi.org/10.3923/ajcs.2013.1.13spa
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xspa
dc.relation.referencesFan, X. M., Bi, Y., Zhang, Y., Jeffers, D., Yin, X., & Kang, M. (2018). Improving breeding efficiency of a hybrid maize breeding program using a three heterotic-group classification. Agronomy Journal, 110(4), 1209–1216. https://doi.org/10.2134/agronj2017.05.0290spa
dc.relation.referencesFan, X. M., Zhang, Y. M., Yao, W. H., Chen, H. M., Tan, J., Xu, C. X., Han, X. L., Luo, L. M., & Kang, M. S. (2009). Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy Journal, 101(1), 106–112. https://doi.org/10.2134/agronj2008.0217spa
dc.relation.referencesFondo Nacional Cerealista, & FENALCE, F. N. de C. de C. (2011). Aspectos técnicos de la producción de maíz en Colombia. http://hdl.handle.net/20.500.12324/19418.spa
dc.relation.referencesFonseca, A. E., Westgate, M. E., Grass, L., & Dornbos, D. L. (2003). Tassel Morphology as an Indicator of Potential Pollen Production in Maize. Crop Management, 2(1), 1–15. https://doi.org/10.1094/cm-2003-0804-01-rsspa
dc.relation.referencesGovaerts, B., Vega, D., Chávez, X., Narro, L., San Vicente, F., Palacios, N., Pérez, M., González, G., Ortega, P., Carvajal, A., Arcos, A. L., Bolaños, J., Romero, N., Bolaños, J., Vanegas, Y. F., Echeverría, R., Jarvis, A., Jiménez, D., & Ramírez-Villegas, J. (2019). Maíz para Colombia: Visión 2030.spa
dc.relation.referencesGriffing, B. (1956). Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463. https://doi.org/10.1071/bi9560463spa
dc.relation.referencesHallauer, A. R. (2015). Heterosis What Have We Learned? What Have We Done? Where Are We Headed? 1922, 483–492. https://doi.org/10.2134/1999.geneticsandexploitation.c45spa
dc.relation.referencesHassan, W. A., Hadi, B. H., & Hamdalla, M. S. H. (2020). Study The GCA and SCA Effects of Five Inbred Lines of Maize According to Half Diallel Mating System. In Journal For Agriculture Sciences (QJAS) (Vol. 10, Issue 2). https://jouagr.qu.edu.iq/spa
dc.relation.referencesHussain, M., Shah, K. N., Ghafoor, A., Kiani, T. T., & Mahmood, T. (2014). GENETIC ANALYSIS FOR GRAIN YIELD AND VARIOUS MORPHOLOGICAL TRAITS IN MAIZE (ZEA MAYS L.) UNDER NORMAL AND WATER STRESS ENVIRONMENTS. In J. Anim. Plant Sci (Vol. 24, Issue 4).spa
dc.relation.referencesJamshidian, P., Reza Golparvar, A., Naderi, M. R., Darkhal, H., & Golparvar, A. R. (2013). International Journal of Farming and Allied Sciences Phenotypic correlations and path analysis between ear yield and other associated characters in corn hybrids (Zea mays L.). International Journal of Farming and Allied Sciences, 2, 1273–1276. www.ijfas.comspa
dc.relation.referencesJi, H. C., Cho, J.-W., & Yamakawa, T. (2006). Diallel Analysis of Plant and Ear Heights in Tropical Maize (Zea mays L.). In J. Fac. Agr., Kyushu Univ (Vol. 51, Issue 2). Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521spa
dc.relation.referencesKhakwani, K., Cengiz, R., Asif, M., & Ahsan, M. (2020). Heterotic and heritability pattern of grain yield and related traits in doubled haploid f1 hybrids of maize (Zea mays L.). Maydica. https://www.researchgate.net/publication/347986397spa
dc.relation.referencesLabroo, M. R., Studer, A. J., & Rutkoski, J. E. (2021). Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. In Frontiers in Genetics (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fgene.2021.643761spa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301spa
dc.relation.referencesLi, H., Qu, W., Obrycki, J. J., Meng, L., Zhou, X., Chu, D., & Li, B. (2020). Optimizing sample size for population genomic study in a global invasive lady beetle, harmonia axyridis. Insects, 11(5). https://doi.org/10.3390/insects11050290spa
dc.relation.referencesLi, Q., Yang, X., Xu, S., Cai, Y., Zhang, D., Han, Y., Li, L., Zhang, Z., Gao, S., Li, J., & Yan, J. (2012). Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PloS One, 7(5). https://doi.org/10.1371/journal.pone.0036807spa
dc.relation.referencesLiu, K., Goodman, M., Muse, S., Smith, J. S., Buckler, E., & Doebley, J. (2003). Genetic Structure and Diversity among Maize Inbred Lines as Inferred from DNA Microsatellites. Genetics, 165(4), 2117–2128.spa
dc.relation.referencesLiu, N., Xue, Y., Guo, Z., Li, W., & Tang, J. (2016). Genome-wide association study identifies candidate genes for starch content regulation in Maize Kernels. Frontiers in Plant Science, 7(JULY2016). https://doi.org/10.3389/fpls.2016.01046spa
dc.relation.referencesLu, X., Zhou, Z., Yuan, Z., Zhang, C., Hao, Z., Wang, Z., Li, M., Zhang, D., Yong, H., Han, J., Li, X., & Weng, J. (2020). Genetic Dissection of the General Combining Ability of Yield-Related Traits in Maize. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00788spa
dc.relation.referencesMahato, A., Shahi, J. P., Singh, P. K., Kumar, M., & Singamsetti, A. (2021). Heterotic grouping of sweet corn (Zea mays var. sachharata) genotypes based on their combining ability and molecular diversity. Article in Indian Journal of Genetics and Plant Breeding. https://doi.org/10.31742/IJGPB.81.3.8spa
dc.relation.referencesMaruthi, R. R. N. G. J. S. B. C. G. K. (2019). Heterotic grouping of late-maturing maize inbred lines based on combining ability and molecular marker studies. Journal of Environmental Biology, 40, 705–710.spa
dc.relation.referencesMedici, L. O., Pereira, M. B., Lea, P. J., & Azevedo, R. A. (2004). Diallel analysis of maize lines with contrasting responses to applied nitrogen. Journal of Agricultural Science, 142(5), 535–541. https://doi.org/10.1017/S002185960400468Xspa
dc.relation.referencesMeena, A. K., Gurjar, D., Patil, S. S., & Kumhar, B. L. (2017). Concept of Heterotic Group and its Exploitation in Hybrid Breeding. International Journal of Current Microbiology and Applied Sciences, 6(6), 61–73. https://doi.org/10.20546/ijcmas.2017.606.007spa
dc.relation.referencesMelchinger, A. E., & Gumber, R. K. (1998). Concepts and Breeding of Heterosis in Crop Plants. In CSSA Special Publication (Issue 25).spa
dc.relation.referencesMenkir, A., Melake-Berhan, A., The, C., Ingelbrecht, I., & Adepoju, A. (2004). Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theoretical and Applied Genetics, 108(8), 1582–1590. https://doi.org/10.1007/s00122-004-1585-0spa
dc.relation.referencesMessmer, R., Fracheboud, Y., Bänziger, M., Vargas, M., Stamp, P., & Ribaut, J. M. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119(5), 913–930. https://doi.org/10.1007/s00122-009-1099-xspa
dc.relation.referencesMhike, X., Lungu, D. M., & Vivek, B. (2011). Combining ability studies amongst AREX and CIMMYT maize (Zea mays L.) inbred lines under stress and non stress conditions. In African Journal of Agricultural Research (Vol. 6, Issue 8). http://www.academicjournals.org/AJARspa
dc.relation.referencesMurtadha, M. A., Ariyo, O. J., & Alghamdi, S. S. (2018). Analysis of combining ability over environments in diallel crosses of maize (Zea mays). Journal of the Saudi Society of Agricultural Sciences, 17(1), 69–78. https://doi.org/10.1016/j.jssas.2016.01.004spa
dc.relation.referencesNardino, M., Carvalho, I. R., Barros, W. S., Souza, V. Q. De, Corazza, T., Koch, F., Aisenberg, G., Aumonde, T. Z., Pedó, T., Szareski, V. J., & Demari, G. H. (2016). DIALLEL CROSS ANALYSIS IN MAIZE. International Journal of Current Research, 8(08), 35686–35692.spa
dc.relation.referencesNazareno, A. G., Bemmels, J. B., Dick, C. W., & Lohmann, L. G. (2017). Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources, 17(6), 1136–1147. https://doi.org/10.1111/1755-0998.12654spa
dc.relation.referencesNei, M. (1972). Genetic Distance between Populations. 106(949), 283–292.spa
dc.relation.referencesNei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press.spa
dc.relation.referencesNyaligwa, L., Hussein, S., Amelework, B., & Ghebrehi-Wot, H. (2015). Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica, 60(3). http://www.agron.missouri.eduspa
dc.relation.referencesOlutayo Akinwale, R. (2021). Cereal Grains (A. K. Goyal, Ed.; Vol. 2).spa
dc.relation.referencesOyetunde, O. A., Badu-Apraku, B., Ariyo, O. J., & Alake, C. O. (2020). Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy, 10(8). https://doi.org/10.3390/agronomy10081198spa
dc.relation.referencesPaterniani, M. E. A. G. Z., Sawazaki, E., Dudienas, C., Duarte, A. P., & Gallo, P. B. (2000). Diallel crosses among maize lines with emphasis on resistance to foliar diseases. Genetics and Molecular Biology, 23(2), 381–385. https://doi.org/10.1590/S1415-47572000000200024spa
dc.relation.referencesPereira, V., & Gusmão, L. (2013). X-Chromosome Markers. Encyclopedia of Forensic Sciences: Second Edition, 257–263. https://doi.org/10.1016/B978-0-12-382165-2.00047-7spa
dc.relation.referencesPinto, R. D. M. C., De Souza, C. L., Carlini-Garcia, L. A., Garcia, A. A. F., & Pereira De Souza, A. (2003). Comparison between molecular markers and diallel crosses in the assignment of maize lines to heterotic groups. In Maydica (Vol. 48, Issue 1, pp. 63–73).spa
dc.relation.referencesPorras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & Lareu, M. V. (2013). An overview of STRUCTURE: Applications, parameter settings, and supporting software. Frontiers in Genetics, 4(MAY). https://doi.org/10.3389/fgene.2013.00098spa
dc.relation.referencesPritchard, J., Stephens, M., Rosenberg, N., & Donnelly, P. (2000). Association Mapping in Structured Populations. American Journal of Human Genetics, 67, 170–181. https://doi.org/https://doi.org/10.1086/302959spa
dc.relation.referencesPswarayi, A., & Vivek, B. (2008). Combining ability of CIMMYT’s early maturing maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Euphytica, 162, 353–362. www.fao.orgspa
dc.relation.referencesReif, J. C., Gumpert, F. M., Fischer, S., & Melchinger, A. E. (2007). Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics, 176(3), 1931–1934. https://doi.org/10.1534/genetics.107.074146spa
dc.relation.referencesReif, J. C., Melchinger, A. E., Xia, X. C., Warburton, M. L., Hoisington, D. A., Vasal, S. K., Srinivasan, G., Bohn, M., & Frisch, M. (2003). Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science, 43(4), 1275–1282. https://doi.org/10.2135/cropsci2003.1275spa
dc.relation.referencesRevilla, P., Butron, A., Malvar, R. A., & Ordas, A. (1999). Relationships among Kernel Weight, Early Vigor, and Growth in Maize. Crop Sci., 39, 654–658.spa
dc.relation.referencesRicci, G. C. L., Silva, N., Pagliarini, M. S., & Scapim, C. A. (2007). Microsporogenesis in inbred line of popcorn (Zea mays L.). Genetics and Molecular Research, 6(4), 1013–1018.spa
dc.relation.referencesRichard, C., Osiru, D., Mwala, M., & Lubberstedt, T. (2016). Genetic diversity and heterotic grouping of the core set of southern African and temperate maize (Zea mays L) Inbred lines using SNP markers. In Maydica electronic publication (Vol. 61, Issue 1). [Istituto sperimentale per la cerealicoltura, Section of Bergamo, Italy]. https://journals-crea.4science.it/index.php/maydica/article/view/1513spa
dc.relation.referencesRodríguez, F., Alvarado, G., Pacheco, Á., Crossa, J., & Burgueño, J. (2015). AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0. CIMMYT Research Data & Software Repository Network, 14.spa
dc.relation.referencesRomay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. A., Swarts, K. L., Casstevens, T. M., Elshire, R. J., Acharya, C. B., Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E. S., & Gardner, C. A. (2013). Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 14(6). https://doi.org/10.1186/gb-2013-14-6-r55spa
dc.relation.referencesRStudio Team. (2022). RStudio: Integrated Development Environment for R. Http://Www.Rstudio.Com/.spa
dc.relation.referencesSalgar, L. M. (2004, November). El cultivo de maíz en Colombia. Revista Semillas, 2–7.spa
dc.relation.referencesSantos De Oliveira, L., Schuster, I., Novaes, E., & Pereira, W. A. (2021). SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups ARTICLE. Crop Breeding and Applied Biotechnology, 21(1), 367121110. https://doi.org/10.1590/1984spa
dc.relation.referencesSaraswathy, N., & Ramalingam, P. (2011). Genome mapping. Concepts and Techniques in Genomics and Proteomics, 77–93. https://doi.org/10.1533/9781908818058.77spa
dc.relation.referencesShahrokhi, M., Khorasani, S. K., & Ebrahimi, A. (2013). Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production, 4(3), 405–412. http://www.ijappjournal.comspa
dc.relation.referencesShi, W., Ayub, Q., Vermeulen, M., Shao, R. G., Zuniga, S., Van Der Gaag, K., De Knijff, P., Kayser, M., Xue, Y., & Tyler-Smith, C. (2010). A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Molecular Biology and Evolution, 27(2), 385–393. https://doi.org/10.1093/molbev/msp243spa
dc.relation.referencesShu, G., Cao, G., Li, N., Wang, A., Wei, F., Li, T., Yi, L., Xu, Y., & Wang, Y. (2021). Genetic variation and population structure in China summer maize germplasm. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84732-6spa
dc.relation.referencesShull, G. H. (1952). Beginnings of the heterosis concept. In J.W. Gowen (ed.) Heterosis (pp. 14–48). Iowa State Univ. Press. Ames.spa
dc.relation.referencesSilva, K. J., Guimarães, C. T., Guilhen, J. H. S., Guimarães, P. E. de O., Parentoni, S. N., Trindade, R. dos S., de Oliveira, A. A., Bernardino, K. da C., Pinto, M. de O., Dias, K. O. das G., Bernardes, C. de O., Dias, L. A. dos S., Guimarães, L. J. M., & Pastina, M. M. (2020). High-density SNP-based genetic diversity and heterotic patterns of tropical maize breeding lines. Crop Science, 60(2), 779–787. https://doi.org/10.1002/csc2.20018spa
dc.relation.referencesSingh, S., & Gupta, S. K. (2019). Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet (Pennisetum glaucum (L.) R. Br.). PLoS ONE, 14(5).spa
dc.relation.referencesSprague, G. F., & Tatum, L. A. (1942). General vs. Specific Combining Ability in Single Crosses of Corn1. Agronomy Journal, 34(10), 923–932. https://doi.org/https://doi.org/10.2134/agronj1942.00021962003400100008xspa
dc.relation.referencesStanley, A., Menkir, A., Paterne, A., Ifie, B., Tongoona, P., Unachukwu, N., Meseka, S., Mengesha, W., & Gedil, M. (2020). Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to.spa
dc.relation.referencesUGRA, U. de G. de R. Agropecuarios. (2018). Ficha de inteligencia: maíz tecnificado. FINAGRO.spa
dc.relation.referencesvan Inghelandt, D., Melchinger, A. E., Lebreton, C., & Stich, B. (2010). Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 120(7), 1289–1299. https://doi.org/10.1007/s00122-009-1256-2spa
dc.relation.referencesViveros Barrera, J. S. (2016). El maíz en la economía rural colombiana. El Cerealista, 125(58), 6–9.spa
dc.relation.referencesWang, X., Zhang, Z., Xu, Y., Li, P., Zhang, X., & Xu, C. (2020). Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. Crop Journal, 8(5), 819–829. https://doi.org/10.1016/j.cj.2020.04.012spa
dc.relation.referencesWard, J. H. Jr. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244.spa
dc.relation.referencesWeir, B. S., & Goudet, J. (2017). A unified characterization of population structure and relatedness. Genetics, 206(4), 2085–2103. https://doi.org/10.1534/genetics.116.198424spa
dc.relation.referencesWhite, O. E. (1917). Inheritance of Endosperm Color in Maize. In Source: American Journal of Botany (Vol. 4, Issue 7).spa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (Springer, Ed.; 2nd ed.).spa
dc.relation.referencesXia, X. C., Reif, J. C., Melchinger, A. E., Frisch, M., Hoisington, D. A., Beck, D., Pixley, K., & Warburton, M. L. (2005). Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Science, 45(6), 2573–2582. https://doi.org/10.2135/cropsci2005.0246spa
dc.relation.referencesXu, C., Ren, Y., Jian, Y., Guo, Z., Zhang, Y., Xie, C., Fu, J., Wang, H., Wang, G., Xu, Y., Li, P., & Zou, C. (2017). Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 37(3). https://doi.org/10.1007/s11032-017-0622-zspa
dc.relation.referencesYousuf, M., & Saleem, M. (2002). Estimates of Heritability for Some Quantitative Characters in Maize Coordination and development activities regarding Rice, Maize, Sorghum, Millet and Fodder Crops View project Development of Rice Hybrids for Different Rice Growing Ecologies of Pakistan View project Estimates of Heritability for Some Quantitative Characters in Maize. In Article in International Journal of Agriculture and Biology · INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY. http://ijab.orgspa
dc.relation.referencesZhang, X., Zhang, H., Li, L., Lan, H., Ren, Z., Liu, D., Wu, L., Liu, H., Jaqueth, J., Li, B., Pan, G., & Gao, S. (2016). Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-3041-3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocFitomejoramiento
dc.subject.agrovocPlant breeding
dc.subject.agrovocMarcadores genéticos
dc.subject.agrovocGenetic markers
dc.subject.agrovocEndogamia
dc.subject.agrovocInbreeding
dc.subject.agrovocAnálisis dialelo
dc.subject.agrovocDiallel analysis
dc.subject.agrovocTécnicas genéticas
dc.subject.agrovocGenetic techniques
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalGrupos heteróticosspa
dc.subject.proposalMaíz tropicalspa
dc.subject.proposalDialelospa
dc.subject.proposalHabilidad combinatoria específicaspa
dc.subject.proposalSNPspa
dc.subject.proposalAnálisis de clústerspa
dc.subject.proposalHeterotic groupseng
dc.subject.proposalTropical maizeeng
dc.subject.proposalDialleleng
dc.subject.proposalSpecific combine abilityeng
dc.subject.proposalSNPeng
dc.titleDeterminación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNPspa
dc.title.translatedHeterotic grouping of tropical maize inbred lines using Diallel crosses and SNP markerseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070976076.2023.pdf
Tamaño:
2.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestrías en Ciencias Agrarías, fitomejoramiento.

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: