Fisiología hemodinámica en análogos espaciales. Revisión narrativa

dc.contributor.advisorCorzo Zamora, María Alejandraspa
dc.contributor.authorCampos Cuervo, Diego Hernánspa
dc.date.accessioned2024-04-17T18:54:19Z
dc.date.available2024-04-17T18:54:19Z
dc.date.issued2023-11-15
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl advenimiento de una nueva era espacial ha motivado una nueva era de investigación. En este segmento, la fisiología hemodinámica ha sido de especial interés debido a los riesgos potenciales de los viajeros espaciales. Sin embargo, la investigación en el espacio presencia grandes limitantes que pueden solventarse mediante análogos espaciales. Está revisión narrativa busca explicar los principales cambios del gasto cardíaco, volumen sistólico, presión arterial y presión venosa central en los diferentes análogos espaciales, como Bed Rest, Inmersión seca, Tilt Test, Vuelo parabólico y la centrífuga de brazo corto. La metodología empleada fue basada en la estrategia PRISMA. En general, los cambios encontrados se relacionan con la dinámica de fluidos, donde se presenta una cefalización de fluidos en microgravedad y la distribución de fluidos hacia abajo en hipergravedad. En microgravedad se presenta un aumento del gasto cardíaco, de la presión venosa central y del del volumen latido, y una disminución en la presión arterial. En hipergravedad encontramos hallazgos parcialmente opuestos, con mantenimiento del gasto cardíaco, disminución de la presión venosa central y del volumen latido, con un aumento de la presión arterial. Este tipo de revisiones busca incentivar futuras investigaciones en el campo de la medicina aeroespacial. (Texto tomado de la fuente).spa
dc.description.abstractThe advent of a new space age has prompted a new era of research. In this segment, hemodynamic physiology has been of special interest because of the potential risks to space travelers. However, research in space has major limitations that can be overcome by space analogs. This narrative review seeks to explain the main changes in cardiac output, systolic volume, arterial pressure, and central venous pressure in different space analogues, such as Bed Rest, Dry Dive, Tilt Test, Parabolic Flight, and the short arm centrifuge. The methodology used was based on the PRISMA strategy. In general, the changes found are related to fluid dynamics, where there is an upward fluid distribution in microgravity and downward fluid distribution in hypergravity. In microgravity there is an increase in cardiac output, central venous pressure and stroke volume, and a decrease in arterial pressure. In hypergravity we find partially opposite findings, with maintenance of cardiac output, decrease in central venous pressure and stroke volume, and an increase in arterial pressure. This type of review seeks to encourage future research in the field of aerospace medicine.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisiologíaspa
dc.description.methodsSe realizó una revisión narrativa de la literatura científica de los modelos fisiológicos en simulación espacial más usados en la medición de variables hemodinámicas, como son: mesa inclinada, centrífuga de brazo corto, inmersión seca, Bed Rest y Vuelo parabólico. Estas variables se contrastan con los parámetros hemodinámicos evaluados en simulación espacial y en el espacio, en conjunto con las herramientas utilizadas en cada estudio: gasto cardiaco, volumen latido, presión arterial (tensión arterial sistólica, diastólica y media) y presión venosa central.spa
dc.description.researchareaMedicina y fisiología del espaciospa
dc.format.extentviii, 50 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85939
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.referencesAcharya, A., Brungs, S., Lichterfeld, Y., Hescheler, J., Hemmersbach, R., Boeuf, H., & Sachinidis, A. (2019). Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes. Cells, 8(4), 352. https://doi.org/10.3390/cells8040352spa
dc.relation.referencesÁlvarez Calderón, C. E. Á., Corzo Zamora, M. A., Jaimes Parada, G. R., & Paredes Muñoz, R. J. (2019). Capítulo VI. La nueva economía del siglo XXI: El sector privado en el espacio. En C. E. Á. Álvarez Calderón & C. G. Corredor Gutiérrez (Eds.), El espacio exterior: Una oportunidad infinita para Colombia (1.a ed., Vol. 1, pp. 331-368).spa
dc.relation.referencesAmirova, L., Navasiolava, N., Rukavishvikov, I., Gauquelin-Koch, G., Gharib, C., Kozlovskaya, I., Custaud, M.-A., & Tomilovskaya, E. (2020). Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Frontiers in Physiology, 11, 395. https://doi.org/10.3389/fphys.2020.00395spa
dc.relation.referencesArzeno, N. M., Stenger, M. B., Lee, S. M. C., Ploutz-Snyder, R., & Platts, S. H. (2013). Sex differences in blood pressure control during 6° head-down tilt bed rest. American Journal of Physiology-Heart and Circulatory Physiology, 304(8), H1114-H1123. https://doi.org/10.1152/ajpheart.00391.2012spa
dc.relation.referencesAubert, A. E., Larina, I., Momken, I., Blanc, S., White, O., Kim Prisk, G., & Linnarsson, D. (2016). Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. Npj Microgravity, 2(1), 16031, npjmgrav.2016.31. https://doi.org/10.1038/npjmgrav.2016.31spa
dc.relation.referencesBensoussan, D. (2010). Space tourism risks: A space insurance perspective. Acta Astronautica, 66(11-12), 1633-1638. https://doi.org/10.1016/j.actaastro.2010.01.009spa
dc.relation.referencesBimpong-Buta, N.-Y., Muessig, J. M., Knost, T., Masyuk, M., Binneboessel, S., Nia, A. M., Kelm, M., & Jung, C. (2020). Comprehensive Analysis of Macrocirculation and Microcirculation in Microgravity During Parabolic Flights. Frontiers in Physiology, 11, 960. https://doi.org/10.3389/fphys.2020.00960spa
dc.relation.referencesCaiani, E. G., Weinert, L., Lang, R. M., & Vaïda, P. (2009). The role of echocardiography in the assessment of cardiac function in weightlessness—Our experience during parabolic flights. Respiratory Physiology & Neurobiology, 169, S6-S9. https://doi.org/10.1016/j.resp.2009.07.007spa
dc.relation.referencesCater, C. I. (2010). Steps to Space; opportunities for astrotourism. Tourism Management, 31(6), 838-845. https://doi.org/10.1016/j.tourman.2009.09.001spa
dc.relation.referencesDeliere, Q., Migeotte, P.-F., Neyt, X., Funtova, I., Baevsky, R. M., Tank, J., & Pattyn, N. (2013a). Cardiovascular changes in parabolic flights assessed by ballistocardiography. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3801-3804. https://doi.org/10.1109/EMBC.2013.6610372spa
dc.relation.referencesDeliere, Q., Migeotte, P.-F., Neyt, X., Funtova, I., Baevsky, R. M., Tank, J., & Pattyn, N. (2013b). Cardiovascular changes in parabolic flights assessed by ballistocardiography. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3801-3804. https://doi.org/10.1109/EMBC.2013.6610372spa
dc.relation.referencesDemangel, R., Treffel, L., Py, G., Brioche, T., Pagano, A. F., Bareille, M.-P., Beck, A., Pessemesse, L., Candau, R., Gharib, C., Chopard, A., & Millet, C. (2017). Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model: Short-term muscle deconditioning. The Journal of Physiology, 595(13), 4301-4315. https://doi.org/10.1113/JP273895spa
dc.relation.referencesEiken, O., Keramidas, M. E., Sköldefors, H., & Kölegård, R. (2022). Human cardiovascular adaptation to hypergravity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 322(6), R597-R608. https://doi.org/10.1152/ajpregu.00043.2022spa
dc.relation.referencesErcan, E. (2021). Effects of aerospace environments on the cardiovascular system. The Anatolian Journal of Cardiology, 25(Supp1), S3-S6. https://doi.org/10.5152/AnatolJCardiol.2021.S103spa
dc.relation.referencesHargens, A. R., & Vico, L. (2016). Long-duration bed rest as an analog to microgravity. Journal of Applied Physiology, 120(8), 891-903. https://doi.org/10.1152/japplphysiol.00935.2015spa
dc.relation.referencesHoffmann, B., Dehkordi, P., Khosrow-Khavar, F., Goswami, N., Blaber, A. P., & Tavakolian, K. (2022). Mechanical deconditioning of the heart due to long-term bed rest as observed on seismocardiogram morphology. Npj Microgravity, 8(1), 25. https://doi.org/10.1038/s41526-022-00206-7spa
dc.relation.referencesKrohova, J., Czippelova, B., Turianikova, Z., Lazarova, Z., Tonhajzerova, I., & Javorka, M. (2017). Preejection Period as a Sympathetic Activity Index: A Role of Confounding Factors. Physiological Research, S265-S275. https://doi.org/10.33549/physiolres.933682spa
dc.relation.referencesLee, A. G., Mader, T. H., Gibson, C. R., Tarver, W., Rabiei, P., Riascos, R. F., Galdamez, L. A., & Brunstetter, T. (2020). Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. Npj Microgravity, 6(1), 7. https://doi.org/10.1038/s41526-020-0097-9spa
dc.relation.referencesLee, S. M. C., Martin, D. S., Miller, C. A., Scott, J. M., Laurie, S. S., Macias, B. R., Mercaldo, N. D., Ploutz-Snyder, L., & Stenger, M. B. (2020). Venous and Arterial Responses to Partial Gravity. Frontiers in Physiology, 11, 863. https://doi.org/10.3389/fphys.2020.00863spa
dc.relation.referencesLimper, U., Gauger, P., Beck, P., Krainski, F., May, F., & Beck, L. E. J. (2014). Interactions of the human cardiopulmonary, hormonal and body fluid systems in parabolic flight. European Journal of Applied Physiology, 114(6), 1281-1295. https://doi.org/10.1007/s00421-014-2856-3spa
dc.relation.referencesLiu, J., Verheyden, B., Beckers, F., & Aubert, A. E. (2012). Haemodynamic adaptation during sudden gravity transitions. European Journal of Applied Physiology, 112(1), 79-89. https://doi.org/10.1007/s00421-011-1956-6spa
dc.relation.referencesManen, O., Dussault, C., Sauvet, F., & Montmerle-Borgdorff, S. (2015). Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity. PLOS ONE, 10(3), e0121936. https://doi.org/10.1371/journal.pone.0121936spa
dc.relation.referencesMarshall-Goebel, K., Ambarki, K., Eklund, A., Malm, J., Mulder, E., Gerlach, D., Bershad, E., & Rittweger, J. (2016). Effects of short-term exposure to head-down tilt on cerebral hemodynamics: A prospective evaluation of a spaceflight analog using phase-contrast MRI. Journal of Applied Physiology, 120(12), 1466-1473. https://doi.org/10.1152/japplphysiol.00841.2015spa
dc.relation.referencesMarshall-Goebel, K., Laurie, S. S., Alferova, I. V., Arbeille, P., Auñón-Chancellor, S. M., Ebert, D. J., Lee, S. M. C., Macias, B. R., Martin, D. S., Pattarini, J. M., Ploutz-Snyder, R., Ribeiro, L. C., Tarver, W. J., Dulchavsky, S. A., Hargens, A. R., & Stenger, M. B. (2019). Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Network Open, 2(11), e1915011. https://doi.org/10.1001/jamanetworkopen.2019.15011spa
dc.relation.referencesMartin, D. S., Lee, S. M. C., Matz, T. P., Westby, C. M., Scott, J. M., Stenger, M. B., & Platts, S. H. (2016). Internal jugular pressure increases during parabolic flight. Physiological Reports, 4(24), e13068. https://doi.org/10.14814/phy2.13068spa
dc.relation.referencesMöstl, S., Orter, S., Hoffmann, F., Bachler, M., Hametner, B., Wassertheurer, S., Rabineau, J., Mulder, E., Johannes, B., Jordan, J., & Tank, J. (2021). Limited Effect of 60-Days Strict Head Down Tilt Bed Rest on Vascular Aging. Frontiers in Physiology, 12, 685473. https://doi.org/10.3389/fphys.2021.685473spa
dc.relation.referencesNakajima, T., Iida, H., Kurano, M., Takano, H., Morita, T., Meguro, K., Sato, Y., Yamazaki, Y., Kawashima, S., Ohshima, H., Tachibana, S., Ishii, N., & Abe, T. (2008). Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction. European Journal of Applied Physiology, 104(4), 727-737. https://doi.org/10.1007/s00421-008-0834-3spa
dc.relation.referencesNishimura, H., & Yamasaki, M. (2018). Changes in blood pressure, blood flow towards the head and heart rate during 90 deg head-up tilting for 30 min in anaesthetized male rats: Cardiovascular parameter changes during 90 deg head-up tilting. Experimental Physiology, 103(1), 31-39. https://doi.org/10.1113/EP086543spa
dc.relation.referencesNorsk, P., Asmar, A., Damgaard, M., & Christensen, N. J. (2015). Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight: Vasodilatation and ambulatory blood pressure during spaceflight. The Journal of Physiology, 593(3), 573-584. https://doi.org/10.1113/jphysiol.2014.284869spa
dc.relation.referencesOng, J., Lee, A. G., & Moss, H. E. (2021). Head-Down Tilt Bed Rest Studies as a Terrestrial Analog for Spaceflight Associated Neuro-Ocular Syndrome. Frontiers in Neurology, 12, 648958. https://doi.org/10.3389/fneur.2021.648958spa
dc.relation.referencesPandiarajan, M., & Hargens, A. R. (2020). Ground-Based Analogs for Human Spaceflight. Frontiers in Physiology, 11, 716. https://doi.org/10.3389/fphys.2020.00716spa
dc.relation.referencesPatel, S. (2020). The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart & Vasculature, 30, 100595. https://doi.org/10.1016/j.ijcha.2020.100595spa
dc.relation.referencesPavy-Le Traon, A., Heer, M., Narici, M. V., Rittweger, J., & Vernikos, J. (2007). From space to Earth: Advances in human physiology from 20 years of bed rest studies (1986–2006). European Journal of Applied Physiology, 101(2), 143-194. https://doi.org/10.1007/s00421-007-0474-zspa
dc.relation.referencesRohdin, M., Petersson, J., Sundblad, P., Mure, M., Glenny, R. W., Lindahl, S. G. E., & Linnarsson, D. (2003). Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. Journal of Applied Physiology, 95(1), 3-10. https://doi.org/10.1152/japplphysiol.01154.2002spa
dc.relation.referencesRussomano, T., Dalmarco, G., & Falcão, F. P. (2008). Effects of Hypergravity and Microgravity on Biomedical Experiments, The. Springer International Publishing. https://doi.org/10.1007/978-3-031-01624-0spa
dc.relation.referencesSeibert, F. S., Bernhard, F., Stervbo, U., Vairavanathan, S., Bauer, F., Rohn, B., Pagonas, N., Babel, N., Jankowski, J., & Westhoff, T. H. (2018). The Effect of Microgravity on Central Aortic Blood Pressure. American Journal of Hypertension, 31(11), 1183-1189. https://doi.org/10.1093/ajh/hpy119spa
dc.relation.referencesShankhwar, V., Singh, D., & Deepak, K. K. (2022). Cardiac-vascular-respiratory coupling analysis during 6-degree head-down tilt microgravity analogue. Biomedical Signal Processing and Control, 72, 103358. https://doi.org/10.1016/j.bspc.2021.103358spa
dc.relation.referencesTanaka, K., Nishimura, N., & Kawai, Y. (2017). Adaptation to microgravity, deconditioning, and countermeasures. The Journal of Physiological Sciences, 67(2), 271-281. https://doi.org/10.1007/s12576-016-0514-8spa
dc.relation.referencesVerma, A. K., Xu, D., Bruner, M., Garg, A., Goswami, N., Blaber, A. P., & Tavakolian, K. (2018). Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Frontiers in Physiology, 9, 712. https://doi.org/10.3389/fphys.2018.00712spa
dc.relation.referencesWhittle, R. S., Keller, N., Hall, E. A., Vellore, H. S., Stapleton, L. M., Findlay, K. H., Dunbar, B. J., & Diaz‐Artiles, A. (2022). Gravitational Dose‐Response Curves for Acute Cardiovascular Hemodynamics and Autonomic Responses in a Tilt Paradigm. Journal of the American Heart Association, 11(14), e024175. https://doi.org/10.1161/JAHA.121.024175spa
dc.relation.referencesZhang, Y., & Wang, L. (2022). Progress in space tourism studies: A systematic literature review. Tourism Recreation Research, 47(4), 372-383. https://doi.org/10.1080/02508281.2020.1857522spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.decsFenómenos Fisiológicos Sanguíneosspa
dc.subject.decsBlood Physiological Phenomenaeng
dc.subject.decsRevisiónspa
dc.subject.decsRevieweng
dc.subject.decsMedicina Aeroespacialspa
dc.subject.decsAerospace Medicineeng
dc.subject.proposalhemodinamiaspa
dc.subject.proposalAnálogos espacialesspa
dc.subject.proposalVuelo espacialspa
dc.subject.proposalMicrogravedadspa
dc.subject.proposalSpace analogseng
dc.subject.proposalWeightlessnesseng
dc.subject.proposalSpace flighteng
dc.subject.proposalHemodynamiceng
dc.titleFisiología hemodinámica en análogos espaciales. Revisión narrativaspa
dc.title.translatedHemodynamic physiology in space analogs. Narrative revieweng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80039863.2024.pdf
Tamaño:
993.01 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: