Estudio de la estructura fina, la ultraestructura y la inmunorreactividad a MAP2 en el cerebelo de ratones inoculados con el virus de la rabia

dc.contributor.advisorTorres Fernández, Orlandospa
dc.contributor.advisorDueñas Gómez, Zulmaspa
dc.contributor.authorMorales Arce, Maria Paulaspa
dc.contributor.researchgroupGrupo de Morfología Celular (INS)spa
dc.date.accessioned2025-08-21T20:01:25Z
dc.date.available2025-08-21T20:01:25Z
dc.date.issued2025-08-21
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractIntroducción: Se requiere estudiar los mecanismos patogénicos de la rabia en el sistema nervioso como fundamento para desarrollar métodos terapéuticos. Objetivo: Estudiar el efecto de la infección con virus de la rabia (RABV) en la estructura fina, la ultraestructura, y la expresión tisular de la proteína MAP2 en el cerebelo de ratones. Metodología: Ratones ICR de 4-6 semanas se inocularon, por vía intramuscular, con RABV de la cepa CVS. Seis días después los animales manifestaron signos avanzados de la enfermedad. Bajo anestesia profunda los ratones se fijaron por perfusión intracardiaca con paraformaldehído al 4% y/o glutaraldehído al 1-2%. Se extrajeron los cerebelos, se obtuvieron cortes sagitales en un vibrátomo y se procesaron mediante las diferentes técnicas utilizadas: a) inmunohistoquímica con anticuerpos anti-rabia y anti-MAP2, b) inclusión y corte del tejido en resinas epóxicas para su observación en microscopía óptica de alta resolución (MOAR) y en microscopia electrónica. Resultados: La inmunorreactividad al RABV fue notoria en los núcleos profundos y en la corteza del cerebelo, no así en la sustancia blanca. Hubo marcación en la mayoría de las células de Purkinje, incluyendo su árbol dendrítico, así como en las células granulares y en diferentes tipos de interneuronas. La inmunotinción de MAP2 en los controles fue más evidente en la capa granular y en las dendritas de las células de Purkinje, pero los somas de estas últimas neuronas no fueron inmunorreactivos a MAP2 y la marcación fue escasa en las interneuronas. En los infectados se incrementó notablemente la inmunorreactividad a MAP2 en todas las capas de la corteza del cerebelo y en los núcleos profundos. Fue tan significativo que la proteína se hizo visible con intensidad en los somas de las células de Purkinje y las interneuronas. En los cortes semifinos y en microscopía electrónica se pudo observar degradación parcial del citoplasma y las dendritas proximales en algunas células de Purkinje en los infectados. El hallazgo más importante en microscopía electrónica fue la presencia de dendritas mielinizadas con mayor frecuencia en la corteza del cerebelo de los animales infectados con rabia. Conclusiones: El RABV inoculado por vía periférica puede infectar a los principales tipos de neuronas en el cerebelo. En el cerebelo la patología dendrítica parece estar está asociada con el aumento de la expresión tisular de la proteína MAP2 tal como se había comprobado antes en otras estructuras del sistema nervioso del ratón. Los cambios ultraestructurales en el cerebelo exhibieron diferencias y similitudes con los descritos previamente en la corteza cerebral de los ratones infectados con rabia. (Texto tomado de la fuente).spa
dc.description.abstractIntroduction: The pathogenetic mechanisms of rabies in the nervous system need to be studied as a basis for developing therapeutic methods. Objective: To study the effect of rabies virus (RABV) infection on the fine structure, ultrastructure, and tissue expression of the MAP2 protein in cerebellum of mice. Methodology: Four-week-old ICR mice were inoculated intramuscularly with RABV of the CVS strain. Six days later, the animals showed advanced signs of disease. Under deep anesthesia, the mice were fixed by intracardiac perfusion with 4% paraformaldehyde and/or 1-2% glutaraldehyde. The cerebellums were removed, sagittal sections were obtained on a vibratome and processed using the following techniques: a) immunohistochemistry with anti-rabies and anti-MAP2 antibodies, b) embedding and sectioning the tissue in epoxy resins for observation by high-resolution optical microscopy and electron microscopy. Results: RABV immunoreactivity was notable in the deep nuclei and cerebellar cortex, but not in the white matter. Labeling was present in most Purkinje cells, including their dendritic tree, as well as in granule cells and different types of interneurons. MAP2 immunostaining in controls was more evident in the granular layer and in dendrites of Purkinje cells, but the somas of Purkinje neurons were not immunoreactive for MAP2 and labeling was scarce in interneurons. In infected individuals, MAP2 immunoreactivity was markedly increased in all layers of the cerebellar cortex and deep nuclei. This increase was so significant that MAP2 protein was intensely visible in the somas of Purkinje cells and interneurons. In semithin sections and electron microscopy, partial degradation of the cytoplasm and proximal dendrites was observed in some Purkinje cells in infected individuals. The most important finding in electron microscopy was the presence myelinated dendrites in the cerebellar cortex of rabies- infected animals. Conclusions: Peripherally inoculated RABV can infect all types of neurons in the cerebellum. In cerebellum, dendritic pathology appears to be associated with increased tissue expression of MAP2 protein, as has been previously demonstrated in other structures of the mouse nervous system. Ultrastructural changes in the cerebellum exhibited differences and similarities with those previously described in the cerebral cortex of rabies- infected mice.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Neurocienciasspa
dc.description.researchareaVulnerabilidad selectiva neuronalspa
dc.format.extent50 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88427
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.references1. World Health Organization (WHO). (2018) WHO Expert Consultation on Rabies. In “Technical Report Series No. 1012”. WHO Press, Geneva. https://www.who.int/publications/i/item/WHO-TRS-1012spa
dc.relation.references2. Páez, A., Nuñez, C., García, C., and Boshell, J. (2003) Epidemiología molecular de epizootias de rabia en Colombia, 1994-2002: evidencia de rabia humana y canina asociada a quirópteros. Biomédica. 23:19-30.spa
dc.relation.references3. Páez, A., Rey, G., Agudelo, C., Dulce, A., Parra, E., Díaz-Granados, H., et al. (2009) Brote de rabia urbana transmitida por perros en el distrito de Santa Marta, Colombia, 2006-2008. Biomédica. 29:424-36.spa
dc.relation.references4. Valderrama, J., García, I., Figueroa, G., Rico, E., Sanabria, J., Rocha, N., et al. (2006) Brotes de rabia humana transmitida por vampiros en los municipios de Bajo y Alto Baudó, departamento del Chocó, Colombia 2004-2005. Biomédica. 26:387- 396.spa
dc.relation.references5. Páez, A., Polo, L., Heredia, D., Nuñez, C., Rodriguez, M., Agudelo, C., et al. (2009) An outbreak of human rabies transmitted by a cat in the town of Santander de Quilichao, Colombia, 2008. Rev. Salud Pública. 11(6):931-943.spa
dc.relation.references6. Bustos, M., Ávila, A., Beltrán, E., Aguiar, L., Meek, E., Prieto, A., et al. (2013) Encefalitis rábica humana secundaria a mordedura por gato infectado por un virus rábico de origen silvestre. Infectio. 17: 167–170.spa
dc.relation.references7. Soler-Rangel, S., Jiménez-Restrepo, N., Nariño, D., and Rosselli, D. (2020) Rabies encephalitis and extra-neural manifestations in a patient bitten by a domestic cat. Rev. Inst. Med. Trop. Sao Paulo. 62: e1. doi: 10.1590/S1678- 9946202062001.spa
dc.relation.references8. Instituto Nacional de Salud (INS) (2022) Boletín Epidemiológico Semanal No. 38. file:///D:/Users/ortor/Desktop/2022_Bolet%C3%ADn_epidemiologico_semana_38. pdfspa
dc.relation.references9. Organización Panamericana de la Salud (OPS). (2023) Sistema de Información Regional para la Vigilancia Epidemiológica de la Rabia (SIRVERA) https://www.paho.org/es/temas/rabiaspa
dc.relation.references10. Wunner, W.H., and Conzelmann, K.K. (2020) Rabies virus. En: “Rabies: Scientific basis of the disease and its management”, ed. by A.R. Fooks and A.C. Jackson, Elsevier Academic Press, London, pp. 43-81.spa
dc.relation.references11. Baby, J., Mani, R. S., Abraham, S. S., Thankappan, A. T., Pillai, P. M., Anand, A. M., et al. (2015) Natural rabies infection in a domestic fowl (Gallus domesticus): A report from India. PLoS Negl. Trop. Dis. 9(7): e0003942.spa
dc.relation.references12. Wilkinson L. (2002) History. En “Rabies”, ed. by A.C. Jackson and W.H. Wunner, Academic Press, San Diego, pp. 1-22.spa
dc.relation.references13. Miyamoto, K., and Matsumoto, S. (1967) Comparative studies between pathogenesis of street and fixed rabies infection. J. Exp. Med. 125; 447-456.spa
dc.relation.references14. Torres-Fernandez, O., Yepes, G. E., Gómez, J. H., and Pimienta, H. J. (2004) Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica. 24; 63-78.spa
dc.relation.references15. Torres-Fernández, O., Yepes, G. E., and Gómez, J. E. (2007) Alteraciones de la morfología dendrítica neuronal en la corteza cerebral de ratones infectados con rabia: un estudio con la técnica de Golgi. Biomédica. 27; 605-613.spa
dc.relation.references16. Hurtado, A. P., Rengifo A. C., and Torres-Fernández, O. (2015) Immunohistochemical overexpression of MAP-2 in the cerebral cortex of rabies- infected mice. Int. J. Morphol. 33; 465-470.spa
dc.relation.references17. Ugolini, G. (2011) Rabies virus as a transneuronal tracer of neuronal connections. Adv. Virus Res. 79; 165-202spa
dc.relation.references18. Velandia-Romero, M. L., Castellanos, J. E., and Martínez-Gutiérrez, M. (2013) In vivo differential susceptibility of sensory neurons to rabies virus infection. J. Neurovirol. doi: 10.1007/s13365-013-0179-5.spa
dc.relation.references19. Santamaría, G., Monroy-Gómez, J., and Torres-Fernández, O. (2018) Evidencia neuroanatómica del transporte del virus de la rabia por la vía propioespinal de la médula espinal de ratones. Biomédica. 38; 209-215.spa
dc.relation.references20. Johnson, R. T. (1965) Experimental rabies. Studies of cellular vulnerability and pathogenesis using fluorescent antibody staining. J. Neuropathol. Exp. Neurol. 24; 662-674.spa
dc.relation.references21. Iwasaki, Y., and Tobita, M. (2002) Pathology. In “Rabies”, ed. by A.C. Jackson and W.H. Wunner, Academic Press, San Diego, pp. 283-307.spa
dc.relation.references22. Kristensson, K., Dastur, D. K., Manghani, D. K., Tsiang, H., and Bentivoglio, M. (1996) Rabies: Interactions between neurons and viruses. A review of Negri inclusion bodies. Neuropathol. Appl. Neurobiol. 22; 179-187.spa
dc.relation.references23. Sarmiento, L., Rodríguez, G., De Serna, C., Boshell, J., and Orozco, L. (1999) Detection of rabies virus antigens in tissue: Immunoenzymatic method. Patología Rev Latinoam. 37; 7-10.spa
dc.relation.references24. Monroy-Gómez, J., Santamaría, G., Sarmiento, L., Torres-Fernández, O (2020) Effect of postmortem degradation on the preservation of viral particles and rabies antigens in mice brains. Light and electron microscopic study. Viruses. 12(9):938. doi: 10.3390/v12090938.spa
dc.relation.references25. Tsiang, H. (1993) Pathophysiology of rabies virus infection of the nervous system. Adv. Virus Res. 42; 375-412.spa
dc.relation.references26. Fu, Z. F., and Jackson, A. C. (2005) Neuronal dysfunction and death in rabies virus infection. J. Neurovirol. 11; 101-106.spa
dc.relation.references27. Rengifo, A. C., and Torres-Fernández, O. (2007) Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia. Biomédica. 27; 548-558.spa
dc.relation.references28. Lamprea, N., and Torres-Fernández, O. (2008) Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colom. Med. 39; 7-13.spa
dc.relation.references29. Torres-Fernández, O., Daza, N. A., Santamaría, G., Hurtado, A. P., and Monroy- Gómez, J (2018) Entry of rabies virus in the olfactory bulb of mice and effect of infection on cell markers of neurons and astrocytes. Int. J. Morphol. 36(2):670-676.spa
dc.relation.references30. Monroy-Gómez, J., Santamaría, G., and Torres-Fernández, O. (2018) Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses. 10(3):112. doi: 10.3390/v10030112.spa
dc.relation.references31. Reagan, R. L., and Brueckner, A. L. (1950) Electron micrographs of Negri bodies found in rabies. J. Infect. Dis. 87; 213–216.spa
dc.relation.references32. Hottle, G. A., Morgan, C., Peers, J. H., and Wyckoff, R. W. (1951) The electron microscopy of rabies inclusion (Negri) bodies. Proc. Soc. Exp. Biol. Med. 77; 721- 723.spa
dc.relation.references33. Matsumoto, S. (1962) Electron microscopy of nerve cells infected with street rabies virus. Virology. 17:198-202spa
dc.relation.references34. Matsumoto, S. (1963) Electron microscope studies rabies virus in mouse brain. J. Cell Biol. 19; 565-591.spa
dc.relation.references35. Miyamoto, K., and Matsumoto, S. (1965) The nature of the Negri body. J. Cell Biol. 27(3):677-682.spa
dc.relation.references36. Morecki R, and Zimmerman, H. M. (1969) Human rabies encephalitis: Fine structure study of cytoplasmic inclusions. Arch. Neurol. 20; 599–604.spa
dc.relation.references37. Murphy, F.A. (1975) Morphology and Morphogenesis. En: “The natural history of rabies”, Vol. 1, ed. by Baer, G. M., Academic Press, New York, p.p. 33-59.spa
dc.relation.references38. Matsumoto, S. (1975) Electron microscopy of central nervous system infection En: “The natural history of rabies”, Vol. 1, ed. by Baer, G. M., Academic Press, New York, p.p. 217-233spa
dc.relation.references39. Perl, D.D. (1975) The pathology of rabies in the central nervous system. En: “The natural history of rabies”, Vol. 1, ed. by Baer, G. M., Academic Press, New York, p.p. 263-269.spa
dc.relation.references40. Iwasaki, Y., and Clark, H. F. (1975) Cell to cell transmission of virus in the central nervous system. II. Experimental rabies in mouse. Lab. Invest. 33; 391-399.spa
dc.relation.references41. Charlton, K. M., and Casey, G. A. (1979) Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab. Invest. 41; 36-44.spa
dc.relation.references42. Tsiang, H. (1979) Evidence for an intraaxonal transport of fixed and street rabies virus. J. Neuropathol. Exp. Neurol. 38; 286-299.spa
dc.relation.references43. Hummerler, K., and Atanasiu, P. (1996) Electron microscopy. En: “Laboratory techniques in rabies”, ed. by Meslin, F., Kaplan, M., Koprowski H. World Health Organization Press, Geneva, p.p. 209-217.spa
dc.relation.references44. Rodriguez, G. (1983) Microscopía electrónica de la infección viral. Instituto Nacional de Salud, Bogotá, 194 p.spa
dc.relation.references45. Jackson, A., Randle, E., Lawrence, G., and Rossiter, J. (2008) Neuronal apoptosis does not play an important role in human rabies encephalitis. J. Neurovirol. 5; 368- 375.spa
dc.relation.references46. Suja, M., Mahadevan, A., Madhusudana, S., and Shanka, S. (2011) Role of apoptosis in rabies viral encephalitis: A comparative study in mice, canine and human brain with a review of literature. Patholog. Res. Int. 374286. doi: 10.4061/2011/374286.spa
dc.relation.references47. Jackson, A., and Rossiter, J. (1997) Apoptosis plays an important role in experimental rabies virus infection. J. Virol. 71; 5603-5607.spa
dc.relation.references48. Rasalingam, P., Rossiter, J. P., and Jackson, A. C. (2005) Recombinant rabies virus vaccine strain SAD-l16 inoculated intracerebrally in young mice produces a severe encephalitis with extensive neuronal apoptosis. Can. J. Vet. Res. 69; (2):100-5.spa
dc.relation.references49. Li, X. Q., Sarmento, L., and Fu, Z. F. (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J. Virol. 79; 10063-10068.spa
dc.relation.references50. Scott, C. A., Rossiter, J. P., Andrew, R.D., and Jackson, A. C. (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein- expressing transgenic mice. J. Virol. 82; 513-521.spa
dc.relation.references51. Torres-Fernández, O., Monroy-Gómez, J., and Sarmiento, L.E. (2015) Unusual ultrastructural findings in dendrites of pyramidal neurons in the cerebral cortex of rabies-infected mice. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.847v1spa
dc.relation.references52. Torres-Fernández, O., Monroy-Gómez, J., and Sarmiento, L.E. (2016) Ultraestructura dendrítica en neuronas piramidales de ratones inoculados con virus de la rabia. Biosalud. 15; 9-16.spa
dc.relation.references53. Conde, C., and Cáceres, A. (2009) Microtubule assembly, organization, and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10; 319-332.spa
dc.relation.references54. Koleske, A. J. (2013) Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14; 536-550.spa
dc.relation.references55. Escobar, M., Pimienta, H., Caviness, V., Jacobson, M., Crandall, J., and Kosik, K. (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience. 17; 975-989.spa
dc.relation.references56. Johnson, G., and Jope, R. (1992) The role of microtubule-associated protein 2 (MAP2) in neuronal growth, plasticity and degeneration. J. Neurosci. Res. 33; 505- 512.spa
dc.relation.references57. Kaufmann, W. E., MacDonald, S. M., and Altamura, C.R. (2000) Dendritic cytoskeletal protein expression in mental retardation: An immunohistochemical study of the neocortex in Rett syndrome. Cereb. Cortex. 10; 992-1004.spa
dc.relation.references58. DeGiosio, R. A., Grubisha, M. J., MacDonald, M. L., McKinney, B.C., Camacho, C. J., and Sweet, R. A. (2022). More than a marker: potential pathogenic functions of MAP2. Front. Mol. Neurosci. 15; 974890. doi: 10.3389/fnmol.2022.974890.spa
dc.relation.references59. Yamanouchi H, Zhang W, Jay V, Becker LE. Enhanced expression of microtubule-associated protein 2 in large neurons of cortical dysplasia. Ann Neurol. 1996; 39(1):57-61.spa
dc.relation.references60. Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, et al. Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol. 2000;157(2):623-36.spa
dc.relation.references61. Sundaramoorthy, V., Green, D., Locke, K., O’Brien, C. M., Dearnley, M., and Bingham, J. (2020) Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog. 16; e1008343. doi: 10.1371/journal.ppat.1008343.spa
dc.relation.references62. Song, Y., Hou, J., Qiao, B., Li, Y., Xu, Y., and Duan, M. (2013) Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J. Gen. Virol. 94; 276-283.spa
dc.relation.references63. Farahtaj, F., Alizadeh, L., Gholami, A., Khosravy, M. S., Bashar, R., Gharibzadeh, S., Mahmoodzadeh, H., and Ghaemi, A. (2021) Differential pathogenesis of intracerebral and intramuscular inoculation of street rabies virus and CVS-11 strains in a mouse model. Iran J. Basic Med. Sci. 24; 943-950.spa
dc.relation.references64. Farahtaj, F., Gholami, A., Khosravy, M. S., Gharibzadeh, S., Niknam, H. M., and Ghaemi, A. (2021) Enhancement of immune responses by co-stimulation of TLR3 - TLR7 agonists as potential therapeutics against rabies in mouse model. Microb. Pathog. 157; 104971. doi: 10.1016/j.micpath.2021.104971.spa
dc.relation.references65. Venugopal, A.K., Ghantasala, S.S., Selvan, L.D., Mahadevan, A., Renuse, S., and Kumar, P., et al. (2013) Quantitative proteomics for identifying biomarkers for rabies. Clin. Proteomics. 10; 3.spa
dc.relation.references66. Mehta, S., Sreenivasamurthy, S., Banerjee, S., Mukherjee, S., Prasad, K., and Chowdhary, A. (2016) Pathway analysis of proteomics profiles in rabies infection: Towards future biomarkers? OMICS. 20; 97-109.spa
dc.relation.references67. Liu, X., Nawaz, Z., Guo, C., Ali, S., Naeem, M. A., and Jamil, T., et al. (2022) Rabies virus exploits cytoskeleton network to cause early disease progression and cellular dysfunction. Front. Vet. Sci. 9; 889873. doi: 10.3389/fvets.2022.889873.spa
dc.relation.references68. Delgado-Garcia, J. M. (2001) Estructura y función del cerebelo. Rev. Neurol. 33; 635-642spa
dc.relation.references69. Rokni, D., Llinás, R., and Yarom, Y. (2008) The morpho/functional discrepancy in the cerebellar cortex: looks alone are deceptive. Front. Neurosci. 2; 192-198.spa
dc.relation.references70. Krstic RV (1989) Los tejidos del hombre y de los mamíferos. Interamericana McGraw-Hill, Madrid, 397p.spa
dc.relation.references71. Naizaque, J. R., and Torres-Fernández, O. (2016) La inmunorreactividad a calbindina en células de Purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud. 15; 9-19.spa
dc.relation.references72. Bernhardt, R., Huber, G., and Matus, A. (1985) Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J. Neurosci. 5; 977-991.spa
dc.relation.references73. Niinobe, M., Maeda, N., Ino, H., and Mikoshiba, K. (1988) Characterization of microtubule-associated protein 2 from mouse brain and its localization in the cerebellar cortex. J. Neurochem. 51; 1132-1139.spa
dc.relation.references74. Di Stefano, G., Casoli, T., Fattoretti, P., Gracciotti, N., Solazzi, M., and Bertoni- Freddari, C. (2001) Distribution of MAP2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem. Cytochem. 49; 1065-1066.spa
dc.relation.references75. Ugolini, G., and Hemachudha, T. (2018) Rabies: changing prophylaxis and new insights in pathophysiology. Curr. Opin. Infect. Dis. 31; 93-101.spa
dc.relation.references76. Jackson, A.C. (2020) Pathogenesis. En: “Rabies: Scientific basis of the disease and its management”, ed. by A.R. Fooks and A.C. Jackson, Elsevier Academic Press, London, pp. 303-345.spa
dc.relation.references77. Johnson, R.T. (1980) Selective vulnerability of neural cells to viral infections. Brain. 103(3):447-72.spa
dc.relation.references78. Jackson, A., and Park, H. (1998) Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol. 95; 159-164.spa
dc.relation.references79. Jackson, A. C., Phelan, C. C., and Rossiter, J. P. (2000) Infection of Bergmann glia in the cerebellum of a skunk experimentally infected with street rabies virus. Can. J. Vet. Res. 64(4):226-228.spa
dc.relation.references80. Vigot, R., Kado, R. T., and Batini, C. (2004) Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch. Ital. Biol. 142; 69–75.spa
dc.relation.references81. Torres-Fernández, O., Yepes, G. E., Gómez, J. E., and Pimienta, H. J. (2005) Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice. Int. J. Neurosci. 115(10):1375-1382.spa
dc.relation.references82. Monroy-Gómez, J., and Torres-Fernández, O. (2013) Calbindin and parvalbumin distribution in spinal cord of normal and rabies-infected mice. Biomédica. 33(4):564- 573.spa
dc.relation.references83. Tamayo, L., and Torres-Fernández, O. (2008) Cambios en la morfología del árbol dendrítico de células de Purkinje inducidos por la rabia en ratones: estudio con la técnica de Golgi. Salud UIS 40: 258 - 259. (Memorias IV Congreso Nacional de Morfología, Manizales, septiembre de 2008).spa
dc.relation.references84. Porras, A.O., Santamaría, G., and Torres-Fernández, O. (2021) Patología dendrítica en células de Purkinje del cerebelo de ratones inoculados con virus de la rabia. Memorias COLNE: XII Congreso Nacional & XIII Seminario Internacional de Neurociencias. pp. 120.spa
dc.relation.references85. Caldas, M.L., Ricaurte, O., Rodríguez, G., and Amaya, Y. (1993) Microscopía Óptica de Alta Resolución – MOAR. Instituto Nacional de Salud, Bogotá, 96 p.spa
dc.relation.references86. Stirling, J.W., and Woods, A.F. (2019) Resin (plastic) embedding for microscopy and tissue analysis. En: “Bancroft’s theory and practice of histological techniques” ed. by S.K. Suvarna., C. Layton., and J.D. Bancroft, Elsevier, London, pp. 96-113.spa
dc.relation.references87. Jackson, A. C. (2009) Therapy of rabies encephalitis. Biomédica. 29(2):169-176.spa
dc.relation.references88. Knobel, D. L., Jackson, A. C., Bingham, J., Ertl, H. C., Gibson, A. D., and Hughes, D., et al. (2022) A one medicine mission for effective rabies therapy. Front. Vet. Sci. 9:867382. doi: 10.3389/fvets.2022.867382.spa
dc.relation.references89. Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. (2024). Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci. 18:1340108.spa
dc.relation.references90. Field KJ, White WJ, Lang CM. (1993). Anesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim. 27(3):258-69.spa
dc.relation.references91. Lamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. (2010). Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica. 30(1):146-51.spa
dc.relation.references92. Bastianelli, E. (2003). Distribution of calcium-binding proteins in the cerebellum. Cerebellum. 2(4):242-62.spa
dc.relation.references93. De Camilli P, Miller PE, Navone F, Theurkauf WE, Vallee RB. (1984). Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience 11(4):817–46.spa
dc.relation.references94. Portilho DM, Persson R, Arhel N. (2016). Role of non-motile microtubule- associated proteins in virus trafficking. Biomol Concepts. 7(5–6):283–92.spa
dc.relation.references95. Porras AO, Morales MP, Santamaría G, Torres-Fernández O. (2025) Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus. J Mol Histol. 56(1):62. doi: 10.1007/s10735-024-10348-5spa
dc.relation.references96. Peters A, Palay Sanford, Webster H. (1991). The fine structure of the nervous system: neurons and their supporting cells. Third Edition. 1991. Oxford University Press, New York, 494 p.spa
dc.relation.references97. Khan MA. (1993). Histochemical and ultrastructural investigation of heterogeneous Purkinje neurons in mammalian cerebellum. Cell Mol Biol Res. 39(8):789-95.spa
dc.relation.references98. Tandler CJ, Ríos H, Pellegrino de Iraldi A. (1997) Differential staining of two sub- populations of Purkinje neurons in rat cerebellum with acid dyes. Biotech Histochem. 7;72(5):231-9spa
dc.relation.references99. El-Dwairi Q, Banihani S. (2007) Two subpopulations of human Purkinje neurons: an electron microscopy study. Neuro Endocrinol Lett. 28(3):247-9.spa
dc.relation.references100. Koprowski H. (1996). The mouse inoculation test. En: “Laboratory techniques in rabies”, ed. by Meslin, F., Kaplan, M., Koprowski, H. World Health Organization Press, Geneva, p.p. 80-87.spa
dc.relation.references101. Torres-Fernández O. (2004). Estudio morfológico, inmunocitoquímico y ultraestructural de las neuronas de la corteza cerebral en ratones afectados por rabia. Tesis Doctoral. Universidad del Valle – Instituto Nacional de Salud. 150 p.spa
dc.relation.references102. Valverde F. (1998). Golgi atlas of the postnatal mouse brain. Springer- Verlag, Wien. 146 p.spa
dc.relation.references103. García E, Rodríguez A. (2017). Estudio histológico del desarrollo del cerebelo. Revista Complutense de Ciencias Veterinarias. 11;181-186.spa
dc.relation.references104. Storniolo A, Guerini JC, Fonseca IB, Samar ME, Spitale LS. (2012). Comparative morphometric study of human cerebellar cortex in two age groups. Int J Morphol. 30(3):825-828.spa
dc.relation.references105. Wahl A, Garcia JV. (2025). Humanized mouse systems to study viral infection: A new era in immunology research. Annu. Rev. Immunol.43:143–67.spa
dc.relation.references106. Baer GM. (1988). Animal models in the pathogenesis and treatment of rabies. Rev Infect Dis. 10(Suppl. 4): S739-S750.spa
dc.relation.references107. Woods AE, Stirling JW. (2019). Transmission electron microscopy. En: “Bancroft’s theory and practice of histological techniques”, 8 th Edition, ed. by Suvarna, S.K., Layton, C., Bancroft, JD. Elsevier E-Book. pp-434-475.spa
dc.relation.references108. Schefler WC. (1981). Bioestadística. Fondo Educativo Interamericano. México, pp. 218-221.spa
dc.relation.references109. Velandia ML, Pérez-Castro R, Hurtado H, Castellanos JE. (2007) Ultrastructural description of rabies virus infection in cultured sensory neurons. Mem Inst Oswaldo Cruz.102(4):441-7.spa
dc.relation.references110. Schneider L. (1975) Spread of virus within the central nervous system. En: “The natural history of rabies”. Vol.1., ed. by Baer GM. Academic Press, New York. pp. 199-216.spa
dc.relation.references111. Otsuki Y, Li Z, Shibata M. (2003) Apoptotic detection methods from morphology to genes. Prog Histochem Cytochem. 38:275-339.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.decsVirus de la Rabiaspa
dc.subject.decsRabies viruseng
dc.subject.decsInmunohistoquímicaspa
dc.subject.decsImmunohistochemistryeng
dc.subject.decsRatonesspa
dc.subject.decsMiceeng
dc.subject.proposalVirus de la rabiaspa
dc.subject.proposalCerebelospa
dc.subject.proposalMAP2spa
dc.subject.proposalPatología dendríticaspa
dc.subject.proposalInmunohistoquímicaspa
dc.subject.proposalUltraestructura neuronalspa
dc.subject.proposalRabies viruseng
dc.subject.proposalCerebellumeng
dc.subject.proposalMAP2eng
dc.subject.proposalDendritic pathologyeng
dc.subject.proposalImmunohistochemistryeng
dc.subject.proposalNeuronal ultrastructureeng
dc.titleEstudio de la estructura fina, la ultraestructura y la inmunorreactividad a MAP2 en el cerebelo de ratones inoculados con el virus de la rabiaspa
dc.title.translatedStudy of the fine structure, ultrastructure and MAP2 immunoreactivity in the cerebellum of mice inoculated with the rabies viruseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS FINAL MPMA AGOSTO 6 2025 ULTIMA PARA GRADO.pdf
Tamaño:
2.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Neurociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: