Estudio de la estructura fina, la ultraestructura y la inmunorreactividad a MAP2 en el cerebelo de ratones inoculados con el virus de la rabia
dc.contributor.advisor | Torres Fernández, Orlando | spa |
dc.contributor.advisor | Dueñas Gómez, Zulma | spa |
dc.contributor.author | Morales Arce, Maria Paula | spa |
dc.contributor.researchgroup | Grupo de Morfología Celular (INS) | spa |
dc.date.accessioned | 2025-08-21T20:01:25Z | |
dc.date.available | 2025-08-21T20:01:25Z | |
dc.date.issued | 2025-08-21 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Introducción: Se requiere estudiar los mecanismos patogénicos de la rabia en el sistema nervioso como fundamento para desarrollar métodos terapéuticos. Objetivo: Estudiar el efecto de la infección con virus de la rabia (RABV) en la estructura fina, la ultraestructura, y la expresión tisular de la proteína MAP2 en el cerebelo de ratones. Metodología: Ratones ICR de 4-6 semanas se inocularon, por vía intramuscular, con RABV de la cepa CVS. Seis días después los animales manifestaron signos avanzados de la enfermedad. Bajo anestesia profunda los ratones se fijaron por perfusión intracardiaca con paraformaldehído al 4% y/o glutaraldehído al 1-2%. Se extrajeron los cerebelos, se obtuvieron cortes sagitales en un vibrátomo y se procesaron mediante las diferentes técnicas utilizadas: a) inmunohistoquímica con anticuerpos anti-rabia y anti-MAP2, b) inclusión y corte del tejido en resinas epóxicas para su observación en microscopía óptica de alta resolución (MOAR) y en microscopia electrónica. Resultados: La inmunorreactividad al RABV fue notoria en los núcleos profundos y en la corteza del cerebelo, no así en la sustancia blanca. Hubo marcación en la mayoría de las células de Purkinje, incluyendo su árbol dendrítico, así como en las células granulares y en diferentes tipos de interneuronas. La inmunotinción de MAP2 en los controles fue más evidente en la capa granular y en las dendritas de las células de Purkinje, pero los somas de estas últimas neuronas no fueron inmunorreactivos a MAP2 y la marcación fue escasa en las interneuronas. En los infectados se incrementó notablemente la inmunorreactividad a MAP2 en todas las capas de la corteza del cerebelo y en los núcleos profundos. Fue tan significativo que la proteína se hizo visible con intensidad en los somas de las células de Purkinje y las interneuronas. En los cortes semifinos y en microscopía electrónica se pudo observar degradación parcial del citoplasma y las dendritas proximales en algunas células de Purkinje en los infectados. El hallazgo más importante en microscopía electrónica fue la presencia de dendritas mielinizadas con mayor frecuencia en la corteza del cerebelo de los animales infectados con rabia. Conclusiones: El RABV inoculado por vía periférica puede infectar a los principales tipos de neuronas en el cerebelo. En el cerebelo la patología dendrítica parece estar está asociada con el aumento de la expresión tisular de la proteína MAP2 tal como se había comprobado antes en otras estructuras del sistema nervioso del ratón. Los cambios ultraestructurales en el cerebelo exhibieron diferencias y similitudes con los descritos previamente en la corteza cerebral de los ratones infectados con rabia. (Texto tomado de la fuente). | spa |
dc.description.abstract | Introduction: The pathogenetic mechanisms of rabies in the nervous system need to be studied as a basis for developing therapeutic methods. Objective: To study the effect of rabies virus (RABV) infection on the fine structure, ultrastructure, and tissue expression of the MAP2 protein in cerebellum of mice. Methodology: Four-week-old ICR mice were inoculated intramuscularly with RABV of the CVS strain. Six days later, the animals showed advanced signs of disease. Under deep anesthesia, the mice were fixed by intracardiac perfusion with 4% paraformaldehyde and/or 1-2% glutaraldehyde. The cerebellums were removed, sagittal sections were obtained on a vibratome and processed using the following techniques: a) immunohistochemistry with anti-rabies and anti-MAP2 antibodies, b) embedding and sectioning the tissue in epoxy resins for observation by high-resolution optical microscopy and electron microscopy. Results: RABV immunoreactivity was notable in the deep nuclei and cerebellar cortex, but not in the white matter. Labeling was present in most Purkinje cells, including their dendritic tree, as well as in granule cells and different types of interneurons. MAP2 immunostaining in controls was more evident in the granular layer and in dendrites of Purkinje cells, but the somas of Purkinje neurons were not immunoreactive for MAP2 and labeling was scarce in interneurons. In infected individuals, MAP2 immunoreactivity was markedly increased in all layers of the cerebellar cortex and deep nuclei. This increase was so significant that MAP2 protein was intensely visible in the somas of Purkinje cells and interneurons. In semithin sections and electron microscopy, partial degradation of the cytoplasm and proximal dendrites was observed in some Purkinje cells in infected individuals. The most important finding in electron microscopy was the presence myelinated dendrites in the cerebellar cortex of rabies- infected animals. Conclusions: Peripherally inoculated RABV can infect all types of neurons in the cerebellum. In cerebellum, dendritic pathology appears to be associated with increased tissue expression of MAP2 protein, as has been previously demonstrated in other structures of the mouse nervous system. Ultrastructural changes in the cerebellum exhibited differences and similarities with those previously described in the cerebral cortex of rabies- infected mice. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Neurociencias | spa |
dc.description.researcharea | Vulnerabilidad selectiva neuronal | spa |
dc.format.extent | 50 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88427 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Neurociencias | spa |
dc.relation.references | 1. World Health Organization (WHO). (2018) WHO Expert Consultation on Rabies. In “Technical Report Series No. 1012”. WHO Press, Geneva. https://www.who.int/publications/i/item/WHO-TRS-1012 | spa |
dc.relation.references | 2. Páez, A., Nuñez, C., García, C., and Boshell, J. (2003) Epidemiología molecular de epizootias de rabia en Colombia, 1994-2002: evidencia de rabia humana y canina asociada a quirópteros. Biomédica. 23:19-30. | spa |
dc.relation.references | 3. Páez, A., Rey, G., Agudelo, C., Dulce, A., Parra, E., Díaz-Granados, H., et al. (2009) Brote de rabia urbana transmitida por perros en el distrito de Santa Marta, Colombia, 2006-2008. Biomédica. 29:424-36. | spa |
dc.relation.references | 4. Valderrama, J., García, I., Figueroa, G., Rico, E., Sanabria, J., Rocha, N., et al. (2006) Brotes de rabia humana transmitida por vampiros en los municipios de Bajo y Alto Baudó, departamento del Chocó, Colombia 2004-2005. Biomédica. 26:387- 396. | spa |
dc.relation.references | 5. Páez, A., Polo, L., Heredia, D., Nuñez, C., Rodriguez, M., Agudelo, C., et al. (2009) An outbreak of human rabies transmitted by a cat in the town of Santander de Quilichao, Colombia, 2008. Rev. Salud Pública. 11(6):931-943. | spa |
dc.relation.references | 6. Bustos, M., Ávila, A., Beltrán, E., Aguiar, L., Meek, E., Prieto, A., et al. (2013) Encefalitis rábica humana secundaria a mordedura por gato infectado por un virus rábico de origen silvestre. Infectio. 17: 167–170. | spa |
dc.relation.references | 7. Soler-Rangel, S., Jiménez-Restrepo, N., Nariño, D., and Rosselli, D. (2020) Rabies encephalitis and extra-neural manifestations in a patient bitten by a domestic cat. Rev. Inst. Med. Trop. Sao Paulo. 62: e1. doi: 10.1590/S1678- 9946202062001. | spa |
dc.relation.references | 8. Instituto Nacional de Salud (INS) (2022) Boletín Epidemiológico Semanal No. 38. file:///D:/Users/ortor/Desktop/2022_Bolet%C3%ADn_epidemiologico_semana_38. pdf | spa |
dc.relation.references | 9. Organización Panamericana de la Salud (OPS). (2023) Sistema de Información Regional para la Vigilancia Epidemiológica de la Rabia (SIRVERA) https://www.paho.org/es/temas/rabia | spa |
dc.relation.references | 10. Wunner, W.H., and Conzelmann, K.K. (2020) Rabies virus. En: “Rabies: Scientific basis of the disease and its management”, ed. by A.R. Fooks and A.C. Jackson, Elsevier Academic Press, London, pp. 43-81. | spa |
dc.relation.references | 11. Baby, J., Mani, R. S., Abraham, S. S., Thankappan, A. T., Pillai, P. M., Anand, A. M., et al. (2015) Natural rabies infection in a domestic fowl (Gallus domesticus): A report from India. PLoS Negl. Trop. Dis. 9(7): e0003942. | spa |
dc.relation.references | 12. Wilkinson L. (2002) History. En “Rabies”, ed. by A.C. Jackson and W.H. Wunner, Academic Press, San Diego, pp. 1-22. | spa |
dc.relation.references | 13. Miyamoto, K., and Matsumoto, S. (1967) Comparative studies between pathogenesis of street and fixed rabies infection. J. Exp. Med. 125; 447-456. | spa |
dc.relation.references | 14. Torres-Fernandez, O., Yepes, G. E., Gómez, J. H., and Pimienta, H. J. (2004) Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica. 24; 63-78. | spa |
dc.relation.references | 15. Torres-Fernández, O., Yepes, G. E., and Gómez, J. E. (2007) Alteraciones de la morfología dendrítica neuronal en la corteza cerebral de ratones infectados con rabia: un estudio con la técnica de Golgi. Biomédica. 27; 605-613. | spa |
dc.relation.references | 16. Hurtado, A. P., Rengifo A. C., and Torres-Fernández, O. (2015) Immunohistochemical overexpression of MAP-2 in the cerebral cortex of rabies- infected mice. Int. J. Morphol. 33; 465-470. | spa |
dc.relation.references | 17. Ugolini, G. (2011) Rabies virus as a transneuronal tracer of neuronal connections. Adv. Virus Res. 79; 165-202 | spa |
dc.relation.references | 18. Velandia-Romero, M. L., Castellanos, J. E., and Martínez-Gutiérrez, M. (2013) In vivo differential susceptibility of sensory neurons to rabies virus infection. J. Neurovirol. doi: 10.1007/s13365-013-0179-5. | spa |
dc.relation.references | 19. Santamaría, G., Monroy-Gómez, J., and Torres-Fernández, O. (2018) Evidencia neuroanatómica del transporte del virus de la rabia por la vía propioespinal de la médula espinal de ratones. Biomédica. 38; 209-215. | spa |
dc.relation.references | 20. Johnson, R. T. (1965) Experimental rabies. Studies of cellular vulnerability and pathogenesis using fluorescent antibody staining. J. Neuropathol. Exp. Neurol. 24; 662-674. | spa |
dc.relation.references | 21. Iwasaki, Y., and Tobita, M. (2002) Pathology. In “Rabies”, ed. by A.C. Jackson and W.H. Wunner, Academic Press, San Diego, pp. 283-307. | spa |
dc.relation.references | 22. Kristensson, K., Dastur, D. K., Manghani, D. K., Tsiang, H., and Bentivoglio, M. (1996) Rabies: Interactions between neurons and viruses. A review of Negri inclusion bodies. Neuropathol. Appl. Neurobiol. 22; 179-187. | spa |
dc.relation.references | 23. Sarmiento, L., Rodríguez, G., De Serna, C., Boshell, J., and Orozco, L. (1999) Detection of rabies virus antigens in tissue: Immunoenzymatic method. Patología Rev Latinoam. 37; 7-10. | spa |
dc.relation.references | 24. Monroy-Gómez, J., Santamaría, G., Sarmiento, L., Torres-Fernández, O (2020) Effect of postmortem degradation on the preservation of viral particles and rabies antigens in mice brains. Light and electron microscopic study. Viruses. 12(9):938. doi: 10.3390/v12090938. | spa |
dc.relation.references | 25. Tsiang, H. (1993) Pathophysiology of rabies virus infection of the nervous system. Adv. Virus Res. 42; 375-412. | spa |
dc.relation.references | 26. Fu, Z. F., and Jackson, A. C. (2005) Neuronal dysfunction and death in rabies virus infection. J. Neurovirol. 11; 101-106. | spa |
dc.relation.references | 27. Rengifo, A. C., and Torres-Fernández, O. (2007) Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia. Biomédica. 27; 548-558. | spa |
dc.relation.references | 28. Lamprea, N., and Torres-Fernández, O. (2008) Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colom. Med. 39; 7-13. | spa |
dc.relation.references | 29. Torres-Fernández, O., Daza, N. A., Santamaría, G., Hurtado, A. P., and Monroy- Gómez, J (2018) Entry of rabies virus in the olfactory bulb of mice and effect of infection on cell markers of neurons and astrocytes. Int. J. Morphol. 36(2):670-676. | spa |
dc.relation.references | 30. Monroy-Gómez, J., Santamaría, G., and Torres-Fernández, O. (2018) Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses. 10(3):112. doi: 10.3390/v10030112. | spa |
dc.relation.references | 31. Reagan, R. L., and Brueckner, A. L. (1950) Electron micrographs of Negri bodies found in rabies. J. Infect. Dis. 87; 213–216. | spa |
dc.relation.references | 32. Hottle, G. A., Morgan, C., Peers, J. H., and Wyckoff, R. W. (1951) The electron microscopy of rabies inclusion (Negri) bodies. Proc. Soc. Exp. Biol. Med. 77; 721- 723. | spa |
dc.relation.references | 33. Matsumoto, S. (1962) Electron microscopy of nerve cells infected with street rabies virus. Virology. 17:198-202 | spa |
dc.relation.references | 34. Matsumoto, S. (1963) Electron microscope studies rabies virus in mouse brain. J. Cell Biol. 19; 565-591. | spa |
dc.relation.references | 35. Miyamoto, K., and Matsumoto, S. (1965) The nature of the Negri body. J. Cell Biol. 27(3):677-682. | spa |
dc.relation.references | 36. Morecki R, and Zimmerman, H. M. (1969) Human rabies encephalitis: Fine structure study of cytoplasmic inclusions. Arch. Neurol. 20; 599–604. | spa |
dc.relation.references | 37. Murphy, F.A. (1975) Morphology and Morphogenesis. En: “The natural history of rabies”, Vol. 1, ed. by Baer, G. M., Academic Press, New York, p.p. 33-59. | spa |
dc.relation.references | 38. Matsumoto, S. (1975) Electron microscopy of central nervous system infection En: “The natural history of rabies”, Vol. 1, ed. by Baer, G. M., Academic Press, New York, p.p. 217-233 | spa |
dc.relation.references | 39. Perl, D.D. (1975) The pathology of rabies in the central nervous system. En: “The natural history of rabies”, Vol. 1, ed. by Baer, G. M., Academic Press, New York, p.p. 263-269. | spa |
dc.relation.references | 40. Iwasaki, Y., and Clark, H. F. (1975) Cell to cell transmission of virus in the central nervous system. II. Experimental rabies in mouse. Lab. Invest. 33; 391-399. | spa |
dc.relation.references | 41. Charlton, K. M., and Casey, G. A. (1979) Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab. Invest. 41; 36-44. | spa |
dc.relation.references | 42. Tsiang, H. (1979) Evidence for an intraaxonal transport of fixed and street rabies virus. J. Neuropathol. Exp. Neurol. 38; 286-299. | spa |
dc.relation.references | 43. Hummerler, K., and Atanasiu, P. (1996) Electron microscopy. En: “Laboratory techniques in rabies”, ed. by Meslin, F., Kaplan, M., Koprowski H. World Health Organization Press, Geneva, p.p. 209-217. | spa |
dc.relation.references | 44. Rodriguez, G. (1983) Microscopía electrónica de la infección viral. Instituto Nacional de Salud, Bogotá, 194 p. | spa |
dc.relation.references | 45. Jackson, A., Randle, E., Lawrence, G., and Rossiter, J. (2008) Neuronal apoptosis does not play an important role in human rabies encephalitis. J. Neurovirol. 5; 368- 375. | spa |
dc.relation.references | 46. Suja, M., Mahadevan, A., Madhusudana, S., and Shanka, S. (2011) Role of apoptosis in rabies viral encephalitis: A comparative study in mice, canine and human brain with a review of literature. Patholog. Res. Int. 374286. doi: 10.4061/2011/374286. | spa |
dc.relation.references | 47. Jackson, A., and Rossiter, J. (1997) Apoptosis plays an important role in experimental rabies virus infection. J. Virol. 71; 5603-5607. | spa |
dc.relation.references | 48. Rasalingam, P., Rossiter, J. P., and Jackson, A. C. (2005) Recombinant rabies virus vaccine strain SAD-l16 inoculated intracerebrally in young mice produces a severe encephalitis with extensive neuronal apoptosis. Can. J. Vet. Res. 69; (2):100-5. | spa |
dc.relation.references | 49. Li, X. Q., Sarmento, L., and Fu, Z. F. (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J. Virol. 79; 10063-10068. | spa |
dc.relation.references | 50. Scott, C. A., Rossiter, J. P., Andrew, R.D., and Jackson, A. C. (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein- expressing transgenic mice. J. Virol. 82; 513-521. | spa |
dc.relation.references | 51. Torres-Fernández, O., Monroy-Gómez, J., and Sarmiento, L.E. (2015) Unusual ultrastructural findings in dendrites of pyramidal neurons in the cerebral cortex of rabies-infected mice. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.847v1 | spa |
dc.relation.references | 52. Torres-Fernández, O., Monroy-Gómez, J., and Sarmiento, L.E. (2016) Ultraestructura dendrítica en neuronas piramidales de ratones inoculados con virus de la rabia. Biosalud. 15; 9-16. | spa |
dc.relation.references | 53. Conde, C., and Cáceres, A. (2009) Microtubule assembly, organization, and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10; 319-332. | spa |
dc.relation.references | 54. Koleske, A. J. (2013) Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14; 536-550. | spa |
dc.relation.references | 55. Escobar, M., Pimienta, H., Caviness, V., Jacobson, M., Crandall, J., and Kosik, K. (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience. 17; 975-989. | spa |
dc.relation.references | 56. Johnson, G., and Jope, R. (1992) The role of microtubule-associated protein 2 (MAP2) in neuronal growth, plasticity and degeneration. J. Neurosci. Res. 33; 505- 512. | spa |
dc.relation.references | 57. Kaufmann, W. E., MacDonald, S. M., and Altamura, C.R. (2000) Dendritic cytoskeletal protein expression in mental retardation: An immunohistochemical study of the neocortex in Rett syndrome. Cereb. Cortex. 10; 992-1004. | spa |
dc.relation.references | 58. DeGiosio, R. A., Grubisha, M. J., MacDonald, M. L., McKinney, B.C., Camacho, C. J., and Sweet, R. A. (2022). More than a marker: potential pathogenic functions of MAP2. Front. Mol. Neurosci. 15; 974890. doi: 10.3389/fnmol.2022.974890. | spa |
dc.relation.references | 59. Yamanouchi H, Zhang W, Jay V, Becker LE. Enhanced expression of microtubule-associated protein 2 in large neurons of cortical dysplasia. Ann Neurol. 1996; 39(1):57-61. | spa |
dc.relation.references | 60. Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, et al. Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol. 2000;157(2):623-36. | spa |
dc.relation.references | 61. Sundaramoorthy, V., Green, D., Locke, K., O’Brien, C. M., Dearnley, M., and Bingham, J. (2020) Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog. 16; e1008343. doi: 10.1371/journal.ppat.1008343. | spa |
dc.relation.references | 62. Song, Y., Hou, J., Qiao, B., Li, Y., Xu, Y., and Duan, M. (2013) Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J. Gen. Virol. 94; 276-283. | spa |
dc.relation.references | 63. Farahtaj, F., Alizadeh, L., Gholami, A., Khosravy, M. S., Bashar, R., Gharibzadeh, S., Mahmoodzadeh, H., and Ghaemi, A. (2021) Differential pathogenesis of intracerebral and intramuscular inoculation of street rabies virus and CVS-11 strains in a mouse model. Iran J. Basic Med. Sci. 24; 943-950. | spa |
dc.relation.references | 64. Farahtaj, F., Gholami, A., Khosravy, M. S., Gharibzadeh, S., Niknam, H. M., and Ghaemi, A. (2021) Enhancement of immune responses by co-stimulation of TLR3 - TLR7 agonists as potential therapeutics against rabies in mouse model. Microb. Pathog. 157; 104971. doi: 10.1016/j.micpath.2021.104971. | spa |
dc.relation.references | 65. Venugopal, A.K., Ghantasala, S.S., Selvan, L.D., Mahadevan, A., Renuse, S., and Kumar, P., et al. (2013) Quantitative proteomics for identifying biomarkers for rabies. Clin. Proteomics. 10; 3. | spa |
dc.relation.references | 66. Mehta, S., Sreenivasamurthy, S., Banerjee, S., Mukherjee, S., Prasad, K., and Chowdhary, A. (2016) Pathway analysis of proteomics profiles in rabies infection: Towards future biomarkers? OMICS. 20; 97-109. | spa |
dc.relation.references | 67. Liu, X., Nawaz, Z., Guo, C., Ali, S., Naeem, M. A., and Jamil, T., et al. (2022) Rabies virus exploits cytoskeleton network to cause early disease progression and cellular dysfunction. Front. Vet. Sci. 9; 889873. doi: 10.3389/fvets.2022.889873. | spa |
dc.relation.references | 68. Delgado-Garcia, J. M. (2001) Estructura y función del cerebelo. Rev. Neurol. 33; 635-642 | spa |
dc.relation.references | 69. Rokni, D., Llinás, R., and Yarom, Y. (2008) The morpho/functional discrepancy in the cerebellar cortex: looks alone are deceptive. Front. Neurosci. 2; 192-198. | spa |
dc.relation.references | 70. Krstic RV (1989) Los tejidos del hombre y de los mamíferos. Interamericana McGraw-Hill, Madrid, 397p. | spa |
dc.relation.references | 71. Naizaque, J. R., and Torres-Fernández, O. (2016) La inmunorreactividad a calbindina en células de Purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud. 15; 9-19. | spa |
dc.relation.references | 72. Bernhardt, R., Huber, G., and Matus, A. (1985) Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J. Neurosci. 5; 977-991. | spa |
dc.relation.references | 73. Niinobe, M., Maeda, N., Ino, H., and Mikoshiba, K. (1988) Characterization of microtubule-associated protein 2 from mouse brain and its localization in the cerebellar cortex. J. Neurochem. 51; 1132-1139. | spa |
dc.relation.references | 74. Di Stefano, G., Casoli, T., Fattoretti, P., Gracciotti, N., Solazzi, M., and Bertoni- Freddari, C. (2001) Distribution of MAP2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem. Cytochem. 49; 1065-1066. | spa |
dc.relation.references | 75. Ugolini, G., and Hemachudha, T. (2018) Rabies: changing prophylaxis and new insights in pathophysiology. Curr. Opin. Infect. Dis. 31; 93-101. | spa |
dc.relation.references | 76. Jackson, A.C. (2020) Pathogenesis. En: “Rabies: Scientific basis of the disease and its management”, ed. by A.R. Fooks and A.C. Jackson, Elsevier Academic Press, London, pp. 303-345. | spa |
dc.relation.references | 77. Johnson, R.T. (1980) Selective vulnerability of neural cells to viral infections. Brain. 103(3):447-72. | spa |
dc.relation.references | 78. Jackson, A., and Park, H. (1998) Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol. 95; 159-164. | spa |
dc.relation.references | 79. Jackson, A. C., Phelan, C. C., and Rossiter, J. P. (2000) Infection of Bergmann glia in the cerebellum of a skunk experimentally infected with street rabies virus. Can. J. Vet. Res. 64(4):226-228. | spa |
dc.relation.references | 80. Vigot, R., Kado, R. T., and Batini, C. (2004) Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch. Ital. Biol. 142; 69–75. | spa |
dc.relation.references | 81. Torres-Fernández, O., Yepes, G. E., Gómez, J. E., and Pimienta, H. J. (2005) Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice. Int. J. Neurosci. 115(10):1375-1382. | spa |
dc.relation.references | 82. Monroy-Gómez, J., and Torres-Fernández, O. (2013) Calbindin and parvalbumin distribution in spinal cord of normal and rabies-infected mice. Biomédica. 33(4):564- 573. | spa |
dc.relation.references | 83. Tamayo, L., and Torres-Fernández, O. (2008) Cambios en la morfología del árbol dendrítico de células de Purkinje inducidos por la rabia en ratones: estudio con la técnica de Golgi. Salud UIS 40: 258 - 259. (Memorias IV Congreso Nacional de Morfología, Manizales, septiembre de 2008). | spa |
dc.relation.references | 84. Porras, A.O., Santamaría, G., and Torres-Fernández, O. (2021) Patología dendrítica en células de Purkinje del cerebelo de ratones inoculados con virus de la rabia. Memorias COLNE: XII Congreso Nacional & XIII Seminario Internacional de Neurociencias. pp. 120. | spa |
dc.relation.references | 85. Caldas, M.L., Ricaurte, O., Rodríguez, G., and Amaya, Y. (1993) Microscopía Óptica de Alta Resolución – MOAR. Instituto Nacional de Salud, Bogotá, 96 p. | spa |
dc.relation.references | 86. Stirling, J.W., and Woods, A.F. (2019) Resin (plastic) embedding for microscopy and tissue analysis. En: “Bancroft’s theory and practice of histological techniques” ed. by S.K. Suvarna., C. Layton., and J.D. Bancroft, Elsevier, London, pp. 96-113. | spa |
dc.relation.references | 87. Jackson, A. C. (2009) Therapy of rabies encephalitis. Biomédica. 29(2):169-176. | spa |
dc.relation.references | 88. Knobel, D. L., Jackson, A. C., Bingham, J., Ertl, H. C., Gibson, A. D., and Hughes, D., et al. (2022) A one medicine mission for effective rabies therapy. Front. Vet. Sci. 9:867382. doi: 10.3389/fvets.2022.867382. | spa |
dc.relation.references | 89. Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. (2024). Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci. 18:1340108. | spa |
dc.relation.references | 90. Field KJ, White WJ, Lang CM. (1993). Anesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim. 27(3):258-69. | spa |
dc.relation.references | 91. Lamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. (2010). Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica. 30(1):146-51. | spa |
dc.relation.references | 92. Bastianelli, E. (2003). Distribution of calcium-binding proteins in the cerebellum. Cerebellum. 2(4):242-62. | spa |
dc.relation.references | 93. De Camilli P, Miller PE, Navone F, Theurkauf WE, Vallee RB. (1984). Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience 11(4):817–46. | spa |
dc.relation.references | 94. Portilho DM, Persson R, Arhel N. (2016). Role of non-motile microtubule- associated proteins in virus trafficking. Biomol Concepts. 7(5–6):283–92. | spa |
dc.relation.references | 95. Porras AO, Morales MP, Santamaría G, Torres-Fernández O. (2025) Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus. J Mol Histol. 56(1):62. doi: 10.1007/s10735-024-10348-5 | spa |
dc.relation.references | 96. Peters A, Palay Sanford, Webster H. (1991). The fine structure of the nervous system: neurons and their supporting cells. Third Edition. 1991. Oxford University Press, New York, 494 p. | spa |
dc.relation.references | 97. Khan MA. (1993). Histochemical and ultrastructural investigation of heterogeneous Purkinje neurons in mammalian cerebellum. Cell Mol Biol Res. 39(8):789-95. | spa |
dc.relation.references | 98. Tandler CJ, Ríos H, Pellegrino de Iraldi A. (1997) Differential staining of two sub- populations of Purkinje neurons in rat cerebellum with acid dyes. Biotech Histochem. 7;72(5):231-9 | spa |
dc.relation.references | 99. El-Dwairi Q, Banihani S. (2007) Two subpopulations of human Purkinje neurons: an electron microscopy study. Neuro Endocrinol Lett. 28(3):247-9. | spa |
dc.relation.references | 100. Koprowski H. (1996). The mouse inoculation test. En: “Laboratory techniques in rabies”, ed. by Meslin, F., Kaplan, M., Koprowski, H. World Health Organization Press, Geneva, p.p. 80-87. | spa |
dc.relation.references | 101. Torres-Fernández O. (2004). Estudio morfológico, inmunocitoquímico y ultraestructural de las neuronas de la corteza cerebral en ratones afectados por rabia. Tesis Doctoral. Universidad del Valle – Instituto Nacional de Salud. 150 p. | spa |
dc.relation.references | 102. Valverde F. (1998). Golgi atlas of the postnatal mouse brain. Springer- Verlag, Wien. 146 p. | spa |
dc.relation.references | 103. García E, Rodríguez A. (2017). Estudio histológico del desarrollo del cerebelo. Revista Complutense de Ciencias Veterinarias. 11;181-186. | spa |
dc.relation.references | 104. Storniolo A, Guerini JC, Fonseca IB, Samar ME, Spitale LS. (2012). Comparative morphometric study of human cerebellar cortex in two age groups. Int J Morphol. 30(3):825-828. | spa |
dc.relation.references | 105. Wahl A, Garcia JV. (2025). Humanized mouse systems to study viral infection: A new era in immunology research. Annu. Rev. Immunol.43:143–67. | spa |
dc.relation.references | 106. Baer GM. (1988). Animal models in the pathogenesis and treatment of rabies. Rev Infect Dis. 10(Suppl. 4): S739-S750. | spa |
dc.relation.references | 107. Woods AE, Stirling JW. (2019). Transmission electron microscopy. En: “Bancroft’s theory and practice of histological techniques”, 8 th Edition, ed. by Suvarna, S.K., Layton, C., Bancroft, JD. Elsevier E-Book. pp-434-475. | spa |
dc.relation.references | 108. Schefler WC. (1981). Bioestadística. Fondo Educativo Interamericano. México, pp. 218-221. | spa |
dc.relation.references | 109. Velandia ML, Pérez-Castro R, Hurtado H, Castellanos JE. (2007) Ultrastructural description of rabies virus infection in cultured sensory neurons. Mem Inst Oswaldo Cruz.102(4):441-7. | spa |
dc.relation.references | 110. Schneider L. (1975) Spread of virus within the central nervous system. En: “The natural history of rabies”. Vol.1., ed. by Baer GM. Academic Press, New York. pp. 199-216. | spa |
dc.relation.references | 111. Otsuki Y, Li Z, Shibata M. (2003) Apoptotic detection methods from morphology to genes. Prog Histochem Cytochem. 38:275-339. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales | spa |
dc.subject.decs | Virus de la Rabia | spa |
dc.subject.decs | Rabies virus | eng |
dc.subject.decs | Inmunohistoquímica | spa |
dc.subject.decs | Immunohistochemistry | eng |
dc.subject.decs | Ratones | spa |
dc.subject.decs | Mice | eng |
dc.subject.proposal | Virus de la rabia | spa |
dc.subject.proposal | Cerebelo | spa |
dc.subject.proposal | MAP2 | spa |
dc.subject.proposal | Patología dendrítica | spa |
dc.subject.proposal | Inmunohistoquímica | spa |
dc.subject.proposal | Ultraestructura neuronal | spa |
dc.subject.proposal | Rabies virus | eng |
dc.subject.proposal | Cerebellum | eng |
dc.subject.proposal | MAP2 | eng |
dc.subject.proposal | Dendritic pathology | eng |
dc.subject.proposal | Immunohistochemistry | eng |
dc.subject.proposal | Neuronal ultrastructure | eng |
dc.title | Estudio de la estructura fina, la ultraestructura y la inmunorreactividad a MAP2 en el cerebelo de ratones inoculados con el virus de la rabia | spa |
dc.title.translated | Study of the fine structure, ultrastructure and MAP2 immunoreactivity in the cerebellum of mice inoculated with the rabies virus | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TESIS FINAL MPMA AGOSTO 6 2025 ULTIMA PARA GRADO.pdf
- Tamaño:
- 2.78 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Neurociencias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: