Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.

dc.contributor.advisorGranada García, Sinar David
dc.contributor.advisorPérez Naranjo, Juan Carlos
dc.contributor.authorOcampo Cano, Daniela
dc.contributor.researchgroupFitosanidad y Control Biológicospa
dc.coverage.regionAntioquia, Colombia
dc.date.accessioned2021-10-01T14:49:56Z
dc.date.available2021-10-01T14:49:56Z
dc.date.issued2021-09-29
dc.descriptionilustraciones, diagramas, gráficas, tablasspa
dc.description.abstractEl aguacate (Persea americana Mill.) es una fruta nativa de las regiones tropicales y subtropicales de América Central y México, perteneciente a la familia Lauraceae. Es una fruta que posee valiosas propiedades nutricionales, por su alto contenido de ácidos grasos monoinsaturados, proteína, carbohidratos, vitaminas y minerales. Además, tiene un gran potencial de exportación, ya que, tiene múltiples usos en culinaria, y puede emplearse también en procesos agroindustriales y como insumo en la industria farmacéutica y cosmética. Sin embargo, en los últimos años, la productividad de este cultivo se ha visto limitada por diferentes factores entre los que se encuentra la pudrición radicular causada por Phytophthora cinnamomi. Algunos productos químicos han ofrecido una respuesta favorable frente a P. cinnamomi. No obstante, no generan supresión del fitopatógeno, sino un control temporal de síntomas. Por tanto, es importante tener información sobre el rango de sensibilidad que presenta P. cinnamomi frente a fungicidas de naturaleza sistémica y a protectantes, ya que el uso indiscriminado de estos productos puede causar perdida de sensibilidad en el microorganismo con la consecuente generación de aislamientos resistentes. De acuerdo a lo estipulado por el Comité de Acción frente a la Resistencia a los Fungicidas (FRAC, por sus siglas en inglés) es importante hacer un levantamiento de información sobre el rango de sensibilidad que presenta P. cinnamomi frente a fungicidas de naturaleza sistémica y protectante, ya que el uso continuo y poco racionalizado de estos productos pueden causar pérdida de sensibilidad en el microorganismo, generando poblaciones resistentes y por ende problemas sanitarios de grandes magnitudes. Adicionalmente, de acuerdo con el FRAC, es posible establecer el riesgo que implica el uso de ciertos principios activos frente a un patógeno por medio de la siembra consecutiva del microorganismo en niveles subletales de los compuestos hasta obtener un mutante resistente. La comparación entre el aislamiento silvestre y el obtenido luego del contacto con el fungicida arrojará un índice denominado “Factor de riesgo”, el cual dará una idea del riesgo futuro de la aplicación de dicho principio activo. Por lo anterior, el presente trabajo tuvo como objetivo establecer una línea base de sensibilidad de P. cinnamomi frente a tres (3) formulaciones comerciales, y determinar el factor de riesgo en la generación de resistencia en el patógeno frente a cada una de las formulaciones comerciales. (Texto tomado de la fuente)spa
dc.description.abstractAvocado (Persea americana Mill.) is a tropical and subtropical fruit from Central America and Mexico, belonging to the Lauraceae family. It is a fruit with valuable nutritional properties, due to its high content of monounsaturated fatty acids, protein, carbohydrates, vitamins and minerals. In addition, it has great potential to be exported for its multiple uses in cooking, in agro-industrial processes and in the pharmaceutical and cosmetic industry. However, in recent years, productivity has been limited by different factors, including root rot caused by Phytophthora cinnamomi. Some products have offered a favorable response to P. cinnamomi. However, they do not generate suppression of the phytopathogen, but only a temporary symptom decrease. Therefore, it is important to have information on the range of sensitivity of P. cinnamomi to systemic fungicides, as well as protectants, since the indiscriminate use of these products can cause loss of sensitivity in the microorganism, generating resistant isolates. According to the Fungicide Resistance Action Committee (FRAC), it is important to collect information on the range of sensitivity of P. cinnamomi to systemic and protectant fungicides, since the continuous and not rationalized use of these products can cause loss of sensitivity in the microorganism, generating resistant populations and therefore large-scale sanitary problems. Additionally, according to the FRAC, it is possible to establish the risk involved in the use of certain active ingredients against a pathogen by consecutive culture of the microorganism at sublethal levels of the compounds until a resistant mutant is obtained. The comparison between the wild isolate and the one obtained after the treatments with the fungicide will yield an index called "risk factor", which will give an idea of future resistance risk of the application of that active ingredient. Therefore, the objective of this study was to establish a baseline sensitivity of P. cinnamomi to three (3) commercial fungicides, and to determine the resistance risk factor of the pathogen in front of these commercial formulations.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaPhytophthora cinnamomispa
dc.format.extentxvii, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80350
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAkinsanmi, O. A., & Drenth, A. (2013). Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection, 53 (10), 29–36. https://doi.org/10.1016/j.cropro.2013.06.007spa
dc.relation.referencesAlcaraz, M. L. (2009). Biología reproductiva del aguacate (Persea americana Mill.). Implicaciones para la optimización del cuajado. Tesis doctoral. Universidad de Malaga.http://www.avocadosource.com/international/spain_papers/alcarazml2009b.pdfspa
dc.relation.referencesAraújo, R. G., Rodriguez, R. M., Ruiz, H. A., Pintado, M. M., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 80 (10), 51–60. https://doi.org/10.1016/j.tifs.2018.07.027spa
dc.relation.referencesAvenot, H. F., & Michailides, T. J. (2015). Detection of isolates of Alternaria alternata with multiple resistance to fludioxonil, cyprodinil, boscalid and pyraclostrobin in California pistachio orchards. Crop Protection, 78 (12), 214–221. https://doi.org/10.1016/j.cropro.2015.09.012spa
dc.relation.referencesAvenot, H. F., Luna, M., & Michailides, T. J. (2019). Phenotypic and molecular characterization of resistance to the SDHI fungicide fluopyram in populations of Alternaria alternata from pistachio orchards in California. Crop Protection, 124 (10), 2-8. https://doi.org/10.1016/j.cropro.2019.05.032spa
dc.relation.referencesBardas, G. A., Myresiotis, C. K., & Karaoglanidis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98 (4), 443–450. https://doi.org/10.1094/PHYTO-98-4-0443spa
dc.relation.referencesBillard, A., Fillinger, S., Leroux, P., Lachaise, H., Beffa, R., & Debieu, D. (2012). Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Management Science, 68 (5), 684–691. https://doi.org/10.1002/ps.2312spa
dc.relation.referencesBittner, R. J., Sweigard, J. A., & Mila, A. L. (2017). Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiopropalin with laboratory mutants. Crop Protection, 102 (8), 63–71. https://doi.org/10.1016/j.cropro.2017.08.002spa
dc.relation.referencesBrent, K. J., & Hollomon, D. W. (2007). Fungicidce Resistance in Plant Management: How can it be managed?. In Fungicide resistance action committee. 2° edición. https://www.frac.info/docs/defaultsource/publications/monographs/monograph-1.pdf?sfvrsn=8&sfvrsn=8spa
dc.relation.referencesBroth, P. E.-. (2005). FRAC_96-well plate fungicide sensitivity assay. 6–7. Documento pdf. http://www.frac.info/docs/default-source/monitoring-methods/approved-methods/phytin-microtiter-plate-method-dupont-2006-v1.pdf?sfvrsn=4spa
dc.relation.referencesBrown, S., Koike, S. T., Ochoa, O. E., Laemmlen, F., & Michelmore, R. W. (2004). Insensitivity to the fungicide fosetyl-aluminum in california isolates of the lettuce downy mildew pathogen, Bremia lactucae. Plant Disease, 88 (5), 502–508. https://doi.org/10.1094/PDIS.2004.88.5.502spa
dc.relation.referencesBrownbridge, M., Costa, S., & Jaronski, S. T. (2001). Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology, 77 (4), 280–283. https://doi.org/10.1006/jipa.2001.5020spa
dc.relation.referencesBuckling, A., Craig MacLean, R., Brockhurst, M. A., & Colegrave, N. (2009). The Beagle in a bottle. Nature, 457 (2), 824–829. https://doi.org/10.1038/nature07892spa
dc.relation.referencesButt, T. M., Wang, C., Shah, F. A., & Hall, R. (2006). Degeneration of entomogenous fungi. In: An Ecological and Societal Approach to Biological Control. Progress in Biological Control, vol 2. Springer, Dordrecht. https://doi-org.ezproxy.unal.edu.co/10.1007/978-1-4020-4401-4_10spa
dc.relation.referencesCalle, C., Gonzales, E. P., Arango, R. E., & Saldamando, C. I. (2020). Isolation and identification of Phytophthora cinnamomi collected in avocado (Persea americana) from Northeast Colombia. Tropical Plant Pathology, 45 (4), 402–414. https://doi.org/10.1007/s40858-020-00337-wspa
dc.relation.referencesCañas, G. P., Galindo, L. F., Arango, R., & Saldamando, C. I. (2015). Diversidad genética de cultivares de aguacate (Persea americana Mill) en Antioquia, Colombia. Agronomía Mesoamericana, 26 (1), 129-143. https://doi.org/10.15517/am.v26i1.16936spa
dc.relation.referencesCastañeda, E. L. (2009). Busqueda de portainjertos de aguacate tolerantes-resistentes a Phytophthora cinnamomi Rands . Tesis de maestria. Universidad autonoma de nuevo Leonspa
dc.relation.referencesCastaño, P. (2013). Control Podredumbre radical causada por Phytophthora cinnamomi en dehesas mediante biofumigación con Brassica spp. Tesis doctoral. Universidad de Cordoba.spa
dc.relation.referencesChen, F., Tsuji, S. S., Li, Y., Hu, M., Bandeira, M. A., Câmara, M. P. S., Michereff, S. J., & Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide Biochemistry and Physiology, 162 (6), 60–68. https://doi.org/10.1016/j.pestbp.2019.08.008spa
dc.relation.referencesCoffey, M. D. (1984). Variability in Sensitivity to Metalaxyl of Isolates of Phytophthora cinnamomi and Phytophthora citricola . In Phytopathology 74 (5), 1042-1046. https://doi.org/10.1094/phyto-74-417spa
dc.relation.referencesCoffey, M. D. (1987). Phytophthora root rot of avocado an integrated approach to Control in California. Plant Disease, 71 (11), 1046–1052. DOI: 10.1094/PD-71-1046.spa
dc.relation.referencesCohen, Y., & Coffey, M. D. (1986). Systemic Fungicides and the Control of Oomycetes. Annual Review of Phytopathology, 24 (1), 311–338. https://doi.org/10.1146/annurev.py.24.090186.001523spa
dc.relation.referencesDi, Y. L., Zhu, Z. Q., Lu, X. M., & Zhu, F. X. (2016). Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum. Crop Protection, 87 (4), 31–36. https://doi.org/10.1016/j.cropro.2016.04.020spa
dc.relation.referencesDíaz, W. H. (2013). Efectos en las condiciones socioeconomicas y ambientales de la poblacion generados por el hongo Phytophthora que afecta los cultivos de aguacate del municipio de el carmen de bolivar, departamento de bolivar - colombia. Tesis de Maestría, Universidad de manizales.spa
dc.relation.referencesDobrowolski, M. P., Shearer, B. L., Colquhoun, I. J., O’Brien, P. A., & Hardy, G. E. S. J. (2008). Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology, 57 (5), 928–936. https://doi.org/10.1111/j.1365-3059.2008.01883.xspa
dc.relation.referencesDreher, M. L., & Davenport, A. J. (2013). Hass Avocado Composition and Potential Health Effects. Critical Reviews in Food Science and Nutrition, 53 (7), 738–750. https://doi.org/10.1080/10408398.2011.556759spa
dc.relation.referencesDuvenhage, J. A. (1994). Moonitoring the resistance of Phytophthora cinnamomi to Fosetyl-Al and H3PO3. South African Avocado Growers’ Association Yearbook, 17 (1) 35–37.spa
dc.relation.referencesElliott, M., Shamoun, S. F., & Sumampong, G. (2015). Effects of systemic and contact fungicides on life stages and symptom expression of Phytophthora ramorum in vitro and in planta. Crop Protection, 67 (1), 136–144. https://doi.org/10.1016/j.cropro.2014.10.008spa
dc.relation.referencesFulgoni, V. L., Dreher, M., & Davenport, A. J. (2013). Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Nutrition Journal, 12 (1), 1-12-. https://doi.org/10.1186/1475-2891-12-1.spa
dc.relation.referencesGalindo, M. E., Ogata, N., & Arzate, A. M. (2008). Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55 (3), 441–450. https://doi.org/10.1007/s10722-007-9250-5spa
dc.relation.referencesGarcía, S. D., Lorza, A. R., & Peláez, C. A. (2014). Atividad antimicrobiana de metabólitos extracelulares de bactérias antagonistas aisladas de cultivos de batata (solanum phureja). Summa Phytopathologica, 40 (3), 212–220. https://doi.org/10.1590/0100-5405/1953spa
dc.relation.referencesGil, J. G. R., Sánchez, D. A., & Osorio, J. G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61 (1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007spa
dc.relation.referencesGisi, U, Chin, K. M., Knapova, G., Ku, R., Mohr, U., Parisi, S., Sierotzki, H., & Steinfeld, U. (2000). Recent developments in elucidating modes of resistance to phenylamide , DMI and strobilurin fungicides. Crop protection, 19, (9) 863–872. https://doi.org/10.1016/S0261-2194(00)00114-9spa
dc.relation.referencesGisi, U., Hermann, D., Ohl, L., & Steden, C. (1997). Sensitivit y Profiles of Mycosphaerella graminicola and Phytophthora infestans Populations to Different Classes of Fungicides. 290 (4), 290–298. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<290::AIDspa
dc.relation.referencesGraham, R. T. (1986). Plant disease reporter. In Biologia Centrali-Americaa (Vol. 2).spa
dc.relation.referencesGranada, D., López, L., Ramírez, S., Morales, J., Peláez, C., Andrade, G., & Bedoya, J. C. (2020). Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass. Journal of Integrative Agriculture, 19 (3), 748–758. https://doi.org/10.1016/S2095-3119(19)62720-6spa
dc.relation.referencesGranados, W., & Valencia, J. (2018). Cadena de aguacate: Indicadores e Instrumentos Generales. Minagricultura. Presentación en power point. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2018-08-30 Cifras Sectoriales.pdfspa
dc.relation.referencesGresham, D., & Dunham, M. J. (2014). The enduring utility of continuous culturing in experimental evolution. Genomics, 104 (6), 399–405. https://doi.org/10.1016/j.ygeno.2014.09.015spa
dc.relation.referencesGrimmer, M. K., van den Bosch, F. k., Powers, S. J., & Paveley, N. D. (2015). Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. Pest Management Science, 71 (2), 207–215. https://doi.org/10.1002/ps.3781spa
dc.relation.referencesHardy, G. E. S. J., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30 (2), 133–139. https://doi.org/10.1071/AP01012spa
dc.relation.referencesHerring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., Van Den Boom, D., Cantor, C. R., & Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38 (12), 1406–1412. https://doi.org/10.1038/ng1906spa
dc.relation.referencesHerrmann, H., & Bucksch, H. (2014). Fungicide resistance: the assessment of risk. Monogrsfia 2 FRAC. Edicion N°2. https://doi.org/10.1007/978-3-642-41714-6_62782spa
dc.relation.referencesHu, J., Wu, J., Gu, M., Geng, J., Guo, C., Yang, Z., & Lamour, K. (2020). Baseline sensitivity and control efficacy of fluazinam against Clarireedia homoeocarpa. Crop Protection, 137(4) 1-7. https://doi.org/10.1016/j.cropro.2020.105290spa
dc.relation.referencesHu, J., Zhou, Y., Gao, T., Geng, J., Dai, Y., Ren, H., Lamour, K., & Liu, X. (2019a). Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pesticide Biochemistry and Physiology, 156 (2), 123–128. https://doi.org/10.1016/j.pestbp.2019.02.011spa
dc.relation.referencesHuang, X. ping, Song, Y. fei, Li, B. xing, Mu, W., & Liu, F. (2019). Baseline sensitivity of isopyrazam against Sclerotinia sclerotiorum and its efficacy for the control of Sclerotinia stem rot in vegetables. Crop Protection, 122 (2), 42–48. https://doi.org/10.1016/j.cropro.2019.04.010spa
dc.relation.referencesInstituto Colombiano Agropecuario ICA. (2009). Manual técnico cultivo de aguacate. Documento pdf. https://sioc.minagricultura.gov.co/Aguacate/Documentos/005 - Documentos Técnicos/005 - D.T - Paquete Tecnologico Aguacate.pdfspa
dc.relation.referencesJackson, T. J., Burgess, T., Colquhoun, I., & Hardy, G. E. S. J. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49 (1), 147–154. https://doi.org/10.1046/j.1365-3059.2000.00422.xspa
dc.relation.referencesKing, M., Reeve, W., Van Der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A., & Hardy, G. E. S. J. (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics and Genomics, 284 (6), 425–435. https://doi.org/10.1007/s00438-010-0579-7spa
dc.relation.referencesLiang, H. J., Di, Y. L., Li, J. L., You, H., & Zhu, F. X. (2015). Baseline sensitivity of pyraclostrobin and toxicity of SHAM to sclerotinia sclerotiorum. Plant Disease, 99 (2), 267–273. https://doi.org/10.1094/PDIS-06-14-0633-REspa
dc.relation.referencesLu, X. H., Hausbeck, M. K., Liu, X. L., & Hao, J. J. (2011). Wild type sensitivity and mutation analysis for resistance risk to fluopicolide in Phytophthora capsici. Plant Disease, 95 (12), 1535–1541. https://doi.org/10.1094/PDIS-05-11-0372spa
dc.relation.referencesLucas, J. (2017). Resistance Management: We know why but do we know how? Modern Fungicides and Antifungal Compounds. Vol. VIII, VIII, 3–14.spa
dc.relation.referencesLucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The Evolution of Fungicide Resistance. In Advances in Applied Microbiology (Vol. 90). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2014.09.001spa
dc.relation.referencesMa, D., Jiang, J., He, L., Cui, K., Mu, W., & Liu, F. (2018). Detection and characterization of qoi-resistant phytophthora capsici causing pepper phytophthora blight in china. Plant Disease, 102 (9), 1725–1732. https://doi.org/10.1094/PDIS-01-18-0197-REspa
dc.relation.referencesMa, J., & McLeod, A. (2014). In vitro sensitivity of South African Phytophthora cinnamomi to phosphite at different phosphate concentrations. South African Avocado Growers' Association Yearbook, 37, 79-84. http://hdl.handle.net/10019.1/98308spa
dc.relation.referencesMao, X. W., Li, J. S., Chen, Y. L., Song, X. S., Duan, Y. B., Wang, J. X., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 144 (10), 27–35. https://doi.org/10.1016/j.pestbp.2017.10.010spa
dc.relation.referencesMasikane, S. L., Novela, P., Mohale, P., & McLeod, A. (2020). Effect of phosphonate application timing and -strategy on phosphite fruit and root residues of avocado. Crop Protection, 128 (2) 2-8. https://doi.org/10.1016/j.cropro.2019.105008spa
dc.relation.referencesMatheron, M. E., & Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84 (4), 454–458. https://doi.org/10.1094/PDIS.2000.84.4.454spa
dc.relation.referencesMcCarren, K. L., McComb, J. A., Shearer, B. L., & Hardy, G. E. S. J. (2009). In vitro influence of phosphite on chlamydospore production and viability of Phytophthora cinnamomi. Forest Pathology, 39 (3), 210–216. https://doi.org/10.1111/j.1439-0329.2008.00576.xspa
dc.relation.referencesMei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002spa
dc.relation.referencesMei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2020). Cadena productiva Aguacate. Presentación power point.spa
dc.relation.referencesMolaei, H., Abrinbana, M., & Ghosta, Y. (2020). Baseline sensitivities to azoxystrobin and tebuconazole in Sclerotinia sclerotiorum isolates from sunflower in Iran related to sensitivities to carbendazim and iprodione. Journal of Phytopathology, 168 (6), 353–362. https://doi.org/10.1111/jph.12899spa
dc.relation.referencesMore, G. Mt. Fg. A. et al. (1963). Mancozeb: Past, present, and future. Disease, Plant, 94(9), 1076–1087. https://doi.org/10.1094/PDIS-94-9-1076spa
dc.relation.referencesO’Brien, C., Hiti-Bandaralage, J., Folgado, R., Lahmeyer, S., Hayward, A., Folsom, J., & Mitter, N. (2020). A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Scientia Horticulturae, 266 (2), 2-12. https://doi.org/10.1016/j.scienta.2020.109305spa
dc.relation.referencesPérez, R. M. (2008). Significant avocado diseases caused by fungi and oomycetes. The European Journal of Plant Science and Biotechnology, 2 (1), 1–24. 7493fb70e621460a38cb74fceac347a2d238a4e5spa
dc.relation.referencesQu, X. P., Li, J. S., Wang, J. X., Wu, L. Y., Wang, Y. F., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Effects of the dinitroaniline fungicide fluazinam on Fusarium fujikuroi and rice. Pesticide Biochemistry and Physiology, 152 (9), 98–105. https://doi.org/10.1016/j.pestbp.2018.09.010spa
dc.relation.referencesRamírez-Gil, J. G., Castañeda-Sánchez, D. A., & Morales-Osorio, J. G. (2017). Production of avocado trees infected with Phytophthora cinnamomi under different management regimes. Plant Pathology, 66 (4), 623–632. https://doi.org/10.1111/ppa.12620spa
dc.relation.referencesRamírez, J. G., Gilchrist, E., & Morales, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101 (11), 103–115. https://doi.org/10.1016/j.cropro.2017.07.023spa
dc.relation.referencesRamirez Gil, J. G. (2013). Incidencia, diagnostico, comportamiento y alternativas de manejo de la marchitez del aguacate con enfasis en Phytophthora cinnamomi rands. 189.spa
dc.relation.referencesRios, D., & Tafur, R. (2003). Variedades De Aguacate Para El Trópico: Caso Colombia. Proceedings V World Avocado Congress (Actas V Congreso Mundial Del Aguacate), 143–147.spa
dc.relation.referencesRossi, V., Caffi, T., Legler, S. E., & Fedele, G. (2021). A method for scoring the risk of fungicide resistance in vineyards. Crop Protection, 143 (7), 2-10. https://doi.org/10.1016/j.cropro.2020.105477spa
dc.relation.referencesRussell, P. E. (2008). Sensitivity baselines in fungicide resistance research and management. Outlooks on Pest Management, 17 (3), 119–121. https://doi.org/10.1564/17jun07spa
dc.relation.referencesRutherford, F. S. (1985). Variation in Virulence in Successive Single Zoospore propagations of Phytophthora megasperma f. sp. glycinea . In Phytopathology 75 (10) 371-374. https://doi.org/10.1094/phyto-75-371spa
dc.relation.referencesSamsinakova, A., & Kalalova, S. (1983). The influence of a single-spore isolate and repeated subculturing on the pathogenicity of conidia of the entomophagous fungus Beauveria bassiana. Journal of Invertebrate Pathology, 42 (2), 156–161. https://doi.org/10.1016/0022-2011(83)90057-5spa
dc.relation.referencesSanchez, E. I. (2018). Selección de genotipos de aguacate raza mexicana con resistencia A Phytophthora cinnamomi Rands. Tesis de Maestria. Universidad autonoma de Nuevo Leon. http://dspace.unitru.edu.pe/handle/UNITRU/10525spa
dc.relation.referencesSena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409 (01), 799–807. https://doi.org/10.1016/j.foreco.2017.12.022spa
dc.relation.referencesTalavera, A., Soorni, A., Bombarely, A., Matas, A. J., & Hormaza, J. I. (2019). Genome-Wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Scientific Reports, 9 (1), 1–13. https://doi.org/10.1038/s41598-019-56526-4spa
dc.relation.referencesTamayo, P. (2007). Enfermedades del Aguacate. Revista Politénica, 3 (4), 51–70. https://revistas.elpoli.edu.co/index.php/pol/article/view/62spa
dc.relation.referencesThomidis, T. (2001). Effect of metalaxyl, fosetyl-al, dimethomorph, cymoxanil on development and control Phytophthora on peach tree in vitro. Phytopathology and Plant Protection, 34 (1), 33-43. https://doi.org/10.1080/03235400109383380spa
dc.relation.referencesVitale, S., Scotton, M., Vettraino, A. M., Vannini, A., Haegi, A., Luongo, L., Scarpari, M., & Belisario, A. (2019). Characterization of Phytophthora cinnamomi from common walnut in Southern Europe environment. Forest Pathology, 49 (1), 1-10. https://doi.org/10.1111/efp.12477spa
dc.relation.referencesWalker, A. S., & Leroux, P. (2015). Grapevine Gray Mold in France. Fungicide Resistance in Plant Pathogens. 78 (4) 419-431. https://doi.org/10.1007/978-4-431-55642-8_26spa
dc.relation.referencesWang, J. S., Wang, A. B., Zang, X. P., Tan, L., Xu, B. Y., Chen, H. H., Jin, Z. Q., & Ma, W. H. (2019). Physicochemical, functional and emulsion properties of edible protein from avocado (Persea americana Mill.) oil processing by-products. Food Chemistry, 288 (2), 146-153. https://doi.org/10.1016/j.foodchem.2019.02.098spa
dc.relation.referencesWang, W., Zhang, P., Meng, R., Zhao, J., Huang, Q. liang, Han, X., Ma, Z., & Zhang, X. (2014). Fungitoxicity and synergism of mixtures of fluopicolide and pyraclostrobin against Phytophthora infestans. Crop Protection, 57, 48–56. https://doi.org/10.1016/j.cropro.2013.11.027spa
dc.relation.referencesWu, J., Xue, Z., Miao, J., Zhang, F., Gao, X., & Liu, X. (2020). Sensitivity of Different developmental stages and resistance risk assessment of Phytophthora capsici to Fluopicolide in China. Frontiers in Microbiology, 11 (3), 1–10. https://doi.org/10.3389/fmicb.2020.00185spa
dc.relation.referencesXu, X. F., Lin, T., Yuan, S. K., Dai, D. J., Shi, H. J., Zhang, C. Q., & Wang, H. D. (2014). Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation inhibitor fungicides, prochloraz and tebuconazole. Australasian Plant Pathology, 43 (6), 605–613. https://doi.org/10.1007/s13313-014-0321-8spa
dc.relation.referencesZhang, J., Hu, S., Xu, Q., You, H., & Zhu, F. (2018). Baseline sensitivity and control efficacy of propiconazole against Sclerotinia sclerotiorum. Crop Protection, 114 (8), 208–214. https://doi.org/10.1016/j.cropro.2018.08.034spa
dc.relation.referencesZhang, J., Zhang, B., Zhu, F., & Fu, Y. (2020). Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pesticide Biochemistry and Physiology, 172 (2) 2-12. https://doi.org/10.1016/j.pestbp.2020.104752spa
dc.relation.referencesZhang, Y., Lu, J., Wang, J., Zhou, M. G., & Chen, C. (2015). Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor. Pesticide Biochemistry and Physiology, 124 (10), 97–102. https://doi.org/10.1016/j.pestbp.2015.05.004spa
dc.relation.referencesZhou, Y., Yu, J., Pan, X., Yu, M., Du, Y., Qi, Z., Zhang, R., Song, T., Yin, X., & Liu, Y. (2019). Characterization of propiconazole field-resistant isolates of Ustilaginoidea virens. Pesticide Biochemistry and Physiology, 153 (11), 144–151. https://doi.org/10.1016/j.pestbp.2018.11.013spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembAguacate
dc.subject.lembAguacate-Enfermedades y plagas
dc.subject.lembAvocado
dc.subject.lembAvocado - Disease and pests
dc.subject.proposalCosto de aptitudspa
dc.subject.proposalFosetilspa
dc.subject.proposalMetalaxileng
dc.subject.proposalMancozebeng
dc.subject.proposalPyraclostrobineng
dc.subject.proposalPhytophthora cinnamomieng
dc.subject.proposalSensibilidadspa
dc.subject.proposalRiesgospa
dc.subject.proposalFitnesseng
dc.subject.proposalCosteng
dc.subject.proposalFosetyleng
dc.subject.proposalMetalaxilspa
dc.subject.proposalSensitivityeng
dc.titleGeneración de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.spa
dc.title.translatedGeneration of a baseline of sensitivity and assessment of the risk of resistance in Phytophthora cinnamomi compared to the use of commercial formulations.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColegio Mayor de Antioquiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035427093.2021.pdf
Tamaño:
1.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: