Biomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolas

dc.contributor.advisorMárquez Godoy, Marco Antonio
dc.contributor.authorGrajales Ríos, Naren Zulamir
dc.contributor.orcidGrajales Ríos, Naren Zulamir [0009-0002-0869-7984]spa
dc.contributor.orcidMárquez Godoy, Marco Antonio [0000-0002-7462-2430]spa
dc.contributor.researchgroupGrupo de Mineralogía Aplicada y Bioprocesos (Gmab)spa
dc.date.accessioned2023-10-27T20:37:41Z
dc.date.available2023-10-27T20:37:41Z
dc.date.issued2023-02-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDebido a las diversas actividades industriales y humanas, los metales pesados se han convertido en un contaminante que se ha extendido por todo el medio ambiente, y sus concentraciones superiores a los límites ambientales es un problema grave. La precipitación de carbonatos inducida microbiológicamente (MICP) se ha explorado para la inmovilización de metales pesados en diferentes matrices medioambientales en donde los microorganismos tienen la capacidad de sintetizar biominerales, esto ofrece una manera eficiente de inmovilizar e incorporar metales pesados como el cobre, dentro de fases sólidas estables y cristalinas. Lo expuesto justifica la necesidad de buscar otras alternativas como la MICP como potencial proceso de biorremediación. Para ello, se estudió el efecto de la biomineralización de carbonato inducido por bacterias y la incorporación de cobre (Cu2+) para su inmovilización como base para su aplicación en suelos agrícolas. Se evaluó la tolerancia a cuatro concentraciones de cobre (100, 250, 500 y 1000 mg/l) de 13 bacterias de la Colección Alemana de Microorganismos y Cultivos Celulares reportadas en la literatura con capacidad calcificante. Posterior a la selección de las bacterias tolerantes a dos concentraciones de cobre y con la mayor capacidad de precipitar carbonatos, se seleccionaron tres bacterias para la bioprecipitación e inmovilización de cobre, evaluando seis variables, tanto químicas como biológicas. Los precipitados obtenidos se caracterizaron por medio de las técnicas de Espectroscopía Infrarroja con Transformada de Fourier (FTIR), Difracción de Rayos X (DRX) y Microscopía Electrónica de Barrido acoplada a Espectroscopia de Rayos X (SEM/EDX). Los resultados mostraron que 10 de los 13 microorganismos evaluados son capaces de tolerar las concentraciones de cobre a 100 y 250 mg/l, cabe destacar, que el género Sporosarcina es uno de los más tolerantes y con la mayor producción de carbonatos seguido de Corynebacterium ammoniagenes, S. ureae y Sutcliffiella cohnii. En los tratamientos en suspensión se pudo determinar que S. pasteurii DSM-276, es el microorganismo que tiene mejor eficiencia de eliminación del cobre a pH mayor de 7.5 con valores superiores al 60% y 40% a 100 y 250 mg/l respectivamente. El análisis por DRX de los precipitados mostraron la presencia de calcita y vaterita como los principales fases minerales formadas en todos los tratamientos, acompañados con una pequeña cantidad de weddellita y malaquita, en los tratamientos en presencia de cobre, asimismo, la morfología de los cristales y su porcentaje de composición elemental varió según la presencia o ausencia de este metal pesado. Estos resultados indican que el cobre en el proceso de la MICP puede coprecipitar junto con el carbonato de calcio e incluso, ser inmovilizado en la estructura cristalina a través de reacciones mediadas biológicamente que pueden afectar la mineralogía y morfología de los minerales precipitados. (Texto tomado de la fuente)spa
dc.description.abstractDue to various industrial and human activities, heavy metals have become a contaminant that has become widespread throughout the environment, and their concentrations above environmental limits is a fundamental problem. Microbiologically induced carbonate precipitation (MICP) has been explored for the immobilization of heavy metals in different environmental matrices where microorganisms have the ability to synthesize biominerals, this offers an efficient way to immobilize and incorporate heavy metals such as copper, within stable and crystalline solid phases. The above justifies the need to look for other alternatives such as MICP as a potential bioremediation process. For this purpose, the effect of bacteria-induced carbonate biomineralization and the incorporation of copper (Cu2+) for its immobilization was studied as a basis for its application in agricultural soils. The tolerance to four copper concentrations (100, 250, 500 and 1000 mg/l) of 13 bacteria from the German Collection of Microorganisms and Cell Cultures reported in the literature with calcifying capacity was evaluated. After the selection of bacteria tolerant to two copper concentrations and with the highest capacity to precipitate carbonates, three bacteria were selected for bioprecipitation and immobilization of copper, evaluating six variables, both chemical and biological. The precipitates obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled to X-Ray Spectroscopy (SEM/EDX). The results showed that 10 of the 13 microorganisms evaluated are able to tolerate copper concentrations at 100 and 250 mg/l, however, the genus Sporosarcina is one of the most tolerant and with the highest production of carbonates followed by Corynebacterium ammoniagenes, S. ureae and Sutcliffiella cohnii. In the suspension treatments, it was determined that S. pasteurii DSM-276 is the microorganism with the best copper removal efficiency at pH greater than 7.5, with values higher than 60% and 40% at 100 and 250 mg/l, respectively. XRD analysis of the precipitates showed the presence of calcite and vaterite as the main mineral phases formed in all treatments, accompanied by a small amount of weddellite and malachite, in the treatments in the presence of copper, also, the morphology of the crystals and their percentage of elemental composition varied according to the presence or absence of this heavy metal. These results indicate that copper in the MICP process can co-precipitate with calcium carbonate and even be immobilized in the crystal structure through biologically mediated reactions that can affect the mineralogy and morphology of the precipitated minerals.eng
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaBiotecnología Ambientalspa
dc.description.researchareaBiotecnología Microbianaspa
dc.format.extentxviii, 97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84846
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAchal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201–202, 178–184. https://doi.org/10.1016/j.jhazmat.2011.11.067spa
dc.relation.referencesAchal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352–1358. https://doi.org/10.1016/j.chemosphere.2013.08.008spa
dc.relation.referencesAchal, V., Pan, X., & Özyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4), 554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009spa
dc.relation.referencesAchal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008spa
dc.relation.referencesAhmad, F., Mujah, D., Hazarika, H., & Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications. Journal of Cleaner Production, 35, 102– 107. https://doi.org/10.1016/j.jclepro.2012.05.047spa
dc.relation.referencesAlloway, B. J. (2013). Heavy Metals in Soils Trace Metals and Metalloids in Soils and their Bioavailability (B. J. Alloway, Ed.; 3rd ed.). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7spa
dc.relation.referencesAnbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. https://doi.org/10.1186/s40064-016-1869-2spa
dc.relation.referencesAnticó, E., Cot, S., Ribó, A., Rodríguez-Roda, I., & Fontàs, C. (2017). Survey of heavy metal contamination in water sources in the municipality of Torola, El Salvador, through in situ sorbent extraction. Water (Switzerland), 9(11). https://doi.org/10.3390/w9110877spa
dc.relation.referencesArias, D., Cisternas, L. A., Miranda, C., & Rivas, M. (2019). Bioprospecting of ureolytic bacteria from Laguna Salada for biomineralization applications. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00209spa
dc.relation.referencesArias, J. L., & Fernández, M. S. (2008). Polysaccharides and proteoglycans in calcium carbonate-based Biomineralization. Chemical Reviews, 108(11), 4475–4482. https://doi.org/10.1021/cr078269pspa
dc.relation.referencesBarkouki, T. H., Martinez, B. C., Mortensen, B. M., Weathers, T. S., de Jong, J. D., Ginn, T. R., Spycher, N. F., Smith, R. W., & Fujita, Y. (2011). Forward and Inverse BioGeochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments. Transport in Porous Media, 90(1), 23–39. https://doi.org/10.1007/s11242- 011-9804-zspa
dc.relation.referencesCastanier, S., Le Métayer-Levrel, G., & Perthuisot, J. P. (1999). Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sedimentary Geology, 126(1– 4), 9–23. https://doi.org/10.1016/S0037-0738(99)00028-7spa
dc.relation.referencesCastro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6(June), 1–15. https://doi.org/10.3389/fmats.2019.00126spa
dc.relation.referencesCastro-González, N. P., Calderón-Sánchez, F., Moreno-Rojas, R., Tamariz-Flores, J. V., & Reyes-Cervantes, E. (2019). Heavy metals pollution level in wastewater and soils in the alto balsas sub-basin in Tlaxcala and Puebla, Mexico. Revista Internacional de Contaminacion Ambiental, 35(2), 335–348. https://doi.org/10.20937/RICA.2019.35.02.06spa
dc.relation.referencesChang, R., Kim, S., Lee, S., Choi, S., Kim, M., & Park, Y. (2017). Calcium carbonate precipitation for CO2 storage and utilization: A review of the carbonate crystallization and polymorphism. Frontiers in Energy Research, 5(JUL), 1–12. https://doi.org/10.3389/fenrg.2017.00017spa
dc.relation.referencesChaparro-Acuña, S. P., Becerra-Jiménez, M. L., Martínez-Zambrano, J. J., & RojasSarmiento, H. A. (2017). Soil bacteria that precipitate calcium carbonate: Mechanism and applications of the process. Acta Agronomica, 67(2), 277–288. https://doi.org/10.15446/acag.v67n2.66109spa
dc.relation.referencesChen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705–713. https://doi.org/10.1016/j.jhazmat.2019.01.108spa
dc.relation.referencesCheng, L., & Shahin, M. A. (2016). Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385. https://doi.org/10.1139/cgj-2015-0635spa
dc.relation.referencesCheng, L., Shahin, M. A., & Mujah, D. (2017). Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 143(1), 1–11. https://doi.org/10.1061/(ASCE)GT.1943- 5606.0001586spa
dc.relation.referencesColin, V. L., Villegas, L. B., & Abate, C. M. (2012). Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration and Biodegradation, 69, 28–37. https://doi.org/10.1016/j.ibiod.2011.12.001spa
dc.relation.referencesDe Muynck, W., Verbeken, K., de Belie, N., & Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36(2), 99–111. https://doi.org/10.1016/j.ecoleng.2009.03.025spa
dc.relation.referencesDe Muynck, W., Verbeken, K., De Belie, N., & Verstraete, W. (2013). Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 97(3), 1335–1347. https://doi.org/10.1007/s00253-012-3997-0spa
dc.relation.referencesDhami, N. K., Quirin, M. E. C., & Mukherjee, A. (2017). Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecological Engineering, 103, 106–117. https://doi.org/10.1016/j.ecoleng.2017.03.007spa
dc.relation.referencesDhami, N. K., Reddy, M. S., & Mukherjee, A. (2016). Significant indicators for biomineralisation in sand of varying grain sizes. Construction and Building Materials, 104, 198–207. https://doi.org/10.1016/j.conbuildmat.2015.12.023spa
dc.relation.referencesDhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4(314). https://doi.org/10.3389/fmicb.2013.00314spa
dc.relation.referencesDi Benedetto, F., Costagliola, P., Benvenuti, M., Lattanzi, P., Romanelli, M., & Tanelli, G. (2006). Arsenic incorporation in natural calcite lattice: Evidence from electron spin echo spectroscopy. Earth and Planetary Science Letters, 246(3–4), 458–465. https://doi.org/10.1016/j.epsl.2006.03.047spa
dc.relation.referencesDiels, L., Geets, J., Dejonghe, W., van Roy, S., Vanbroekhoven, K., Szewczyk, A., & Malina, G. (2010). Heavy metal immobilization in groundwater by in situ bioprecipitation: Comments and questions about efficiency and sustain ability of the process. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy (Vol. 11, pp. 99–112).spa
dc.relation.referencesDixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2), 2189–2212. https://doi.org/10.3390/su7022189spa
dc.relation.referencesDuarte-Nass, C., Rebolledo, K., Valenzuela, T., Kopp, M., Jeison, D., Rivas, M., Azócar, L., Torres-Aravena, Á., & Ciudad, G. (2020). Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. Journal of Environmental Management, 256. https://doi.org/10.1016/j.jenvman.2019.109938spa
dc.relation.referencesDupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005spa
dc.relation.referencesDurand, N., Monger, C. H., & Canti, M. G. (2010). Calcium Carbonate Features. In Interpretation of Micromorphological Features of Soils and Regoliths (pp. 149–194). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53156-8.00009-Xspa
dc.relation.referencesFujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Ferris, F. G., & Smith, R. W. (2004). Strontium incorporation into calcite generated by bacterial ureolysis. Geochimica et Cosmochimica Acta, 68(15), 3261–3270. https://doi.org/10.1016/j.gca.2003.12.018spa
dc.relation.referencesGhosh, S., Biswas, M., Chattopadhyay, B. D., & Mandal, S. (2009). Microbial activity on the microstructure of bacteria modified mortar. Cement and Concrete Composites, 31(2), 93– 98. https://doi.org/10.1016/j.cemconcomp.2009.01.001spa
dc.relation.referencesGiachino, A., & Waldron, K. J. (2020). Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology, 114(3), 377–390. https://doi.org/10.1111/mmi.14522spa
dc.relation.referencesGuimarães, R. M. L., Ball, B. C., & Tormena, C. A. (2011). Improvements in the visual evaluation of soil structure. Soil Use and Management, 27(3), 395–403. https://doi.org/10.1111/j.1475-2743.2011.00354.xspa
dc.relation.referencesHammes, F., Boon, N., Clement, G., De Villiers, J., Siciliano, S. D., & Verstraete, W. (2003). Molecular, biochemical and ecological characterisation of a bio-catalytic calcification reactor. Applied Microbiology and Biotechnology, 62(2–3), 191–201. https://doi.org/10.1007/s00253-003-1287-6spa
dc.relation.referencesHammes, F., Seka, A., De Knijf, S., & Verstraete, W. (2003). A novel approach to calcium removal from calcium-rich industrial wastewater. Water Research, 37(3), 699–704. https://doi.org/10.1016/S0043-1354(02)00308-1spa
dc.relation.referencesHe, J., Chen, X., Zhang, Q., & Achal, V. (2019). More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. International Biodeterioration and Biodegradation, 140(3), 67–71. https://doi.org/10.1016/j.ibiod.2019.03.012spa
dc.relation.referencesHelmi, F. M., Elmitwalli, H. R., Elnagdy, S. M., & El-Hagrassy, A. F. (2016). Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecological Engineering, 90, 367–371. https://doi.org/10.1016/j.ecoleng.2016.01.044spa
dc.relation.referencesIşik, M., Altaş, L., Özcan, S., Şimşek, I., Aĝdaĝ, O. N., & Alaş, A. (2012). Effect of urea concentration on microbial Ca precipitation. Journal of Industrial and Engineering Chemistry, 18(6), 1908–1911. https://doi.org/10.1016/j.jiec.2012.05.002spa
dc.relation.referencesJalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206–219. https://doi.org/10.1007/s42729-019-00121-zspa
dc.relation.referencesJuan D. Mahecha-Pulido, Juan M. Trujillo-González, & Marco A. Torres-Mora. (2015). Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Orinoquia, 19(1), 118–122.spa
dc.relation.referencesKabata-Pendias, A. (2004). Soil-plant transfer of trace elements - An environmental issue. Geoderma, 122(2-4 SPEC. IIS.), 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004spa
dc.relation.referencesKang, C. H., & So, J. S. (2016). Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecological Engineering, 97, 304–312. https://doi.org/10.1016/j.ecoleng.2016.10.016spa
dc.relation.referencesKawaguchi, T., & Decho, A. W. (2002). A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. Journal of Crystal Growth, 240(1–2), 230–235. https://doi.org/10.1016/S0022-0248(02)00918-1spa
dc.relation.referencesKumari, D., Pan, X., Lee, D. J., & Achal, V. (2014). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration and Biodegradation, 94, 98–102. https://doi.org/10.1016/j.ibiod.2014.07.007spa
dc.relation.referencesKumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. In Advances in Applied Microbiology (Vol. 94, pp. 79–108). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2015.12.002spa
dc.relation.referencesLian, B., Hu, Q., Chen, J., Ji, J., & Teng, H. H. (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et Cosmochimica Acta, 70(22), 5522– 5535. https://doi.org/10.1016/j.gca.2006.08.044spa
dc.relation.referencesMicó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016spa
dc.relation.referencesMugwar, A. J., & Harbottle, M. J. (2016). Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314, 237–248. https://doi.org/10.1016/j.jhazmat.2016.04.039spa
dc.relation.referencesMwandira, W., Nakashima, K., & Kawasaki, S. (2017). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering, 109(July), 57–64. https://doi.org/10.1016/j.ecoleng.2017.09.011spa
dc.relation.referencesNava-Ruíz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Arch Neurocien (Mex), 16(3), 140–147. https://doi.org/10.1007/3-540-36080-8_21spa
dc.relation.referencesNémeth, P., Mugnaioli, E., Gemmi, M., Czuppon, G., Demény, A., & Spötl, C. (2018). A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite. Science Advances, 4(12). https://doi.org/10.1126/sciadv.aau6178spa
dc.relation.referencesOmoregie, A. I., Ngu, L. H., Ong, D. E. L., & Nissom, P. M. (2019). Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis and Agricultural Biotechnology, 17, 247–255. https://doi.org/10.1016/j.bcab.2018.11.030spa
dc.relation.referencesOsuji, L. C., & Onojake, C. M. (2004). Trace heavy metals associated with crude oil: A case study of ebocha-8 oil-spill-polluted site in niger delta, Nigeria. Chemistry and Biodiversity, 1(11), 1708–1715. https://doi.org/10.1002/cbdv.200490129spa
dc.relation.referencesPaerl, H. W., Steppe, T. F., & Reid, R. P. (2001). Bacterially mediated precipitation in marine stromatolites. Environmental Microbiology, 3(2), 123–130. https://doi.org/10.1046/j.1462- 2920.2001.00168.xspa
dc.relation.referencesPérez-González, T., Valverde-Tercedor, C., & Jiménez-López, C. (2004). Biomineralización bacteriana de magnetita y aplicaciones. Seminario SEM, 7(1), 58–74.spa
dc.relation.referencesPhillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: A review. Biofouling, 29(6), 715–733. https://doi.org/10.1080/08927014.2013.796550spa
dc.relation.referencesPlassard, F., Winiarski, T., & Petit-Ramel, M. (2000). Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology, 42(2–4), 99–111. https://doi.org/10.1016/S0169-7722(99)00101-1spa
dc.relation.referencesPortugal, C. R. M. e., Fonyo, C., Machado, C. C., Meganck, R., & Jarvis, T. (2020). Microbiologically Induced Calcite Precipitation biocementation, green alternative for roads – is this the breakthrough? A critical review. Journal of Cleaner Production, 262, 121372. https://doi.org/10.1016/j.jclepro.2020.121372 Bay (Golestan province, Iran). Iranian Journal of Fisheries Sciences, 13(2), 449– 455.spa
dc.relation.referencesQian, X., Fang, C., Huang, M., & Achal, V. (2017). Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production, 164, 198–208. https://doi.org/10.1016/j.jclepro.2017.06.195spa
dc.relation.referencesQiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., Xu, F., & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274, 129661. https://doi.org/10.1016/j.chemosphere.2021.129661spa
dc.relation.referencesRajasekar, A., Moy, C. K. S., & Wilkinson, S. (2017). MICP and Advances towards EcoFriendly and Economical Applications. IOP Conference Series: Earth and Environmental Science, 78(1), 1–6. https://doi.org/10.1088/1755-1315/78/1/012016spa
dc.relation.referencesSaghali, M., Baqraf, R., Patimar, R., Hosseini, S. A., & Baniemam, M. (2014). Determination of heavy metal (Cr, Zn, Cd and Pb) concentrations in water, sediment and benthos of the Gorganspa
dc.relation.referencesSarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials - A review. Applied Biochemistry and Biotechnology, 172(5), 2308–2323. https://doi.org/10.1007/s12010-013- 0686-0spa
dc.relation.referencesTang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(94), 1–23. https://doi.org/10.1007/s12665- 020-8840-9spa
dc.relation.referencesTchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology, 101, 133– 164. https://doi.org/10.1007/978-3-7643-8340-4spa
dc.relation.referencesUmar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 1–8. https://doi.org/10.1016/j.jrmge.2016.02.004spa
dc.relation.referencesWarthmann, R., van Lith, Y., Vasconcelos, C., Mckenzie, J. A., & Karpoff, A. M. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12), 1091–1094.spa
dc.relation.referencesWei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46(2), 455–464. https://doi.org/10.1590/S1517-838246220140533spa
dc.relation.referencesWeiner, S., & Dove, P. M. (2003). An Overview of Biomineralization Processes and the Problem of the Vital Effect. In Reviews in Mineralogy and Geochemistry (Vol. 54, Issue 1, pp. 1–29). https://doi.org/10.2113/0540001spa
dc.relation.referencesWhiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. https://doi.org/10.1080/01490450701436505spa
dc.relation.referencesWongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182. https://doi.org/10.1007/s10653- 013-9537-8spa
dc.relation.referencesYang, J., Pan, X., Zhao, C., Mou, S., Achal, V., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2016). Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiology Journal, 33(3–4), 261–266. https://doi.org/10.1080/01490451.2015.1068889spa
dc.relation.referencesZhang, J., Kumari, D., Fang, C., & Achal, V. (2019). Combining the microbial calcite precipitation process with biochar in order to improve nickel remediation. Applied Geochemistry, 103(February), 68–71. https://doi.org/10.1016/j.apgeochem.2019.02.011spa
dc.relation.referencesZhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology, 4(JAN), 1–21. https://doi.org/10.3389/fbioe.2016.00004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadasspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembConservación de suelosspa
dc.subject.lembSoil conservationeng
dc.subject.proposalMICPeng
dc.subject.proposalBioprecipitaciónspa
dc.subject.proposalBiorremediaciónspa
dc.subject.proposalCalcitaspa
dc.subject.proposalCobrespa
dc.subject.proposalSporosarcina pasteuriieng
dc.subject.proposalUreasaspa
dc.subject.proposalBioprecipitationeng
dc.subject.proposalBioremediationeng
dc.subject.proposalCalciteeng
dc.subject.proposalCoppereng
dc.subject.proposalUreaseeng
dc.titleBiomineralización de carbonato de calcio (CaCO3) inducido por bacterias para la inmovilización de iones cobre (Cu2+) con potencial para aplicaciones en suelos agrícolasspa
dc.title.translatedBiomineralization of calcium carbonate (CaCO3) induced by bacteria for the immobilization of copper ions (Cu2+) with potential for applications in agricultural soilseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017235688.2023..pdf
Tamaño:
4.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: