Efecto de la dieta, densidad de cría y área superficial sobre parámetros productivos de la especie Gryllodes sigillatus en condiciones de laboratorio
dc.contributor.advisor | Barragán Fonseca, Karol Bibiana | spa |
dc.contributor.advisor | Muñoz Ramírez, Adriana Patricia | spa |
dc.contributor.author | Arevalo Arevalo, Helbert Antonio | spa |
dc.contributor.editor | Vernot van Arcken, Diana Marcela | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-4264-9559 | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Antonio-Arevalo?ev=hdr_xprf | spa |
dc.contributor.subjectmatterexpert | Castellanos Suarez, Félix Andrés | spa |
dc.date.accessioned | 2025-04-01T20:23:59Z | |
dc.date.available | 2025-04-01T20:23:59Z | |
dc.date.issued | 2024-07-03 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La presente investigación tiene como objetivo principal evaluar el impacto de la densidad de cría y el área superficial en la producción del grillo doméstico tropical, Gryllodes sigillatus, en entornos de laboratorio. Este objetivo se aborda a través de una investigación detallada dividida en tres capítulos distintos. El primer capítulo se enfoca en las perspectivas del uso de esta especie para la alimentación humana en Colombia, explorando su potencial impacto social, ambiental y nutricional. En el segundo capítulo, se examina cómo la densidad de cría y el espacio disponible afectan aspectos como la supervivencia y el peso promedio de esta especie, demostrando que a una densidad baja de individuos (<0.023 grillos/cm2) se obtenían individuos más pesados y una tasa de mortalidad baja. El tercer capítulo, analiza el impacto de la inclusión de harina de Manihot esculenta (yuca) y Alocasia macrorhyza (bore) en la dieta, evaluando su influencia en la supervivencia, peso promedio por individuo, conversión alimenticia y consumo de alimento, indicando que las harinas de yuca y de bore son una oportunidad como ingrediente en la dieta de los grillos al mejorar algunos parámetros productivos como también los beneficios de una dieta con una relación de carbohidratos- proteína de 2 a 1. En la presente tesis se comprueba la importancia de considerar cuidadosamente la densidad de cría, el área superficial y la dieta en el proceso de producción, proporcionando valiosa información para optimizar la cría de Gryllodes sigillatus y contribuir así a la seguridad alimentaria y la sostenibilidad en los sistemas agroalimentarios. (Texto tomado de la fuente). | spa |
dc.description.abstract | The present research aims to assess the impact of rearing density and surface area on the production of the tropical house cricket, Gryllodes sigillatus, in laboratory settings. This objective is approached through a detailed investigation divided into three distinct chapters. The first chapter focuses on the prospects of using this species for human consumption in Colombia, exploring its potential social, environmental, and nutritional impact. In the second chapter, the examination of how rearing density and available space affect aspects such as survival and average weight of this species demonstrates that at a low density of individuals (<0.023 crickets/cm2), heavier individuals and a low mortality rate were obtained. The third chapter analyzes the impact of including Manihot esculenta (cassava) and Alocasia macrorhyza (bore) flour in the diet, evaluating their influence on survival, average weight per individual, feed conversion, and food consumption. It indicates that cassava and bore flours present an opportunity as ingredients in the cricket diet, improving some productive parameters as well as the benefits of a diet with a carbohydrate-protein ratio of 2 to 1. This thesis confirms the importance of carefully considering rearing density, surface area, and diet in the production process, providing valuable information to optimize Gryllodes sigillatus breeding and contribute to food security and sustainability in agri-food systems. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Salud Animal o Magíster en Producción Animal | spa |
dc.description.researcharea | Sistemas pecuarios | spa |
dc.format.extent | 81 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87807 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Producción Animal | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y de Zootecnia | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina Veterinaria y de Zootecnia - Doctorado en Ciencias - Salud Animal o Producción Animal | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Ahuja K, Mamtani K. 2020. Edible Insects Market Size by Product (Beetles, Caterpillars, Gras-shoppers, Bees, Wasps, Ants, Scale Insects & Tree Bugs), By Application (Flour, Protein Bars, Snacks), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends. Disponible en: https://www.gminsights.com/industry-analysis/edible-insects-market | spa |
dc.relation.references | Ayala ML. 2022. Mosca negra, plato fuerte de una spin-off pionera en Colombia. Periódico UNAL. Disponible en: http://agenciadenoticias.unal.edu.co/detalle/mosca-negra-plato-fuerte-deuna-spin-off-pionera-en-colombia-1 | spa |
dc.relation.references | Barragán–Fonseca KY, Barragán-Fonseca KB, Verschoor G, Van Loon JJ,Dicke M. 2020. Insects for peace. Current Opinion in Insect Science. 40:85-93. https://doi.org/10.1016/j.cois.2020.05.011 | spa |
dc.relation.references | Banco Mundial. 2019. Población, total | Data. Disponible en: https://datos.bancomundial.org/indicator/SP.POP.TOTL | spa |
dc.relation.references | Barennes H, Phimmasane M. Rajaonarivo C. 2015. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos. PLOS ONE.10(8):e0136458. https://doi.org/10.1371/journal.pone.0136458 | spa |
dc.relation.references | Bhaskar M. 2017. Curaduría. El poder de la selección en un mundo de excesos. México: Fondo de Cultura Económica. 311 p. | spa |
dc.relation.references | Cadena–Castañeda OJ. 2011. A new genus of cricket near to Miogryllus and Kazuemba from the Colombian Atlantic coast and the first report of Gryllodes sigillatus from Colombia. Zootaxa. 3126:55-61. | spa |
dc.relation.references | Cámara MM, Moreno PC, Daschner Á, Fandos MEG, Gómez AP, Lázaro DR, Buelga JÁS. 2018. Informe del Comité Científico de la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN) en relación a los riesgos microbiológicos y alergénicos asociados al consumo de insectos. Revista del Comité Científico de la AESAN 27:11-40. | spa |
dc.relation.references | Cartay R. 2018. Entre el asombro y el asco: El consumo de insectos en la cuenca amazónica. El caso del Rhynchophorus palmarum (Coleoptera Curculionidae). Revista Colombiana de Antropología. 54(2):143-169. https://doi.org/10.22380/2539472X.465 | spa |
dc.relation.references | Comisión Nacional del Medio Ambiente. 2008. Biodiversidad de Chile. Patrimonio y desafíos. 2da Ed. Santiago de Chile: Ocho Libros Editores Ltda. 640 p. | spa |
dc.relation.references | Cortés JA, Ruiz AT, Morales–Ramos JA, Thomas M, Rojas MG, Tomberlin, JK. Yi L, Han R, Giroud L, Jullien RL. 2016. Chapter 6—Insect Mass Production Technologies. En: Dossey A, Morales-Ramos JA, Rojas MG. Insects as Sustainable Food Ingredients. London: Academic Press. 153-201 p. https://doi.org/10.1016/B978-0-12-802856-8.00006-5 | spa |
dc.relation.references | Cruz D, Arévalo, H. 2021. Artrópodos. Producción de grillos de forma sustentable. Chía: Universidad de La Sabana. 99 p. | spa |
dc.relation.references | Díaz E. 2019. Bioemprendimientos en Latinoamérica: jóvenes emprendedores. En: Hodson E, Henry G, Trigo, E. La bioeconomía Nuevo marco para el crecimiento sostenible en América Latina. 147-161 p. Bogotá D.C.: Pontificia Universidad Javeriana | spa |
dc.relation.references | Dicke M. 2017. Servicios ecosistémicos de insectos. En: Van Huis A, Tomberlin JK. Insects as Food and Feed: From Production to Consumption. 61-76 p. Países Bajos: Wageningen Academic Publishers. | spa |
dc.relation.references | Dion Poulin A, Laroche M, Doyen A, Turgeon, SL. 2020. Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures. Molecules (Basel, Switzerland). 25(22):5366. https://doi.org/10.3390/molecules25225366 | spa |
dc.relation.references | Dossey AT, Tatum JT, McGill WL. 2016. Chapter 5-Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. En: Dossey A, Morales–Ramos JA, Rojas MG. Insects as Sustainable Food Ingredients. London: Academic Press. 113- 152 p. London: Academic Press. https://doi.org/10.1016/B978-0-12-802856- 8.00005-3 | spa |
dc.relation.references | Dunkel FV, Payne C. 2016. Introduction to Edible insects. En: Dossey AT, Morales–Ramos JA, Rojas MG, editores. Insects as Sustainable Food Ingredients. London: Academic Press. p. 1-27. | spa |
dc.relation.references | FAO. 2009. 2050 High-Level Experts Forum: Foro. Disponible en: http://www.fao.org/wsfs/forum2050/wsfs-forum/es/ | spa |
dc.relation.references | FAO. 2019. Meat Market Review—Overview of global meat market developments in 2018. Disponible en: http://www.fao.org/documents/card/es/c/ca3880en/ | spa |
dc.relation.references | FAO, FIDA, OPS, WFP, UNICEF. 2020. Panorama de la seguridad alimentaria y nutrición en América Latina y el Caribe 2020. Santiago de Chile: FAO. 150 p. | spa |
dc.relation.references | Fontaneto D, Tommaseo–Ponzetta M, Galli C, Rise P, Glew RH, Paoletti M. 2011. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecological of Food Nutrition. 50:351-367. https://doi.org/10.1080/03670244.2011.586316 | spa |
dc.relation.references | Fundación Heinrich Böll. 2014. «Atlas de la carne»—Hechos y cifras sobre los animales que comemos. Editora e Imprenta MAVAL Ltda. Disponible en: https://cl.boell.org/sites/default/files/atlasdelacarne2014_web-2.pdf | spa |
dc.relation.references | Gillott C. 2005. The Plecopteroid, Blattoid, and Orthopteroid Orders. En: Entomology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3183-1_7 | spa |
dc.relation.references | Govorushko S. 2019. Global status of insects as food and feed source: A review. Trends in Food Science & Technology. 91:436-445. https://doi.org/10.1016/j.tifs.2019.07.032 | spa |
dc.relation.references | Hall FG. 2020. Bioactive and allergenic properties of edible cricket (Gryllodes sigillatus) peptides. https://doi.org/10.25394/PGS.13360142.v1 | spa |
dc.relation.references | Halloran A, Roos N, Flore R, Hanboonsong Y. 2016. The development of the edible cricket industry in Thailand. 91-100 p. Wgeningen: Academic Publishers. https://doi.org/info:doi/10.3920/JIFF2015.0091 | spa |
dc.relation.references | Halloran A, Hanboonsong Y, Roos N, Bruun S. 2017. Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod. 156:83-94. https://doi.org/10.1016/j.jclepro.2017.04.017 | spa |
dc.relation.references | Halloran A, Roos N, Hanboonsong Y. 2017. Cricket farming as a livelihood strategy in Thailand. The Geographical Journal. 183(1):112-124. https://doi.org/10.1111/geoj.12184 | spa |
dc.relation.references | Halloran A, Hansen HH, Jensen LS, Bruun S. 2018. Comparing Environmental Impacts from Insects for Feed and Food as an Alternative to Animal Production. En: Halloran A, Flore R, Vantomme P, Roos N, editors. Edible Insects in Sustainable Food Systems. Springer Inter-national Publishing. p.163-180. https://doi.org/10.1007/978-3-319-74011-9_1 | spa |
dc.relation.references | Hanboonsong Y, Jamjanya T, Durst P.B. 2013. Six-legged livestock: Edible insect farming, collection and marketing in Thailand. Bangkok: FAO. 57 p. | spa |
dc.relation.references | Hanboonsong A, Durst P. 2020. Guidance on sustainable cricket farming–A practical manual for farmers and inspectors. Bangkok: FAO. 84 p. | spa |
dc.relation.references | Hartmann C, Siegrist M. 2016. Becoming an insectivore: Results of an experiment, Food Quality and Preference. 51:118-122. https://doi.org/10.1016/j.foodqual.2016.03.003 | spa |
dc.relation.references | IPIFF. 2016. Implementation of EU Regulation 2015/2283 on ‘novel foods. Disponible en: https://ipiff.org/wpcontent/uploads/2019/08/ipiff_briefing_update_03.pdf | spa |
dc.relation.references | Ivy TM, Sakaluk SK. 2005. Polyandry promotes enhanced offspring survival in decorated crickets. Evolution 59(1):152-159. https://doi.org/10.1111/j.0014-3820.2005.tb00902.x | spa |
dc.relation.references | Jongema Y. 2017. List of Edible Insects of the World. Wageningen. University. Disponible en: https://www.wur.nl/en/research-results/chair-groups/plantsciences/laboratory-of-entomology/edible-insects/worldwide-species-list.htm | spa |
dc.relation.references | Keenan S, Spice S, Cole J, Banfi P. 2015. Directorate General for Internal Policies. Policy Department A: economic and scientific policy. Food Safety Policy and Regulation in the United States. Disponible en: http://www.europarl.europa.eu/studies | spa |
dc.relation.references | Kluk, C. 2016. Innovación social. Creando soluciones para la vida. México: Promotora Social de México. 250 p. | spa |
dc.relation.references | Lahteenmaki–Uutela A, Grmelova N, Henault–Ethier L, Deschamps MH, Vandenberg, GW, Zhao A, Zhang Y, Yang B, Nemane V. 2017. Insects as Food and Feed: Laws of the European Union, United States, Canada, Mexico, Australia, and China. Insects as Food and Feed. 3(2):155-160. https://doi.org/10.3920/JIFF2016.0058 | spa |
dc.relation.references | Lensvelt EJS, Steenbekkers LPA. 2014. Exploring consumer acceptance of entomophagy: A survey and experiment in Australia and the Netherlands. Ecology of Food and Nutrition, 53(5):543-561. https://doi.org/10.1080/03670244.2013.879865 | spa |
dc.relation.references | Malm M, Liceaga AM. 2021. Physicochemical Properties of Chitosan from Two Commonly Reared Edible Cricket Species, and Its Application as a Hypolipidemic and Antimicrobial Agent. Polysaccharides. 2(2):339-353. https://doi.org/10.3390/polysaccharides2020022 | spa |
dc.relation.references | Meyer– Rochow, VB, Jung, C. 2020. Insects used as food and feed: isn’t that what we all need?. Foods. 9(8):1003. https://doi.org/10.3390/foods9081003 | spa |
dc.relation.references | Michalowski S, Sánchez C, Marí n D, Jiménez A, Martínez H, Domínguez V, Arroyave LM. 2018. Entre coacción y colaboración-verdad judicial, actores económicos y conflicto armado en Colombia. Bogotá: Dejusticia. 329 p. | spa |
dc.relation.references | Ministerio de Cultura. 2015. La tierra de la abundancia. Las cocinas tradicionales indígenas del sur del departamento del Amazonas. Bogotá D.C.: Ministerio de Cultura de Colombia. 89 p. | spa |
dc.relation.references | Nadathur SR, Wanasundara JPD, Scanlin L. 2017. Chapter 1-Proteins in the Diet: Challenges in Feeding the Global Population. En: Nadathur SR, Wanasundara JPD, Scanlin L, editores. Sustainable Protein Sources. Academic Press. p. 1-19. | spa |
dc.relation.references | Okada K, Pitchers W.R. Sharma MD, Hunt J, Hosken DJ. 2011. Longevity, calling effort, and metabolic rate in two populations of cricket. Behavioral Ecology and Sociobiology. 65(9):1773-1778. https://doi.org/10.1007/s00265-011-1185-3 | spa |
dc.relation.references | Oonincx D, van Itterbeeck J, Heetkamp M, van den Brand H, van Loon, JJA, van Huis A. 2010. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE. 5(12): e14445. https://doi.org/10.1371/journal.pone.0014445 | spa |
dc.relation.references | Orinda M., Oloo J, Magara H, Ayieko M, Ekesi S, Roos N. 2021. Cricket rearing handbook services for science and education United Kingdom: Service For Science and Education. 59 p. | spa |
dc.relation.references | Piha S, Pohjanheimo T, Lähteenmäki–Uutela A, Křečková Z, Otterbring T. 2018. The effects of consumer knowledge on the willingness to buy insect food: An exploratory cross-regional study in Northern and Central Europe, Food Quality and Preference. 70:1-10. https://doi.org/10.1016/j.foodqual.2016.12.006 | spa |
dc.relation.references | Ramos –Elorduy J, Viejo JL. 2007. Los insectos como alimento humano: Breve ensayo sobre la entomofagia, con especial referencia a México. Boletín de la Real Sociedad Española de Historia Natural Sección Biológica. 102(1-4):61-84. | spa |
dc.relation.references | Ramos-Elorduy J. 2008. Energy Supplied by Edible Insects from Mexico and their Nutritional and Ecological Importance. Ecology of Food and Nutrition. 47(3):280-297. https://doi.org/10.1080/03670240701805074 | spa |
dc.relation.references | Restrepo EM, Rosales RB, Estrada M, Orozco JDC, Herrera JER. 2016. Es Posible Enfrentar el Cambio Climático y Producir más Leche y Carne con Sistemas Silvopastoriles Intensivos. Ceiba. 54(1):23-30. https://doi.org/10.5377/ceiba.v54i1.2774 | spa |
dc.relation.references | Ribeiro JC, Lima RC, Maia M. Almeida A, Fonseca AJ, Cabrita AR, Cunha LM. 2019. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT. 113: 108335. https://doi.org/10.1016/j.lwt.2019.108335 | spa |
dc.relation.references | Roos N, van Huis A. 2017. Consuming insects: Are there health benefits? Journal of Insects as Food and Feed. 3(4):225-229. https://doi.org/info:doi/10.3920/JIFF2017.x007 | spa |
dc.relation.references | Sarmiento, JP. (2018). La aplazada reforma agraria y la Concentración de la tierra en Colombia. Revista de Derecho. 49:VII-XII. | spa |
dc.relation.references | Simon SA, de Araujo IE, Gutiérrez R, Nicolelis M. 2006. The neural mechanisms of gustation: A distributed processing code. Nature Reviews Neuroscience. 7(11):890-901. https://doi.org/10.1038/nrn2006 | spa |
dc.relation.references | Smil V. 2002. Eating meat: evolution, patterns, and consequences. Population and Develo-pment Review. 28(4):599-639. https://doi.org/10.1111/j.1728-4457.2002.00599.x | spa |
dc.relation.references | Smith RL, Thomas W. 1988. Southwestern Distribution and Habitat Ecology of Gryllodes supplicans. American Entomologist. 34(4):186-191. https://doi.org/10.1093/besa/34.4.186 | spa |
dc.relation.references | Stehfest E, Bouwman L, van Vuuren DP, Den Elzen MGJ, Eickhout B, Kabat P. 2009. Climate benefits of changing diet. Climatic change, 95:83-102. https://doi.org/10.1007/s10584-008-9534-6 | spa |
dc.relation.references | Suescún CA. 2013. La inercia de la estructura agraria en Colombia: determinantes recientes de la concentración de la tierra mediante un enfoque espacial. Cuadernos de Economía, 32(SPE61):653-682. | spa |
dc.relation.references | Tripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW. 2019. Estimates for world population and global food availability for global health. En: Singh RB, Watson RR and Takahashi T, editors. The Role of Functional Food Security in Global Health. 1st edition. London: Academic Press. p. 3-24. | spa |
dc.relation.references | Vandeweyer D, Wynants E, Crauwels S, Verreth C, Viaene N, Claes J, Lievens B, Van Campenhout L. 2018. Microbial Dynamics during Industrial Rearing, Processing, and Storage of Tropical House Crickets (Gryllodes sigillatus) for Human Consumption. Applied and Environmental Microbiology. 84(12):e00255-18. https://doi.org/10.1128/AEM.00255-18 | spa |
dc.relation.references | van Huis A. 2018. Chapter 11-Insects as Human Food. En Nóbrega RR, Albuquerque UP, editores. | spa |
dc.relation.references | Vernot D. 2021. Nuevas alternativas de producción con grillos G. sigillatus. Empoderamiento, emprendimiento y reconocimiento a mujeres rurales del municipio de La Mesa, Cundinamarca–Colombia. Chía: Universidad de La Sabana. 133 p. | spa |
dc.relation.references | Walker TJ. 1999. Grillo de la casa tropical - Gryllodes sigillatus (F. Walker). Disponible en: http://entnemdept.ufl.edu/creatures/misc/crickets/gsigilla.html | spa |
dc.relation.references | Woolf EZY, Emory K, Zhao J, Liu C. 2019. Wi llingness to consume insectcontaining foods: A survey in the United States. LWT, 102:100-105, https://doi.org/10.1016/j.lwt.2018.12.010 | spa |
dc.relation.references | Wu G, Bazer FW, Cross HR. 2014. Land-based production of animal protein: impacts, efficiency, and sustainability. Ann. N.Y. Acad. Sci. 1328:18- 28. https://doi.org/10.1111/nyas.12566 | spa |
dc.relation.references | Zielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A. 2015. Selected species of edible insects as a source of nutrient composition. Food Research International. 77:460-466. https://doi.org/10.1016/j.foodres.2015.09.008 | spa |
dc.relation.references | Zielińska E, Pankiewicz U, Sujka M. 2021. Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants (Basel, Switzerland). 10(7):1122. https://doi.org/10.3390/antiox10071122 | spa |
dc.relation.references | Zumbado, MA y Azofeifa, D. (2018). Insectos de importancia agrícola. Guía básica de entomología Costa Rica y Centroamérica. Programa Nacional de Agricultura Orgánica (PNAO). | spa |
dc.relation.references | Alonso, L., Amanto, F., Rodríguez, E. (2019). Evaluación de la densidad sobre los parámetros productivos. Tesis de la Facultad de Ciencias Veterinarias UNCPBA. Tandil, Argentina. | spa |
dc.relation.references | Arévalo Arévalo, H., Vernot, D. y Barragán Fonseca, K. (2022). Perspectivas de uso sostenible del grillo doméstico tropical (Gryllodes sigillatus) para la alimentación humana en Colombia. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 69(3). https://doi.org/10.15446/rfmvz.v69n3.98890 | spa |
dc.relation.references | Ayieko, M. A., and Orinda M. A. (2020). Production, Nutrient Composition, and Bioactive Components of Crickets (Gryllidae) for Human Nutrition. Springer EBooks,b 213–224. https://doi.org/10.1007/978-3-030-32952-5_14 | spa |
dc.relation.references | Barragán-Fonseca, K. B. (2018). Flies are what they eat: Tailoring nutrition of Black Soldier Fly (Hermetia illucens L.) for larval biomass production and fitness. https://doi.org/10.18174/449739 | spa |
dc.relation.references | Bawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020). Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. Journal of Insect Science, 20(2), 10. https://doi.org/10.1093/jisesa/ieaa014 | spa |
dc.relation.references | Cortés Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Chapter 6—Insect Mass Production Technologies. En Aaron T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as Sustainable Food Ingredients (pp. 153-201). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00006-5 | spa |
dc.relation.references | Dion Poulin A, Laroche M, Doyen A, Turgeon, SL. (2020). Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures. Molecules (Basel, Switzerland). 25(22):5366. https://doi.org/10.3390/molecules25225366 | spa |
dc.relation.references | Halloran A, Hanboonsong Y, Roos N, Bruun S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod. 156:83-94. https://doi.org/10.1016/j.jclepro.2017.04.017 | spa |
dc.relation.references | Halloran A, Hansen HH, Jensen LS, Bruun S. (2018). Comparing Environmental Impacts from Insects for Feed and Food as an Alternative to Animal Production. En: Halloran A, Flore R, Vantomme P, Roos N, editors. Edible Insects in Sustainable Food Systems. Springer Inter-national Publishing. p. 163-180. https://doi.org/10.1007/978-3-319-74011-9_1 | spa |
dc.relation.references | Hanboonsong, A. and Durst, P. (2020). Guidance on sustainable cricket farming – A practical manual. Bangkok, FAO. https://doi.org/10.4060/cb2446en | spa |
dc.relation.references | Herrero, M. A., y Gil, S. B. (2008). Consideraciones ambientales de la intensificación en producción animal. Ecología austral, 18(3), 273-289. | spa |
dc.relation.references | Iba, M., Nagao, T., & Urano, A. (1995). Effects of Population Density on Growth, Behavior and Levels of Biogenic Amines in the Cricket, Gryllus bimaculatus. | spa |
dc.relation.references | Jensen, K., Kristensen, T. N., Heckmann, L-H. L., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. In A. van Huis, & J. T. Tomberlin (Eds.), Insects as Food and Feed: from production to consumption (pp. 174-198). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-849-0 | spa |
dc.relation.references | Kee, P. E., Cheng, Y. S., Chang, J. S., Yim, H. S., Tan, J. C. Y., Lam, S. S., Wei Lan, J.C., Suan, H., Khoo, K. S. (2023). Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. Environmental research, 221, 115284. https://doi.org/10.1016/j.envres.2023.115284 | spa |
dc.relation.references | Kelly, C. D., and Valérie L’Heureux. (2021). Effect of diet and rearing density on contest outcome and settlement in a field cricket. 75(3). https://doi.org/10.1007/s00265-021-02990-w | spa |
dc.relation.references | Kinyuru J., and Kipkoech C. (2018). Production and growth parameters of edible crickets: experiences from a farm in a high altitude, cooler region of Kenya. Journal of Insects as Food and Feed; https://doi.org/10.3920/JIFF2017.0081 | spa |
dc.relation.references | Mahavidanage, S., Fuciarelli, T. M., Li, X., & David, R. C. (2023). The effects of rearing density on growth, survival, and starvation resistance of the house cricket Acheta domesticus. 32(1), 25–31. https://doi.org/10.3897/jor.32.86496 | spa |
dc.relation.references | Martella, M. B., Trumper, E., Bellis, L. M., Renison, D., Giordano, P. F., Bazzano, G., & Gleiser, R. M. (2012). Manual de Ecología. Poblaciones: Introducción a las técnicas para el estudio de las poblaciones silvestres. Reduca (Biología), 5(1). p: 5 (1): 1-31. ISSN: 1989-3620 | spa |
dc.relation.references | Mazurkiewicz, A., D. Tumialis, E. Pezowicz, Urbanski, J., Galewski, P., & K. Góral. (2013). The effect of density on the breeding optimization of the tropical house cricket Gryllodes sigillatus (Walker) (Orthoptera: Gryllidae). Annals of Warsaw University of Life Sciences- SGGW Animal Science | spa |
dc.relation.references | Mitchaothai, J., Grabowski, N. T., Lertpatarakomol, R., Trairatapiwan, T., Chhay, T., Keo, S., & Lukkananukool, A. (2022). Production Performance and Nutrient Conversion Efficiency of Field Cricket (Gryllus bimaculatus) in Mass-Rearing Conditions. Animals, 12(17), 2263. https://doi.org/10.3390/ani12172263 | spa |
dc.relation.references | Muzzatti, M. J., McConnell, E., Neave, S., MacMillan, H. A., Bertram, S. M. (2022). Fruitful female fecundity after feeding Gryllodes sigillatus royal jelly. bioRxiv, 2022-05. https://doi.org/10.1101/2022.05.17.492327 | spa |
dc.relation.references | Niemelä, P. T., Tiso, S., & Dingemanse, N. J. (2021). Density-dependent individual variation in male attractiveness in a wild field cricket. Behavioral Ecology, 32(4), 707-716. https://doi.org/10.1093/beheco/arab009 | spa |
dc.relation.references | Nikkhah, A., Van Haute, S., Jovanovic, V. et al. Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Sci Rep11, 14030 (2021). https://doi.org/10.1038/s41598-021-93284-8 | spa |
dc.relation.references | Numminen, E., Jokinen, M., Lindén, A., & Jarno Vanhatalo. (2023). Species ecology can bias population estimates. 283, 110115–110115. https://doi.org/10.1016/j.biocon.2023.110115 | spa |
dc.relation.references | Orinda, M., Mosi, R., Ayieko, M., Amimo, F., & Odinga, J. (2017). Growth performance of Common house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) crickets fed on agro-byproducts. ~ 1664 ~ Journal of Entomology and Zoology Studies, 5(6), 1664–1668. https://www.entomoljournal.com/archives/2017/vol5issue6/PartW/5-5-333-397.pdf | spa |
dc.relation.references | Orinda M., Oloo J., Magara H., Ayieko M., Ekesi S., Roos N. (2021). Cricket Reading Handbook – Services for Science & Education.https://doi.org/10.14738/eb.86.2020 | spa |
dc.relation.references | Otieno, J., Ayieko, M. A., Saliou Niassy, Salifu, D., Ameen Abdelmutalab, Fathiya, K. M., Subramanian, S., Komi K. M. Fiaboe, Roos, N., Ekesi, S., & Tanga, C. M. (2019). Integrating temperature-dependent life table data into Insect Life Cycle Model for predicting the potential distribution of Scapsipedus icipe Hugel & Tanga. 14(9), e0222941–e0222941. https://doi.org/10.1371/journal.pone.0222941 | spa |
dc.relation.references | Park, kwanho, Kim, W., Kim, E., Choi, J.-Y., & Kim, S.-H. (2016). Effect of adult population density on egg production in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). International Journal of Industrial Entomology, 33(2), 92–95. https://doi.org/10.7852/ijie.2016.33.2.92 | spa |
dc.relation.references | Peters TM, Barbosa P (1997) Influence of Population Density on Size, Fecundity, and Developmental Rate of Insects in Culture. Annual Review of Entomology 22: 431–450. https://doi.org/10.1146/annurev.en.22.010177.002243 | spa |
dc.relation.references | Reverberi, M., (2020). Edible insects: cricket farming and processing as an emerging market. Journal of Insects as Food Feed 6: 211–220. https://doi.org/10.3920/JIFF2019.0052 | spa |
dc.relation.references | Ribeiro JC, Lima RC, Maia M. Almeida A, Fonseca AJ, Cabrita AR, Cunha LM. (2019). Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT. 113: 108335. https://doi.org/10.1016/j.lwt.2019.108335 | spa |
dc.relation.references | Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905. https://doi.org/10.1016/j.jclepro.2016.06.154 | spa |
dc.relation.references | Sánchez-Casanova RE, Muñoz-Osorio GA, Sarmiento-Franco LA (2021). ¿Cómo afecta la disponibilidad de espacio y el tamaño de grupo al bienestar de los animales de granja?. ITEA-Información Técnica Económica Agraria 117(4): 375-389. https://doi.org/10.12706/itea.2020.041 | spa |
dc.relation.references | Sheppard, D. C., Tomberlin, J. K., Joyce, J. A., Kiser, B. C., & Sumner, S. M. (2002). Rearing Methods for the Black Soldier Fly (Diptera: Stratiomyidae): Table 1. Journal of Medical Entomology, 39(4), 695–698. https://doi.org/10.1603/0022-2585-39.4.695 | spa |
dc.relation.references | Takacs, J., Bryon, A., Annette Bruun Jensen, van, & Vera. (2023). Effects of Temperature and Density on House Cricket Survival and Growth and on the Prevalence of Acheta Domesticus Densovirus. 14(7), 588–588. https://doi.org/10.3390/insects14070588 | spa |
dc.relation.references | Vanhonacker F., Verbeke, W., Van Poucke E., Buijs, S., & Tuyttens, F. (2009). Societal concern related to stocking density, pen size and group size in farm animal production. Livestock Science, 123(1), 16–22. https://doi.org/10.1016/j.livsci.2008.09.023 | spa |
dc.relation.references | Yu.D. Burago, V.A. Zalgaller, L.D. Kudryavtsev (2001), «Area», en Hazewinkel, Michiel, ed., Encyclopaedia of Mathematics (en inglés), Springer, ISBN 978-1556080104 | spa |
dc.relation.references | Zaelor J., and Kitthawee S. (2018). Growth response to population density in larval stage of darkling beetles (Coleoptera; Tenebrionidae) Tenebrio molitor and Zophobas atratus. Agriculture and Natural Resources, 52(6), 603–606. https://doi.org/10.1016/j.anres.2018.11.004 | spa |
dc.relation.references | Zielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International. 77:460-466. https://doi.org/10.1016/j.foodres.2015.09.008 | spa |
dc.relation.references | Zielińska E, Pankiewicz U, Sujka M. (2021). Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants (Basel, Switzerland). 10(7):1122. https://doi.org/10.3390/antiox10071122 | spa |
dc.relation.references | Bawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020). Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. Journal of Insect Science, 20(2), 10. https://doi.org/10.1093/jisesa/ieaa014 | spa |
dc.relation.references | Ceballos, H., y Ospina, B. (2002). La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización. CIAT (Centro Internacional de Agricultura Tropical) CLAYUCA (Consorcio Latinoamericano y del Caribe de Apoyo a la Investigación y Desarrollo de la Yuca). Cali, Colombia 2002. 586p. http://hdl.handle.net/20.500.12324/37152 | spa |
dc.relation.references | Caparros Megido, R., Alabi, T., Nieus, C., Blecker, C., Danthine, S., Bogaert, J., Haubruge, É. y Francis, F. (2016), R, Optimización de una producción barata y residencial a pequeña escala de grillos comestibles con subproductos locales como fuente alternativa de alimentos humanos ricos en proteínas en la provincia de Ratanakiri, Camboya. J. Ciencia. Food Agric., 96:627-632. https://doi.org/10.1002/jsfa.7133 | spa |
dc.relation.references | Cortes Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Chapter 6— Insect Mass Production Technologies. En Aaron T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as Sustainable Food Ingredients (pp. 153-201). | spa |
dc.relation.references | Fuah, A. M., Siregar, H. C. H., & Endrawati, Y. C. (2015). Cricket farming for animal protein as profitable business for small farmers in indonesia. J. Agric. Sci. Tech, 5, 296-304. DOI: 10.17265 / 2161-6256 / 2015.04.008 | spa |
dc.relation.references | Giraldo Toro, A. (2006). Estudio de la obtención de harina de hojas de yuca (Manihot esculenta Crantz) para consumo humano. Tesis (Ingeniero Agroindustrial) (Doctoral dissertation, Universidad del Cauca, Facultad de Ciencias Agropecuarias, Ingeniería Agroindustrial). | spa |
dc.relation.references | Halloran, Afton, Roos, N., & Hanboonsong, Y. (2017). Cricket farming as a livelihood strategy in Thailand. The Geographical Journal, 183(1), 112-124. https://doi.org/10.1111/geoj.12184 | spa |
dc.relation.references | Hawkes, M., Lane, S. M., Rapkin, J., Jensen, K., House, C. M., Sakaluk, S. K., & Hunt, J. (2022). Intralocus sexual conflict over optimal nutrient intake and the evolution of sex differences in life span and reproduction. Functional Ecology, 36(4), 865-881 https://doi.org/10.1111/1365-2435.13995 | spa |
dc.relation.references | International Platform of Insects for Food and Feed (IPIFF). (2019). The European insect sector today: challenges, opportunities and regulatory landscape. IPIFF vision paper on the future of the insect sector towards 2030. | spa |
dc.relation.references | Jensen, K., Kristensen, T. N., Heckmann, L. H., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, the Netherlands, 175-198. | spa |
dc.relation.references | Jucker C., Belluco S., Bellezza Oddon S., Ricci, A., L. Bonizzi, Lupi, D., S. Savoldelli, I. Biasato, Caimi, C., A. Mascaretti, & Gasco, L. (2022). Impact of some local organic by-products on Acheta domesticus growth and meal production. Institutional Research Information System University of Turin (University of Turin), 8(6), 631–640. https://doi.org/10.3920/jiff2021.0121 | spa |
dc.relation.references | Kaewplik, T., Akiyama, D., & Sasaki, Y. (2023). Construction and evaluation of an AI system for tracking cricket behavior under conditions of bright and dark lighting. Journal of Insects as Food and Feed, 1-12. https://doi.org/10.3920/JIFF2023.0006 | spa |
dc.relation.references | Kuo, C., and Fisher, B. L. (2022). A literature review of the use of weeds and agricultural and food industry by-products to feed farmed crickets (insecta; orthoptera; Gryllidae). Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.810421 | spa |
dc.relation.references | Lundy, M. E., and Parrella, M. P. (2015). Crickets Are Not a Free Lunch: Protein Capture from Scalable Organic Side-Streams via High-Density Populations of Acheta domesticus. PLOS ONE, 10(4), e0118785–e0118785. https://doi.org/10.1371/journal.pone.0118785 | spa |
dc.relation.references | Magara, H. J., Niassy, S., Ayieko, M. A., Mukundamago, M., Egonyu, J. P., Tanga, C. M., Kimathi, E. K., Ongere, J. O., Fiaboe, K. M., Hugel, S., Orinda, M. A., Roos, N., & Ekesi, S. (2021). Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits—a review. Frontiers in nutrition, 7, 537915. https://doi.org/10.3389/fnut.2020.537915 | spa |
dc.relation.references | Mitchaothai, J., Grabowski, N. T., Lertpatarakomol, R., Trairatapiwan, T., Chhay, T., Keo, S., & Lukkananukool, A. (2022). Production Performance and Nutrient Conversion Efficiency of Field Cricket (Gryllus bimaculatus) in Mass-Rearing Conditions. Animals, 12(17), 2263. https://doi.org/10.3390/ani12172263 | spa |
dc.relation.references | Morales-Ramos, J. A., Rojas, M. G., Coudron, T. A., Huynh, M. P., Zou, D., & Shelby, K. S. (2023). Artificial diet development for entomophagous arthropods. In Mass production of beneficial organisms (pp. 233-260). Academic Press. https://doi.org/10.1016/B978-0-12-822106-8.00011-7 | spa |
dc.relation.references | Mungkung, R., & Phetcharaburanin, T. (2023). Food for the future: sustainability assessment of cricket products for policy decisions to move toward sustainable agriculture in Thailand. Journal of Insects as Food and Feed, 1-12. https://doi.org/10.3920/JIFF2021.0182 | spa |
dc.relation.references | Murugu D. K., Onyango A. N., Ndiritu A. K., Osuga I. M., Xavier C., Nakimbugwe D. & Tanga C.M. (2021). From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins.Front. Nutr. 8:704002. https://doi.org/10.3389/fnut.2021.704002 | spa |
dc.relation.references | Musungu, A. L., Muriithi, B. W., Ghemoh, C. J., Nakimbugwe, D., & Tanga, C. M. (2023). Production, consumption, and market supply of edible crickets: insights from East Africa. Agricultural and Food Economics, 11(1), 28. https://doi.org/10.1186/s40100-023-00272-9 | spa |
dc.relation.references | Muzzatti, M. J., McConnell, E., Neave, S., MacMillan, H. A., & Bertram, S. M. (2022). Fruitful female fecundity after feeding Gryllodes sigillatus (Orthoptera: Gryllidae) royal jelly. The Canadian Entomologist, 154(1), e50. https://doi.org/10.4039/tce.2022.39 | spa |
dc.relation.references | Nakagaki, B. J., & Defoliart, G. R. (1991). Comparison of diets for mass rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. Journal of Economic Entomology, 84(3), 891-896. https://doi.org/10.1093/jee/84.3.891 | spa |
dc.relation.references | Ng’ang’a, J., Imathiu, S., Fombong, F., Borremans, A., Van Campenhout, L., Broeck, J. V., & Kinyuru, J. (2020). Can farm weeds improve the growth and microbiological quality of crickets (Gryllus bimaculatus)?. Journal of Insects as Food and Feed, 6(2), 199-209. https://doi.org/10.3920/JIFF2019.0051 | spa |
dc.relation.references | Ng’ang’a, J., Imathiu, S., Fombong, F., Vanden Broeck, J., & Kinyuru, J. (2021). Effect of dietary supplementation with powder derived from Moringa oleifera and Azadirachta indica leaves on growth and microbial load of edible crickets. Journal of Insects as Food and Feed, 7(4), 419-431. https://doi.org/10.3920/JIFF2020.0056 | spa |
dc.relation.references | Ng, S. H., Stat, M., Bunce, M., & Simmons, L. W. (2018). The influence of diet and environment on the gut microbial community of field crickets. Ecology and Evolution, 8(9), 4704-4720. https://doi.org/10.1002/ece3.3977 | spa |
dc.relation.references | Oloo, J. A., Ayieko, M., & Nyongesah, J. M. (2020). Acheta domesticus (Cricket) feed resources among smallholder farmers in Lake Victoria region of Kenya. Food science & nutrition, 8(1), 69-78. https://doi.org/10.1002/fsn3.1242 | spa |
dc.relation.references | Oonincx D; De Boer I. (2012). Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS One 7(12):511-515. | spa |
dc.relation.references | Orinda, M., Mosi, R.O., Ayieko, M.A., & Amimo, F.A. (2017). Growth performance of common house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) crickets fed on agro byproducts. Journal of entomology and zoology studies, 5, 1664-1668. | spa |
dc.relation.references | Pastell, H., Mellberg, S., Ritvanen, T., Raatikainen, M., Mykkänen, S., Niemi, J., Latomäki, I., and Wirtanen, G. (2021). How Does Locally Produced Feed Affect the Chemical Composition of Reared House Crickets (Acheta domesticus)?. ACS Food Science & Technology, 1(4), 625-635. https://doi.org/10.1021/acsfoodscitech.0c00083 | spa |
dc.relation.references | Pilco-Romero, G., Chisaguano-Tonato, A. M., Herrera-Fontana, M. E., Chimbo-Gándara, L. F., Sharifi-Rad, M., Giampieri, F., ... & Álvarez-Suárez, J. M. (2023). House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends in Food Science & Technology, 104226. https://doi.org/10.1016/j.tifs.2023.104226 | spa |
dc.relation.references | Straub, P., Tanga, C. M., Osuga, I., Windisch, W., & Subramanian, S. (2019). Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Animal Feed Science and Technology, 255, 114215. https://doi.org/10.1016/j.anifeedsci.2019.114215 | spa |
dc.relation.references | Siddiqui, S. A., Osei-Owusu, J., Yunusa, B. M., Rahayu, T., Fernando, I., Shah, M. A., & Centoducati, G. (2023). Prospects of edible insects as sustainable protein for food and feed–a review. Journal of Insects as Food and Feed, 1(aop), 1- 27. https://doi.org/10.1163/23524588-20230042 | spa |
dc.relation.references | Sorjonen, J. M., Karhapää, M., Holm, S., Valtonen, A., & Roininen, H. (2022). Performance of the house cricket (Acheta domesticus) on by-product diets in small65 scale production. Journal of Insects as Food and Feed, 8(3), 289-294. https://doi.org/10.3920/JIFF2021.0079 | spa |
dc.relation.references | Suckling, J., Druckman, A., Moore, C. D., & Driscoll, D. (2020). The environmental impact of rearing crickets for live pet food in the UK, and implications of a transition to a hybrid business model combining production for live pet food with production for human consumption. The International Journal of Life Cycle Assessment, 25, 1693-1709. https://doi.org/10.1007/s11367-020-01778-w | spa |
dc.relation.references | Tierney, A. J., Velazquez, E., Johnson, L., Hiranandani, S., Pauly, M., & Souvignier, M. (2023). Nutritional and reproductive status affect amino acid appetite in house crickets (Acheta domesticus). Frontiers in Insect Science, 3, 1120413. https://doi.org/10.3389/finsc.2023.1120413 | spa |
dc.relation.references | Ververis, E., Boué, G., Poulsen, M., Pires, S. M., Niforou, A., Thomsen, S. T., Tesson, V., Federighi, M., & Naska, A. (2022). A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket). Journal of Food Composition and Analysis, 104859. https://doi.org/10.1016/j.jfca.2022.104859 | spa |
dc.relation.references | Zajitschek, F., Lailvaux, S. P., Dessmann, J., & Brooks, R. (2012). Diet, sex, and death in field crickets. Ecology and Evolution, 2(7), 1627-1636. https://doi.org/10.1002/ece3.288 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Gryllidae | spa |
dc.subject.agrovoc | Gryllidae | eng |
dc.subject.agrovoc | Cultivo de insectos | spa |
dc.subject.agrovoc | insect farming | eng |
dc.subject.agrovoc | Nutrición animal | spa |
dc.subject.agrovoc | animal nutrition | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.proposal | Producción de insectos | spa |
dc.subject.proposal | Optimización de procesos | spa |
dc.subject.proposal | Densidad | spa |
dc.subject.proposal | Sostenibilidad | spa |
dc.subject.proposal | Nutrición | spa |
dc.subject.proposal | Grillos | spa |
dc.subject.proposal | Insect production | eng |
dc.subject.proposal | Process standardization | eng |
dc.subject.proposal | Density | eng |
dc.subject.proposal | Nutrition | eng |
dc.subject.proposal | Bioconversion | eng |
dc.subject.proposal | Sustainability | eng |
dc.title | Efecto de la dieta, densidad de cría y área superficial sobre parámetros productivos de la especie Gryllodes sigillatus en condiciones de laboratorio | spa |
dc.title.translated | Effect of diet, breeding density and surface area on productive parameters of the species Gryllodes sigillatus under laboratory conditions | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Cría de grillos para la alimentación humana. Fomento del biocomercio en acompañamiento de mujeres rurales en el municipio de La Mesa, Cundinamarca | spa |
oaire.fundername | Fondo de CTeI del Sistema General de Regalías del Departamento de Cundinamarca y al Programa Nacional Colombia Bio (MinCiencias) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032460675.2024.pdf
- Tamaño:
- 967.34 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Salud y Producción Animal
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: