Efecto de la dieta, densidad de cría y área superficial sobre parámetros productivos de la especie Gryllodes sigillatus en condiciones de laboratorio

dc.contributor.advisorBarragán Fonseca, Karol Bibianaspa
dc.contributor.advisorMuñoz Ramírez, Adriana Patriciaspa
dc.contributor.authorArevalo Arevalo, Helbert Antoniospa
dc.contributor.editorVernot van Arcken, Diana Marcelaspa
dc.contributor.orcidhttps://orcid.org/0000-0002-4264-9559spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Antonio-Arevalo?ev=hdr_xprfspa
dc.contributor.subjectmatterexpertCastellanos Suarez, Félix Andrésspa
dc.date.accessioned2025-04-01T20:23:59Z
dc.date.available2025-04-01T20:23:59Z
dc.date.issued2024-07-03
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa presente investigación tiene como objetivo principal evaluar el impacto de la densidad de cría y el área superficial en la producción del grillo doméstico tropical, Gryllodes sigillatus, en entornos de laboratorio. Este objetivo se aborda a través de una investigación detallada dividida en tres capítulos distintos. El primer capítulo se enfoca en las perspectivas del uso de esta especie para la alimentación humana en Colombia, explorando su potencial impacto social, ambiental y nutricional. En el segundo capítulo, se examina cómo la densidad de cría y el espacio disponible afectan aspectos como la supervivencia y el peso promedio de esta especie, demostrando que a una densidad baja de individuos (<0.023 grillos/cm2) se obtenían individuos más pesados y una tasa de mortalidad baja. El tercer capítulo, analiza el impacto de la inclusión de harina de Manihot esculenta (yuca) y Alocasia macrorhyza (bore) en la dieta, evaluando su influencia en la supervivencia, peso promedio por individuo, conversión alimenticia y consumo de alimento, indicando que las harinas de yuca y de bore son una oportunidad como ingrediente en la dieta de los grillos al mejorar algunos parámetros productivos como también los beneficios de una dieta con una relación de carbohidratos- proteína de 2 a 1. En la presente tesis se comprueba la importancia de considerar cuidadosamente la densidad de cría, el área superficial y la dieta en el proceso de producción, proporcionando valiosa información para optimizar la cría de Gryllodes sigillatus y contribuir así a la seguridad alimentaria y la sostenibilidad en los sistemas agroalimentarios. (Texto tomado de la fuente).spa
dc.description.abstractThe present research aims to assess the impact of rearing density and surface area on the production of the tropical house cricket, Gryllodes sigillatus, in laboratory settings. This objective is approached through a detailed investigation divided into three distinct chapters. The first chapter focuses on the prospects of using this species for human consumption in Colombia, exploring its potential social, environmental, and nutritional impact. In the second chapter, the examination of how rearing density and available space affect aspects such as survival and average weight of this species demonstrates that at a low density of individuals (<0.023 crickets/cm2), heavier individuals and a low mortality rate were obtained. The third chapter analyzes the impact of including Manihot esculenta (cassava) and Alocasia macrorhyza (bore) flour in the diet, evaluating their influence on survival, average weight per individual, feed conversion, and food consumption. It indicates that cassava and bore flours present an opportunity as ingredients in the cricket diet, improving some productive parameters as well as the benefits of a diet with a carbohydrate-protein ratio of 2 to 1. This thesis confirms the importance of carefully considering rearing density, surface area, and diet in the production process, providing valuable information to optimize Gryllodes sigillatus breeding and contribute to food security and sustainability in agri-food systems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaSistemas pecuariosspa
dc.format.extent81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87807
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Producción Animalspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Doctorado en Ciencias - Salud Animal o Producción Animalspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAhuja K, Mamtani K. 2020. Edible Insects Market Size by Product (Beetles, Caterpillars, Gras-shoppers, Bees, Wasps, Ants, Scale Insects & Tree Bugs), By Application (Flour, Protein Bars, Snacks), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends. Disponible en: https://www.gminsights.com/industry-analysis/edible-insects-marketspa
dc.relation.referencesAyala ML. 2022. Mosca negra, plato fuerte de una spin-off pionera en Colombia. Periódico UNAL. Disponible en: http://agenciadenoticias.unal.edu.co/detalle/mosca-negra-plato-fuerte-deuna-spin-off-pionera-en-colombia-1spa
dc.relation.referencesBarragán–Fonseca KY, Barragán-Fonseca KB, Verschoor G, Van Loon JJ,Dicke M. 2020. Insects for peace. Current Opinion in Insect Science. 40:85-93. https://doi.org/10.1016/j.cois.2020.05.011spa
dc.relation.referencesBanco Mundial. 2019. Población, total | Data. Disponible en: https://datos.bancomundial.org/indicator/SP.POP.TOTLspa
dc.relation.referencesBarennes H, Phimmasane M. Rajaonarivo C. 2015. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos. PLOS ONE.10(8):e0136458. https://doi.org/10.1371/journal.pone.0136458spa
dc.relation.referencesBhaskar M. 2017. Curaduría. El poder de la selección en un mundo de excesos. México: Fondo de Cultura Económica. 311 p.spa
dc.relation.referencesCadena–Castañeda OJ. 2011. A new genus of cricket near to Miogryllus and Kazuemba from the Colombian Atlantic coast and the first report of Gryllodes sigillatus from Colombia. Zootaxa. 3126:55-61.spa
dc.relation.referencesCámara MM, Moreno PC, Daschner Á, Fandos MEG, Gómez AP, Lázaro DR, Buelga JÁS. 2018. Informe del Comité Científico de la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN) en relación a los riesgos microbiológicos y alergénicos asociados al consumo de insectos. Revista del Comité Científico de la AESAN 27:11-40.spa
dc.relation.referencesCartay R. 2018. Entre el asombro y el asco: El consumo de insectos en la cuenca amazónica. El caso del Rhynchophorus palmarum (Coleoptera Curculionidae). Revista Colombiana de Antropología. 54(2):143-169. https://doi.org/10.22380/2539472X.465spa
dc.relation.referencesComisión Nacional del Medio Ambiente. 2008. Biodiversidad de Chile. Patrimonio y desafíos. 2da Ed. Santiago de Chile: Ocho Libros Editores Ltda. 640 p.spa
dc.relation.referencesCortés JA, Ruiz AT, Morales–Ramos JA, Thomas M, Rojas MG, Tomberlin, JK. Yi L, Han R, Giroud L, Jullien RL. 2016. Chapter 6—Insect Mass Production Technologies. En: Dossey A, Morales-Ramos JA, Rojas MG. Insects as Sustainable Food Ingredients. London: Academic Press. 153-201 p. https://doi.org/10.1016/B978-0-12-802856-8.00006-5spa
dc.relation.referencesCruz D, Arévalo, H. 2021. Artrópodos. Producción de grillos de forma sustentable. Chía: Universidad de La Sabana. 99 p.spa
dc.relation.referencesDíaz E. 2019. Bioemprendimientos en Latinoamérica: jóvenes emprendedores. En: Hodson E, Henry G, Trigo, E. La bioeconomía Nuevo marco para el crecimiento sostenible en América Latina. 147-161 p. Bogotá D.C.: Pontificia Universidad Javerianaspa
dc.relation.referencesDicke M. 2017. Servicios ecosistémicos de insectos. En: Van Huis A, Tomberlin JK. Insects as Food and Feed: From Production to Consumption. 61-76 p. Países Bajos: Wageningen Academic Publishers.spa
dc.relation.referencesDion Poulin A, Laroche M, Doyen A, Turgeon, SL. 2020. Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures. Molecules (Basel, Switzerland). 25(22):5366. https://doi.org/10.3390/molecules25225366spa
dc.relation.referencesDossey AT, Tatum JT, McGill WL. 2016. Chapter 5-Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. En: Dossey A, Morales–Ramos JA, Rojas MG. Insects as Sustainable Food Ingredients. London: Academic Press. 113- 152 p. London: Academic Press. https://doi.org/10.1016/B978-0-12-802856- 8.00005-3spa
dc.relation.referencesDunkel FV, Payne C. 2016. Introduction to Edible insects. En: Dossey AT, Morales–Ramos JA, Rojas MG, editores. Insects as Sustainable Food Ingredients. London: Academic Press. p. 1-27.spa
dc.relation.referencesFAO. 2009. 2050 High-Level Experts Forum: Foro. Disponible en: http://www.fao.org/wsfs/forum2050/wsfs-forum/es/spa
dc.relation.referencesFAO. 2019. Meat Market Review—Overview of global meat market developments in 2018. Disponible en: http://www.fao.org/documents/card/es/c/ca3880en/spa
dc.relation.referencesFAO, FIDA, OPS, WFP, UNICEF. 2020. Panorama de la seguridad alimentaria y nutrición en América Latina y el Caribe 2020. Santiago de Chile: FAO. 150 p.spa
dc.relation.referencesFontaneto D, Tommaseo–Ponzetta M, Galli C, Rise P, Glew RH, Paoletti M. 2011. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecological of Food Nutrition. 50:351-367. https://doi.org/10.1080/03670244.2011.586316spa
dc.relation.referencesFundación Heinrich Böll. 2014. «Atlas de la carne»—Hechos y cifras sobre los animales que comemos. Editora e Imprenta MAVAL Ltda. Disponible en: https://cl.boell.org/sites/default/files/atlasdelacarne2014_web-2.pdfspa
dc.relation.referencesGillott C. 2005. The Plecopteroid, Blattoid, and Orthopteroid Orders. En: Entomology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3183-1_7spa
dc.relation.referencesGovorushko S. 2019. Global status of insects as food and feed source: A review. Trends in Food Science & Technology. 91:436-445. https://doi.org/10.1016/j.tifs.2019.07.032spa
dc.relation.referencesHall FG. 2020. Bioactive and allergenic properties of edible cricket (Gryllodes sigillatus) peptides. https://doi.org/10.25394/PGS.13360142.v1spa
dc.relation.referencesHalloran A, Roos N, Flore R, Hanboonsong Y. 2016. The development of the edible cricket industry in Thailand. 91-100 p. Wgeningen: Academic Publishers. https://doi.org/info:doi/10.3920/JIFF2015.0091spa
dc.relation.referencesHalloran A, Hanboonsong Y, Roos N, Bruun S. 2017. Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod. 156:83-94. https://doi.org/10.1016/j.jclepro.2017.04.017spa
dc.relation.referencesHalloran A, Roos N, Hanboonsong Y. 2017. Cricket farming as a livelihood strategy in Thailand. The Geographical Journal. 183(1):112-124. https://doi.org/10.1111/geoj.12184spa
dc.relation.referencesHalloran A, Hansen HH, Jensen LS, Bruun S. 2018. Comparing Environmental Impacts from Insects for Feed and Food as an Alternative to Animal Production. En: Halloran A, Flore R, Vantomme P, Roos N, editors. Edible Insects in Sustainable Food Systems. Springer Inter-national Publishing. p.163-180. https://doi.org/10.1007/978-3-319-74011-9_1spa
dc.relation.referencesHanboonsong Y, Jamjanya T, Durst P.B. 2013. Six-legged livestock: Edible insect farming, collection and marketing in Thailand. Bangkok: FAO. 57 p.spa
dc.relation.referencesHanboonsong A, Durst P. 2020. Guidance on sustainable cricket farming–A practical manual for farmers and inspectors. Bangkok: FAO. 84 p.spa
dc.relation.referencesHartmann C, Siegrist M. 2016. Becoming an insectivore: Results of an experiment, Food Quality and Preference. 51:118-122. https://doi.org/10.1016/j.foodqual.2016.03.003spa
dc.relation.referencesIPIFF. 2016. Implementation of EU Regulation 2015/2283 on ‘novel foods. Disponible en: https://ipiff.org/wpcontent/uploads/2019/08/ipiff_briefing_update_03.pdfspa
dc.relation.referencesIvy TM, Sakaluk SK. 2005. Polyandry promotes enhanced offspring survival in decorated crickets. Evolution 59(1):152-159. https://doi.org/10.1111/j.0014-3820.2005.tb00902.xspa
dc.relation.referencesJongema Y. 2017. List of Edible Insects of the World. Wageningen. University. Disponible en: https://www.wur.nl/en/research-results/chair-groups/plantsciences/laboratory-of-entomology/edible-insects/worldwide-species-list.htmspa
dc.relation.referencesKeenan S, Spice S, Cole J, Banfi P. 2015. Directorate General for Internal Policies. Policy Department A: economic and scientific policy. Food Safety Policy and Regulation in the United States. Disponible en: http://www.europarl.europa.eu/studiesspa
dc.relation.referencesKluk, C. 2016. Innovación social. Creando soluciones para la vida. México: Promotora Social de México. 250 p.spa
dc.relation.referencesLahteenmaki–Uutela A, Grmelova N, Henault–Ethier L, Deschamps MH, Vandenberg, GW, Zhao A, Zhang Y, Yang B, Nemane V. 2017. Insects as Food and Feed: Laws of the European Union, United States, Canada, Mexico, Australia, and China. Insects as Food and Feed. 3(2):155-160. https://doi.org/10.3920/JIFF2016.0058spa
dc.relation.referencesLensvelt EJS, Steenbekkers LPA. 2014. Exploring consumer acceptance of entomophagy: A survey and experiment in Australia and the Netherlands. Ecology of Food and Nutrition, 53(5):543-561. https://doi.org/10.1080/03670244.2013.879865spa
dc.relation.referencesMalm M, Liceaga AM. 2021. Physicochemical Properties of Chitosan from Two Commonly Reared Edible Cricket Species, and Its Application as a Hypolipidemic and Antimicrobial Agent. Polysaccharides. 2(2):339-353. https://doi.org/10.3390/polysaccharides2020022spa
dc.relation.referencesMeyer– Rochow, VB, Jung, C. 2020. Insects used as food and feed: isn’t that what we all need?. Foods. 9(8):1003. https://doi.org/10.3390/foods9081003spa
dc.relation.referencesMichalowski S, Sánchez C, Marí n D, Jiménez A, Martínez H, Domínguez V, Arroyave LM. 2018. Entre coacción y colaboración-verdad judicial, actores económicos y conflicto armado en Colombia. Bogotá: Dejusticia. 329 p.spa
dc.relation.referencesMinisterio de Cultura. 2015. La tierra de la abundancia. Las cocinas tradicionales indígenas del sur del departamento del Amazonas. Bogotá D.C.: Ministerio de Cultura de Colombia. 89 p.spa
dc.relation.referencesNadathur SR, Wanasundara JPD, Scanlin L. 2017. Chapter 1-Proteins in the Diet: Challenges in Feeding the Global Population. En: Nadathur SR, Wanasundara JPD, Scanlin L, editores. Sustainable Protein Sources. Academic Press. p. 1-19.spa
dc.relation.referencesOkada K, Pitchers W.R. Sharma MD, Hunt J, Hosken DJ. 2011. Longevity, calling effort, and metabolic rate in two populations of cricket. Behavioral Ecology and Sociobiology. 65(9):1773-1778. https://doi.org/10.1007/s00265-011-1185-3spa
dc.relation.referencesOonincx D, van Itterbeeck J, Heetkamp M, van den Brand H, van Loon, JJA, van Huis A. 2010. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE. 5(12): e14445. https://doi.org/10.1371/journal.pone.0014445spa
dc.relation.referencesOrinda M., Oloo J, Magara H, Ayieko M, Ekesi S, Roos N. 2021. Cricket rearing handbook services for science and education United Kingdom: Service For Science and Education. 59 p.spa
dc.relation.referencesPiha S, Pohjanheimo T, Lähteenmäki–Uutela A, Křečková Z, Otterbring T. 2018. The effects of consumer knowledge on the willingness to buy insect food: An exploratory cross-regional study in Northern and Central Europe, Food Quality and Preference. 70:1-10. https://doi.org/10.1016/j.foodqual.2016.12.006spa
dc.relation.referencesRamos –Elorduy J, Viejo JL. 2007. Los insectos como alimento humano: Breve ensayo sobre la entomofagia, con especial referencia a México. Boletín de la Real Sociedad Española de Historia Natural Sección Biológica. 102(1-4):61-84.spa
dc.relation.referencesRamos-Elorduy J. 2008. Energy Supplied by Edible Insects from Mexico and their Nutritional and Ecological Importance. Ecology of Food and Nutrition. 47(3):280-297. https://doi.org/10.1080/03670240701805074spa
dc.relation.referencesRestrepo EM, Rosales RB, Estrada M, Orozco JDC, Herrera JER. 2016. Es Posible Enfrentar el Cambio Climático y Producir más Leche y Carne con Sistemas Silvopastoriles Intensivos. Ceiba. 54(1):23-30. https://doi.org/10.5377/ceiba.v54i1.2774spa
dc.relation.referencesRibeiro JC, Lima RC, Maia M. Almeida A, Fonseca AJ, Cabrita AR, Cunha LM. 2019. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT. 113: 108335. https://doi.org/10.1016/j.lwt.2019.108335spa
dc.relation.referencesRoos N, van Huis A. 2017. Consuming insects: Are there health benefits? Journal of Insects as Food and Feed. 3(4):225-229. https://doi.org/info:doi/10.3920/JIFF2017.x007spa
dc.relation.referencesSarmiento, JP. (2018). La aplazada reforma agraria y la Concentración de la tierra en Colombia. Revista de Derecho. 49:VII-XII.spa
dc.relation.referencesSimon SA, de Araujo IE, Gutiérrez R, Nicolelis M. 2006. The neural mechanisms of gustation: A distributed processing code. Nature Reviews Neuroscience. 7(11):890-901. https://doi.org/10.1038/nrn2006spa
dc.relation.referencesSmil V. 2002. Eating meat: evolution, patterns, and consequences. Population and Develo-pment Review. 28(4):599-639. https://doi.org/10.1111/j.1728-4457.2002.00599.xspa
dc.relation.referencesSmith RL, Thomas W. 1988. Southwestern Distribution and Habitat Ecology of Gryllodes supplicans. American Entomologist. 34(4):186-191. https://doi.org/10.1093/besa/34.4.186spa
dc.relation.referencesStehfest E, Bouwman L, van Vuuren DP, Den Elzen MGJ, Eickhout B, Kabat P. 2009. Climate benefits of changing diet. Climatic change, 95:83-102. https://doi.org/10.1007/s10584-008-9534-6spa
dc.relation.referencesSuescún CA. 2013. La inercia de la estructura agraria en Colombia: determinantes recientes de la concentración de la tierra mediante un enfoque espacial. Cuadernos de Economía, 32(SPE61):653-682.spa
dc.relation.referencesTripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW. 2019. Estimates for world population and global food availability for global health. En: Singh RB, Watson RR and Takahashi T, editors. The Role of Functional Food Security in Global Health. 1st edition. London: Academic Press. p. 3-24.spa
dc.relation.referencesVandeweyer D, Wynants E, Crauwels S, Verreth C, Viaene N, Claes J, Lievens B, Van Campenhout L. 2018. Microbial Dynamics during Industrial Rearing, Processing, and Storage of Tropical House Crickets (Gryllodes sigillatus) for Human Consumption. Applied and Environmental Microbiology. 84(12):e00255-18. https://doi.org/10.1128/AEM.00255-18spa
dc.relation.referencesvan Huis A. 2018. Chapter 11-Insects as Human Food. En Nóbrega RR, Albuquerque UP, editores.spa
dc.relation.referencesVernot D. 2021. Nuevas alternativas de producción con grillos G. sigillatus. Empoderamiento, emprendimiento y reconocimiento a mujeres rurales del municipio de La Mesa, Cundinamarca–Colombia. Chía: Universidad de La Sabana. 133 p.spa
dc.relation.referencesWalker TJ. 1999. Grillo de la casa tropical - Gryllodes sigillatus (F. Walker). Disponible en: http://entnemdept.ufl.edu/creatures/misc/crickets/gsigilla.htmlspa
dc.relation.referencesWoolf EZY, Emory K, Zhao J, Liu C. 2019. Wi llingness to consume insectcontaining foods: A survey in the United States. LWT, 102:100-105, https://doi.org/10.1016/j.lwt.2018.12.010spa
dc.relation.referencesWu G, Bazer FW, Cross HR. 2014. Land-based production of animal protein: impacts, efficiency, and sustainability. Ann. N.Y. Acad. Sci. 1328:18- 28. https://doi.org/10.1111/nyas.12566spa
dc.relation.referencesZielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A. 2015. Selected species of edible insects as a source of nutrient composition. Food Research International. 77:460-466. https://doi.org/10.1016/j.foodres.2015.09.008spa
dc.relation.referencesZielińska E, Pankiewicz U, Sujka M. 2021. Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants (Basel, Switzerland). 10(7):1122. https://doi.org/10.3390/antiox10071122spa
dc.relation.referencesZumbado, MA y Azofeifa, D. (2018). Insectos de importancia agrícola. Guía básica de entomología Costa Rica y Centroamérica. Programa Nacional de Agricultura Orgánica (PNAO).spa
dc.relation.referencesAlonso, L., Amanto, F., Rodríguez, E. (2019). Evaluación de la densidad sobre los parámetros productivos. Tesis de la Facultad de Ciencias Veterinarias UNCPBA. Tandil, Argentina.spa
dc.relation.referencesArévalo Arévalo, H., Vernot, D. y Barragán Fonseca, K. (2022). Perspectivas de uso sostenible del grillo doméstico tropical (Gryllodes sigillatus) para la alimentación humana en Colombia. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 69(3). https://doi.org/10.15446/rfmvz.v69n3.98890spa
dc.relation.referencesAyieko, M. A., and Orinda M. A. (2020). Production, Nutrient Composition, and Bioactive Components of Crickets (Gryllidae) for Human Nutrition. Springer EBooks,b 213–224. https://doi.org/10.1007/978-3-030-32952-5_14spa
dc.relation.referencesBarragán-Fonseca, K. B. (2018). Flies are what they eat: Tailoring nutrition of Black Soldier Fly (Hermetia illucens L.) for larval biomass production and fitness. https://doi.org/10.18174/449739spa
dc.relation.referencesBawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020). Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. Journal of Insect Science, 20(2), 10. https://doi.org/10.1093/jisesa/ieaa014spa
dc.relation.referencesCortés Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Chapter 6—Insect Mass Production Technologies. En Aaron T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as Sustainable Food Ingredients (pp. 153-201). Academic Press. https://doi.org/10.1016/B978-0-12-802856-8.00006-5spa
dc.relation.referencesDion Poulin A, Laroche M, Doyen A, Turgeon, SL. (2020). Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures. Molecules (Basel, Switzerland). 25(22):5366. https://doi.org/10.3390/molecules25225366spa
dc.relation.referencesHalloran A, Hanboonsong Y, Roos N, Bruun S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod. 156:83-94. https://doi.org/10.1016/j.jclepro.2017.04.017spa
dc.relation.referencesHalloran A, Hansen HH, Jensen LS, Bruun S. (2018). Comparing Environmental Impacts from Insects for Feed and Food as an Alternative to Animal Production. En: Halloran A, Flore R, Vantomme P, Roos N, editors. Edible Insects in Sustainable Food Systems. Springer Inter-national Publishing. p. 163-180. https://doi.org/10.1007/978-3-319-74011-9_1spa
dc.relation.referencesHanboonsong, A. and Durst, P. (2020). Guidance on sustainable cricket farming – A practical manual. Bangkok, FAO. https://doi.org/10.4060/cb2446enspa
dc.relation.referencesHerrero, M. A., y Gil, S. B. (2008). Consideraciones ambientales de la intensificación en producción animal. Ecología austral, 18(3), 273-289.spa
dc.relation.referencesIba, M., Nagao, T., & Urano, A. (1995). Effects of Population Density on Growth, Behavior and Levels of Biogenic Amines in the Cricket, Gryllus bimaculatus.spa
dc.relation.referencesJensen, K., Kristensen, T. N., Heckmann, L-H. L., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. In A. van Huis, & J. T. Tomberlin (Eds.), Insects as Food and Feed: from production to consumption (pp. 174-198). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-849-0spa
dc.relation.referencesKee, P. E., Cheng, Y. S., Chang, J. S., Yim, H. S., Tan, J. C. Y., Lam, S. S., Wei Lan, J.C., Suan, H., Khoo, K. S. (2023). Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. Environmental research, 221, 115284. https://doi.org/10.1016/j.envres.2023.115284spa
dc.relation.referencesKelly, C. D., and Valérie L’Heureux. (2021). Effect of diet and rearing density on contest outcome and settlement in a field cricket. 75(3). https://doi.org/10.1007/s00265-021-02990-wspa
dc.relation.referencesKinyuru J., and Kipkoech C. (2018). Production and growth parameters of edible crickets: experiences from a farm in a high altitude, cooler region of Kenya. Journal of Insects as Food and Feed; https://doi.org/10.3920/JIFF2017.0081spa
dc.relation.referencesMahavidanage, S., Fuciarelli, T. M., Li, X., & David, R. C. (2023). The effects of rearing density on growth, survival, and starvation resistance of the house cricket Acheta domesticus. 32(1), 25–31. https://doi.org/10.3897/jor.32.86496spa
dc.relation.referencesMartella, M. B., Trumper, E., Bellis, L. M., Renison, D., Giordano, P. F., Bazzano, G., & Gleiser, R. M. (2012). Manual de Ecología. Poblaciones: Introducción a las técnicas para el estudio de las poblaciones silvestres. Reduca (Biología), 5(1). p: 5 (1): 1-31. ISSN: 1989-3620spa
dc.relation.referencesMazurkiewicz, A., D. Tumialis, E. Pezowicz, Urbanski, J., Galewski, P., & K. Góral. (2013). The effect of density on the breeding optimization of the tropical house cricket Gryllodes sigillatus (Walker) (Orthoptera: Gryllidae). Annals of Warsaw University of Life Sciences- SGGW Animal Sciencespa
dc.relation.referencesMitchaothai, J., Grabowski, N. T., Lertpatarakomol, R., Trairatapiwan, T., Chhay, T., Keo, S., & Lukkananukool, A. (2022). Production Performance and Nutrient Conversion Efficiency of Field Cricket (Gryllus bimaculatus) in Mass-Rearing Conditions. Animals, 12(17), 2263. https://doi.org/10.3390/ani12172263spa
dc.relation.referencesMuzzatti, M. J., McConnell, E., Neave, S., MacMillan, H. A., Bertram, S. M. (2022). Fruitful female fecundity after feeding Gryllodes sigillatus royal jelly. bioRxiv, 2022-05. https://doi.org/10.1101/2022.05.17.492327spa
dc.relation.referencesNiemelä, P. T., Tiso, S., & Dingemanse, N. J. (2021). Density-dependent individual variation in male attractiveness in a wild field cricket. Behavioral Ecology, 32(4), 707-716. https://doi.org/10.1093/beheco/arab009spa
dc.relation.referencesNikkhah, A., Van Haute, S., Jovanovic, V. et al. Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Sci Rep11, 14030 (2021). https://doi.org/10.1038/s41598-021-93284-8spa
dc.relation.referencesNumminen, E., Jokinen, M., Lindén, A., & Jarno Vanhatalo. (2023). Species ecology can bias population estimates. 283, 110115–110115. https://doi.org/10.1016/j.biocon.2023.110115spa
dc.relation.referencesOrinda, M., Mosi, R., Ayieko, M., Amimo, F., & Odinga, J. (2017). Growth performance of Common house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) crickets fed on agro-byproducts. ~ 1664 ~ Journal of Entomology and Zoology Studies, 5(6), 1664–1668. https://www.entomoljournal.com/archives/2017/vol5issue6/PartW/5-5-333-397.pdfspa
dc.relation.referencesOrinda M., Oloo J., Magara H., Ayieko M., Ekesi S., Roos N. (2021). Cricket Reading Handbook – Services for Science & Education.https://doi.org/10.14738/eb.86.2020spa
dc.relation.referencesOtieno, J., Ayieko, M. A., Saliou Niassy, Salifu, D., Ameen Abdelmutalab, Fathiya, K. M., Subramanian, S., Komi K. M. Fiaboe, Roos, N., Ekesi, S., & Tanga, C. M. (2019). Integrating temperature-dependent life table data into Insect Life Cycle Model for predicting the potential distribution of Scapsipedus icipe Hugel & Tanga. 14(9), e0222941–e0222941. https://doi.org/10.1371/journal.pone.0222941spa
dc.relation.referencesPark, kwanho, Kim, W., Kim, E., Choi, J.-Y., & Kim, S.-H. (2016). Effect of adult population density on egg production in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). International Journal of Industrial Entomology, 33(2), 92–95. https://doi.org/10.7852/ijie.2016.33.2.92spa
dc.relation.referencesPeters TM, Barbosa P (1997) Influence of Population Density on Size, Fecundity, and Developmental Rate of Insects in Culture. Annual Review of Entomology 22: 431–450. https://doi.org/10.1146/annurev.en.22.010177.002243spa
dc.relation.referencesReverberi, M., (2020). Edible insects: cricket farming and processing as an emerging market. Journal of Insects as Food Feed 6: 211–220. https://doi.org/10.3920/JIFF2019.0052spa
dc.relation.referencesRibeiro JC, Lima RC, Maia M. Almeida A, Fonseca AJ, Cabrita AR, Cunha LM. (2019). Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT. 113: 108335. https://doi.org/10.1016/j.lwt.2019.108335spa
dc.relation.referencesSalomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905. https://doi.org/10.1016/j.jclepro.2016.06.154spa
dc.relation.referencesSánchez-Casanova RE, Muñoz-Osorio GA, Sarmiento-Franco LA (2021). ¿Cómo afecta la disponibilidad de espacio y el tamaño de grupo al bienestar de los animales de granja?. ITEA-Información Técnica Económica Agraria 117(4): 375-389. https://doi.org/10.12706/itea.2020.041spa
dc.relation.referencesSheppard, D. C., Tomberlin, J. K., Joyce, J. A., Kiser, B. C., & Sumner, S. M. (2002). Rearing Methods for the Black Soldier Fly (Diptera: Stratiomyidae): Table 1. Journal of Medical Entomology, 39(4), 695–698. https://doi.org/10.1603/0022-2585-39.4.695spa
dc.relation.referencesTakacs, J., Bryon, A., Annette Bruun Jensen, van, & Vera. (2023). Effects of Temperature and Density on House Cricket Survival and Growth and on the Prevalence of Acheta Domesticus Densovirus. 14(7), 588–588. https://doi.org/10.3390/insects14070588spa
dc.relation.referencesVanhonacker F., Verbeke, W., Van Poucke E., Buijs, S., & Tuyttens, F. (2009). Societal concern related to stocking density, pen size and group size in farm animal production. Livestock Science, 123(1), 16–22. https://doi.org/10.1016/j.livsci.2008.09.023spa
dc.relation.referencesYu.D. Burago, V.A. Zalgaller, L.D. Kudryavtsev (2001), «Area», en Hazewinkel, Michiel, ed., Encyclopaedia of Mathematics (en inglés), Springer, ISBN 978-1556080104spa
dc.relation.referencesZaelor J., and Kitthawee S. (2018). Growth response to population density in larval stage of darkling beetles (Coleoptera; Tenebrionidae) Tenebrio molitor and Zophobas atratus. Agriculture and Natural Resources, 52(6), 603–606. https://doi.org/10.1016/j.anres.2018.11.004spa
dc.relation.referencesZielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A. (2015). Selected species of edible insects as a source of nutrient composition. Food Research International. 77:460-466. https://doi.org/10.1016/j.foodres.2015.09.008spa
dc.relation.referencesZielińska E, Pankiewicz U, Sujka M. (2021). Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants (Basel, Switzerland). 10(7):1122. https://doi.org/10.3390/antiox10071122spa
dc.relation.referencesBawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020). Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. Journal of Insect Science, 20(2), 10. https://doi.org/10.1093/jisesa/ieaa014spa
dc.relation.referencesCeballos, H., y Ospina, B. (2002). La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización. CIAT (Centro Internacional de Agricultura Tropical) CLAYUCA (Consorcio Latinoamericano y del Caribe de Apoyo a la Investigación y Desarrollo de la Yuca). Cali, Colombia 2002. 586p. http://hdl.handle.net/20.500.12324/37152spa
dc.relation.referencesCaparros Megido, R., Alabi, T., Nieus, C., Blecker, C., Danthine, S., Bogaert, J., Haubruge, É. y Francis, F. (2016), R, Optimización de una producción barata y residencial a pequeña escala de grillos comestibles con subproductos locales como fuente alternativa de alimentos humanos ricos en proteínas en la provincia de Ratanakiri, Camboya. J. Ciencia. Food Agric., 96:627-632. https://doi.org/10.1002/jsfa.7133spa
dc.relation.referencesCortes Ortiz, J. A., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., Yi, L., Han, R., Giroud, L., & Jullien, R. L. (2016). Chapter 6— Insect Mass Production Technologies. En Aaron T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as Sustainable Food Ingredients (pp. 153-201).spa
dc.relation.referencesFuah, A. M., Siregar, H. C. H., & Endrawati, Y. C. (2015). Cricket farming for animal protein as profitable business for small farmers in indonesia. J. Agric. Sci. Tech, 5, 296-304. DOI: 10.17265 / 2161-6256 / 2015.04.008spa
dc.relation.referencesGiraldo Toro, A. (2006). Estudio de la obtención de harina de hojas de yuca (Manihot esculenta Crantz) para consumo humano. Tesis (Ingeniero Agroindustrial) (Doctoral dissertation, Universidad del Cauca, Facultad de Ciencias Agropecuarias, Ingeniería Agroindustrial).spa
dc.relation.referencesHalloran, Afton, Roos, N., & Hanboonsong, Y. (2017). Cricket farming as a livelihood strategy in Thailand. The Geographical Journal, 183(1), 112-124. https://doi.org/10.1111/geoj.12184spa
dc.relation.referencesHawkes, M., Lane, S. M., Rapkin, J., Jensen, K., House, C. M., Sakaluk, S. K., & Hunt, J. (2022). Intralocus sexual conflict over optimal nutrient intake and the evolution of sex differences in life span and reproduction. Functional Ecology, 36(4), 865-881 https://doi.org/10.1111/1365-2435.13995spa
dc.relation.referencesInternational Platform of Insects for Food and Feed (IPIFF). (2019). The European insect sector today: challenges, opportunities and regulatory landscape. IPIFF vision paper on the future of the insect sector towards 2030.spa
dc.relation.referencesJensen, K., Kristensen, T. N., Heckmann, L. H., & Sørensen, J. G. (2017). Breeding and maintaining high-quality insects. Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, the Netherlands, 175-198.spa
dc.relation.referencesJucker C., Belluco S., Bellezza Oddon S., Ricci, A., L. Bonizzi, Lupi, D., S. Savoldelli, I. Biasato, Caimi, C., A. Mascaretti, & Gasco, L. (2022). Impact of some local organic by-products on Acheta domesticus growth and meal production. Institutional Research Information System University of Turin (University of Turin), 8(6), 631–640. https://doi.org/10.3920/jiff2021.0121spa
dc.relation.referencesKaewplik, T., Akiyama, D., & Sasaki, Y. (2023). Construction and evaluation of an AI system for tracking cricket behavior under conditions of bright and dark lighting. Journal of Insects as Food and Feed, 1-12. https://doi.org/10.3920/JIFF2023.0006spa
dc.relation.referencesKuo, C., and Fisher, B. L. (2022). A literature review of the use of weeds and agricultural and food industry by-products to feed farmed crickets (insecta; orthoptera; Gryllidae). Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.810421spa
dc.relation.referencesLundy, M. E., and Parrella, M. P. (2015). Crickets Are Not a Free Lunch: Protein Capture from Scalable Organic Side-Streams via High-Density Populations of Acheta domesticus. PLOS ONE, 10(4), e0118785–e0118785. https://doi.org/10.1371/journal.pone.0118785spa
dc.relation.referencesMagara, H. J., Niassy, S., Ayieko, M. A., Mukundamago, M., Egonyu, J. P., Tanga, C. M., Kimathi, E. K., Ongere, J. O., Fiaboe, K. M., Hugel, S., Orinda, M. A., Roos, N., & Ekesi, S. (2021). Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits—a review. Frontiers in nutrition, 7, 537915. https://doi.org/10.3389/fnut.2020.537915spa
dc.relation.referencesMitchaothai, J., Grabowski, N. T., Lertpatarakomol, R., Trairatapiwan, T., Chhay, T., Keo, S., & Lukkananukool, A. (2022). Production Performance and Nutrient Conversion Efficiency of Field Cricket (Gryllus bimaculatus) in Mass-Rearing Conditions. Animals, 12(17), 2263. https://doi.org/10.3390/ani12172263spa
dc.relation.referencesMorales-Ramos, J. A., Rojas, M. G., Coudron, T. A., Huynh, M. P., Zou, D., & Shelby, K. S. (2023). Artificial diet development for entomophagous arthropods. In Mass production of beneficial organisms (pp. 233-260). Academic Press. https://doi.org/10.1016/B978-0-12-822106-8.00011-7spa
dc.relation.referencesMungkung, R., & Phetcharaburanin, T. (2023). Food for the future: sustainability assessment of cricket products for policy decisions to move toward sustainable agriculture in Thailand. Journal of Insects as Food and Feed, 1-12. https://doi.org/10.3920/JIFF2021.0182spa
dc.relation.referencesMurugu D. K., Onyango A. N., Ndiritu A. K., Osuga I. M., Xavier C., Nakimbugwe D. & Tanga C.M. (2021). From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins.Front. Nutr. 8:704002. https://doi.org/10.3389/fnut.2021.704002spa
dc.relation.referencesMusungu, A. L., Muriithi, B. W., Ghemoh, C. J., Nakimbugwe, D., & Tanga, C. M. (2023). Production, consumption, and market supply of edible crickets: insights from East Africa. Agricultural and Food Economics, 11(1), 28. https://doi.org/10.1186/s40100-023-00272-9spa
dc.relation.referencesMuzzatti, M. J., McConnell, E., Neave, S., MacMillan, H. A., & Bertram, S. M. (2022). Fruitful female fecundity after feeding Gryllodes sigillatus (Orthoptera: Gryllidae) royal jelly. The Canadian Entomologist, 154(1), e50. https://doi.org/10.4039/tce.2022.39spa
dc.relation.referencesNakagaki, B. J., & Defoliart, G. R. (1991). Comparison of diets for mass rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. Journal of Economic Entomology, 84(3), 891-896. https://doi.org/10.1093/jee/84.3.891spa
dc.relation.referencesNg’ang’a, J., Imathiu, S., Fombong, F., Borremans, A., Van Campenhout, L., Broeck, J. V., & Kinyuru, J. (2020). Can farm weeds improve the growth and microbiological quality of crickets (Gryllus bimaculatus)?. Journal of Insects as Food and Feed, 6(2), 199-209. https://doi.org/10.3920/JIFF2019.0051spa
dc.relation.referencesNg’ang’a, J., Imathiu, S., Fombong, F., Vanden Broeck, J., & Kinyuru, J. (2021). Effect of dietary supplementation with powder derived from Moringa oleifera and Azadirachta indica leaves on growth and microbial load of edible crickets. Journal of Insects as Food and Feed, 7(4), 419-431. https://doi.org/10.3920/JIFF2020.0056spa
dc.relation.referencesNg, S. H., Stat, M., Bunce, M., & Simmons, L. W. (2018). The influence of diet and environment on the gut microbial community of field crickets. Ecology and Evolution, 8(9), 4704-4720. https://doi.org/10.1002/ece3.3977spa
dc.relation.referencesOloo, J. A., Ayieko, M., & Nyongesah, J. M. (2020). Acheta domesticus (Cricket) feed resources among smallholder farmers in Lake Victoria region of Kenya. Food science & nutrition, 8(1), 69-78. https://doi.org/10.1002/fsn3.1242spa
dc.relation.referencesOonincx D; De Boer I. (2012). Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS One 7(12):511-515.spa
dc.relation.referencesOrinda, M., Mosi, R.O., Ayieko, M.A., & Amimo, F.A. (2017). Growth performance of common house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) crickets fed on agro byproducts. Journal of entomology and zoology studies, 5, 1664-1668.spa
dc.relation.referencesPastell, H., Mellberg, S., Ritvanen, T., Raatikainen, M., Mykkänen, S., Niemi, J., Latomäki, I., and Wirtanen, G. (2021). How Does Locally Produced Feed Affect the Chemical Composition of Reared House Crickets (Acheta domesticus)?. ACS Food Science & Technology, 1(4), 625-635. https://doi.org/10.1021/acsfoodscitech.0c00083spa
dc.relation.referencesPilco-Romero, G., Chisaguano-Tonato, A. M., Herrera-Fontana, M. E., Chimbo-Gándara, L. F., Sharifi-Rad, M., Giampieri, F., ... & Álvarez-Suárez, J. M. (2023). House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends in Food Science & Technology, 104226. https://doi.org/10.1016/j.tifs.2023.104226spa
dc.relation.referencesStraub, P., Tanga, C. M., Osuga, I., Windisch, W., & Subramanian, S. (2019). Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Animal Feed Science and Technology, 255, 114215. https://doi.org/10.1016/j.anifeedsci.2019.114215spa
dc.relation.referencesSiddiqui, S. A., Osei-Owusu, J., Yunusa, B. M., Rahayu, T., Fernando, I., Shah, M. A., & Centoducati, G. (2023). Prospects of edible insects as sustainable protein for food and feed–a review. Journal of Insects as Food and Feed, 1(aop), 1- 27. https://doi.org/10.1163/23524588-20230042spa
dc.relation.referencesSorjonen, J. M., Karhapää, M., Holm, S., Valtonen, A., & Roininen, H. (2022). Performance of the house cricket (Acheta domesticus) on by-product diets in small65 scale production. Journal of Insects as Food and Feed, 8(3), 289-294. https://doi.org/10.3920/JIFF2021.0079spa
dc.relation.referencesSuckling, J., Druckman, A., Moore, C. D., & Driscoll, D. (2020). The environmental impact of rearing crickets for live pet food in the UK, and implications of a transition to a hybrid business model combining production for live pet food with production for human consumption. The International Journal of Life Cycle Assessment, 25, 1693-1709. https://doi.org/10.1007/s11367-020-01778-wspa
dc.relation.referencesTierney, A. J., Velazquez, E., Johnson, L., Hiranandani, S., Pauly, M., & Souvignier, M. (2023). Nutritional and reproductive status affect amino acid appetite in house crickets (Acheta domesticus). Frontiers in Insect Science, 3, 1120413. https://doi.org/10.3389/finsc.2023.1120413spa
dc.relation.referencesVerveris, E., Boué, G., Poulsen, M., Pires, S. M., Niforou, A., Thomsen, S. T., Tesson, V., Federighi, M., & Naska, A. (2022). A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket). Journal of Food Composition and Analysis, 104859. https://doi.org/10.1016/j.jfca.2022.104859spa
dc.relation.referencesZajitschek, F., Lailvaux, S. P., Dessmann, J., & Brooks, R. (2012). Diet, sex, and death in field crickets. Ecology and Evolution, 2(7), 1627-1636. https://doi.org/10.1002/ece3.288spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocGryllidaespa
dc.subject.agrovocGryllidaeeng
dc.subject.agrovocCultivo de insectosspa
dc.subject.agrovocinsect farmingeng
dc.subject.agrovocNutrición animalspa
dc.subject.agrovocanimal nutritioneng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalProducción de insectosspa
dc.subject.proposalOptimización de procesosspa
dc.subject.proposalDensidadspa
dc.subject.proposalSostenibilidadspa
dc.subject.proposalNutriciónspa
dc.subject.proposalGrillosspa
dc.subject.proposalInsect productioneng
dc.subject.proposalProcess standardizationeng
dc.subject.proposalDensityeng
dc.subject.proposalNutritioneng
dc.subject.proposalBioconversioneng
dc.subject.proposalSustainabilityeng
dc.titleEfecto de la dieta, densidad de cría y área superficial sobre parámetros productivos de la especie Gryllodes sigillatus en condiciones de laboratoriospa
dc.title.translatedEffect of diet, breeding density and surface area on productive parameters of the species Gryllodes sigillatus under laboratory conditionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCría de grillos para la alimentación humana. Fomento del biocomercio en acompañamiento de mujeres rurales en el municipio de La Mesa, Cundinamarcaspa
oaire.fundernameFondo de CTeI del Sistema General de Regalías del Departamento de Cundinamarca y al Programa Nacional Colombia Bio (MinCiencias)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032460675.2024.pdf
Tamaño:
967.34 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: