Síntesis de copolímeros dibloque biodegradables conjugados con biomoléculas como plataforma de administración de fármacos

dc.contributor.advisorPérez Pérez, León Daríospa
dc.contributor.authorAngarita Villamizar, Angie Vivian Estherspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupGrupo de Investigación en Macromoléculasspa
dc.date.accessioned2020-08-05T07:36:26Zspa
dc.date.available2020-08-05T07:36:26Zspa
dc.date.issued2020-02-14spa
dc.description.abstractEn el presente trabajo de investigación se sintetizó una biblioteca de materiales basados en copolímeros en bloque anfifílicos de composiciones variables empleando monómeros biocompatibles y altamente biodegradables de ε-caprolactona (ε-CL) y 5-metil-5-propargiloxicarbonil-1,3-dioxan-2-ona (MCP). Los andamios poliméricos fueron bioconjugados con un número controlado de moléculas de 1,2-distearoil-sn-glicero-3-fosfoetanolamina (DSPE), ácido oleico o colesterol. La constatación de las estructuras se realizó empleando técnicas espectroscópicas de FT-IR y 1H-RMN. Sus distribuciones de peso molecular fueron obtenidas mediante cromatografía de permeación en gel (GPC). Las metodologías sintéticas propuestas resultaron ser viables para la obtención de materiales con pesos moleculares controlados y dispersiones estrechas, propiciando un control sobre la arquitectura de los copolímeros. Se evaluó la influencia de estas modificaciones estructurales en las propiedades morfológicas de los materiales empleando calorimetría diferencial de barrido (DSC). El estudio térmico de los copolímeros evidenció una disminución de la cristalinidad de los materiales bioconjugados y se determinó que la adición de estas biomoléculas en las estructuras permite modular las propiedades fisicoquímicas de los mismos. Mediante un análisis de componentes principales (ACP) se determinó que las propiedades de los copolímeros relacionadas con su potencial aplicación en el encapsulamiento de fármacos dependen de la naturaleza del segmento hidrofóbico y el número de unidades de carbonatos en las estructuras. De igual forma, se determinó que hay una gran influencia en la naturaleza de las biomoléculas conjugadas en las características de los materiales. Empleando la metodología de nanoprecipitación se obtuvo dispersiones micelares cuyos diámetros nanométricos fueron evaluados mediante dispersión dinámica de luz (DLS). Las nanopartículas autoensambladas a partir de copolímeros bioconjugados con DSPE demostraron tener carga superficial negativa y esta fue determinada mediante la medición de su potencial ζ. Estos nanotrasportadores demostraron ser sistemas termodinámicamente estables, evidenciado por una disminución drástica en los valores de concentraciones micelares críticas (CMC) de los sistemas bioconjugados. Adicionalmente, estos sistemas demostraron ser cinéticamente estables ya que sus transiciones térmicas en las cuales se evidenció una disminución de la cristalinidad de los copolímeros asociado a la presencia de grupos hidrofóbicos y voluminosos cuyas interacciones entre cadenas dificultan la formación de arreglos regulares obteniendo sistemas con un mayor volumen libre entre cadenas poliméricas en cuyos espacios se favorece el encapsulamiento de fármacos de baja hidrosolubilidad. Los copolímeros biomiméticos sintetizados en este trabajo de investigación corresponden a estructuras novedosas que aún no se encuentran reportadas en la literatura. Adicionalmente, los sistemas micelares obtenidos a partir del autoensamblaje de estos materiales en medio acuoso cumplen con los requerimientos para ser empleados en el transporte de fármacos y ofrecen perspectivas poderosas respecto del aumento de la magnitud sus interacciones de los copolímeros con la anfotericina B.spa
dc.description.abstractIn the present research a library of materials based on amphiphilic block copolymers of variable compositions was synthesized using biocompatible and highly biodegradable monomers of ε-caprolactone (ε-CL) and 5-methyl-5-propargiloxycarbonyl-1,3-dioxan -2-one (MCP). The polymeric scaffolds were bioconjugated with a controlled number of 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), oleic acid, or cholesterol molecules. The verification of the structures was carried out using FT-IR and 1H-NMR spectroscopic techniques. Their molecular weight distributions were obtained by gel permeation chromatography (GPC). The proposed synthetic methodologies turned out to be viable for obtaining materials with controlled molecular weights and narrow dispersions, promoting control over the architecture of the copolymers. The influence of these structural modifications on the morphological properties of the materials was evaluated using differential scanning calorimetry (DSC). The thermal study of the copolymers showed a decrease in the crystallinity of the bioconjugated materials and it was determined that the addition of these biomolecules in the structures allows modulating their physicochemical properties. By means of a principal component analysis (PCA) it was determined that the properties of the copolymers related to their potential application in the encapsulation of drugs depend on the nature of the hydrophobic segment and the number of carbonate units in the structures. Similarly, it was determined that there is a great influence on the nature of conjugated biomolecules on the characteristics of the materials. Using the nanoprecipitation methodology, micellar dispersions were obtained whose nanometric diameters were evaluated by dynamic light scattering (DLS). Self-assembled nanoparticles from bioconjugated copolymers with DSPE were shown to have a negative surface charge and this was determined by measuring their potential ζ. These nano transporters proved to be thermodynamically stable systems, evidenced by a drastic decrease in the critical micellar concentration (CMC) values of the bioconjugated systems. Additionally, these systems proved to be kinetically stable since their thermal transitions in which a decrease in the crystallinity of the copolymers was evidenced, associated with the presence of hydrophobic and bulky groups whose interactions between chains hinder the formation of regular arrangements obtaining systems with a higher free volume between polymer chains in whose spaces the encapsulation of drugs of low water solubility is favored. The biomimetic copolymers synthesized in this research work correspond to novel structures that have not yet been reported in the literature. Additionally, the micellar systems obtained from the self-assembly of these materials in an aqueous medium meet the requirements to be used in the transport of drugs and offer powerful perspectives regarding the magnitude increase in their interactions of the copolymers with amphotericin B.spa
dc.description.additionalLínea de Investigación: Síntesis de Polímeros.spa
dc.description.degreelevelMaestríaspa
dc.description.project"Diseño de formulaciones orales de Anfotericina B encapsulada en nanopartículas poliméricas biodegradables y su eficacia frente a levaduras multi-drogo resistentes: Una aproximación a partir de las interacciones fármaco – polímero”spa
dc.description.sponsorshipCOLCIENCIASspa
dc.format.extent201spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAngarita Villamizar, A.V.E (2020) "Síntesis de copolímeros dibloque biodegradables conjugados con biomoléculas como plataforma de administración de fármacos". Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77929
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAdams, M. L., Lavasanifar, A. and Kwon, G. S. (2003) ‘Amphiphilic block copolymers for drug delivery’, Journal of Pharmaceutical Sciences, 92(7), pp. 1343–1355. doi: 10.1002/jps.10397.spa
dc.relation.referencesAguiar, J. et al. (2003) ‘On the determination of the critical micelle concentration by the pyrene 1:3 ratio method’, Journal of Colloid and Interface Science, 258(1), pp. 116–122. doi: 10.1016/S0021-9797(02)00082-6.spa
dc.relation.referencesAlvarez, C., Shin, D. H. and Kwon, G. S. (2016) ‘Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B’, Pharmaceutical Research. Pharmaceutical Research, 33(9), pp. 2098–2106. doi: 10.1007/s11095-016-1948-7.spa
dc.relation.referencesAshim k, Mitra, Chi H. Lee, K. C. (2014) Advanced Drug Delivery. Hoboken, New Jersey.: John Wiley & Sons, Inc., Hoboken, New Jersey.spa
dc.relation.referencesBaek, C. et al. (2015) ‘Bioreducible micelles self-assembled from poly(ethylene glycol)-cholesteryl conjugate as a drug delivery platform’, Polymers, 7(11), pp. 2245–2258. doi: 10.3390/polym7111511.spa
dc.relation.referencesBasu Ray, G., Ghosh, S. and Moulik, S. P. (2009) ‘Physicochemical studies on the interfacial and bulk behaviors of sodium N-dodecanoyl sarcosinate (SDDS)’, Journal of Surfactants and Detergents, 12(2), pp. 131–143. doi: 10.1007/s11743-008-1105-3.spa
dc.relation.referencesBinder, W. H. and Sachsenhofer, R. (2008) ‘“Click” chemistry in polymer and material science: An Update’, Macromolecular Rapid Communications, 29(12–13), pp. 952–981. doi: 10.1002/marc.200800089.spa
dc.relation.referencesBogdanov, B. et al. (1998) ‘Synthesis and thermal properties of poly(ethylene glycol)-poly(e-caprolactone) copolymers’, Polymer, 39(8–9), pp. 1631–1636. doi: 10.1016/S0032-3861(97)00444-8.spa
dc.relation.referencesCaffrey, Patrick; Lynch, Susan; Flood, Elizabeth; Finnan, Shirley; Oliynyk, M. (2001) ‘Amphotericin biosynthesis in Streptomyces nodosus : deductions from analysis of polyketide synthase and late genes’, Chemistry & Biology, 8, pp. 713–723.spa
dc.relation.referencesCalvo, B. et al. (2016) ‘First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia’, Journal of Infection, 73(4). doi: 10.1016/j.jinf.2016.07.008.spa
dc.relation.referencesChangai, L. (2007) ‘Sugars-Grafted Aliphatic Biodegradable Poly(L-lactide- co-carbonate)s by Click Reaction and their Specific Interaction with Lectin Molecules’, Journal of Polymer Science: Part A: Polymer Chemistry, Wiley Periodicals, Inc., 45(1), pp. 3204–3217. doi: 10.1002/pola.spa
dc.relation.referencesChen, Y.-C. et al. (2015) ‘Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles’, International Journal of Nanomedicine, 10, pp. 7265–7274. doi: http://dx.doi.org/10.2147/IJN.S95194spa
dc.relation.referencesChua, G. B. H. et al. (2012) ‘Synthesis and thermoresponsive solution properties of poly[oligo(ethylene glycol) (meth)acrylamide]s: Biocompatible PEG analogues’, Macromolecules, 45(3), pp. 1362–1374. doi: 10.1021/ma202700y.spa
dc.relation.referencesContents, S. and Class, P. (1999) POLYMER DATA.spa
dc.relation.referencesCortés, J. A. et al. (2020) ‘Candidemia in Colombia’, Biomedica, 40(1), pp. 195–207. doi: 10.7705/biomedica.4400.spa
dc.relation.referencesCzub, J. and Baginski, M. (2006) ‘Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol’, Biophysical Journal. Elsevier, 90(7), pp. 2368–2382. doi: 10.1529/biophysj.105.072801.spa
dc.relation.referencesDalgleish, T. et al. (2007) Nanomedicine in Cancer, Journal of Experimental Psychology: General.spa
dc.relation.referencesDarcos, V. et al. (2010) ‘Well-defined PCL-graft-PDMAEMA prepared by ring-opening polymerisation and click chemistry’, Polymer Chemistry, 1(3), p. 280. doi: 10.1039/c0py00004c.spa
dc.relation.referencesDechy-cabaret, O., Martin-vaca, B. and Bourissou, D. (2004) ‘Controlled Ring-Opening Polymerization of Lactide and Glycolide’, pp. 20–23.spa
dc.relation.referencesDiaz, I. L. et al. (2015) ‘Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B’, AAPS PharmSciTech, 16(5), pp. 1069–1078. doi: 10.1208/s12249-015-0298-9.spa
dc.relation.referencesDubois, Philippe. Coulembier, Olivier. Raquez, J.-M. (2009) Handbook of Ring-Opening. WILEY-VCH Verlag GmbH & Co.spa
dc.relation.referencesEetezadi, S., Ekdawi, S. N. and Allen, C. (2015) ‘The challenges facing block copolymer micelles for cancer therapy : In vivo barriers and clinical translation ☆’, Advanced Drug Delivery Reviews. Elsevier B.V., 91, pp. 7–22. doi: 10.1016/j.addr.2014.10.001.spa
dc.relation.referencesEscandón, P. et al. (2012) ‘Cryptococcosis in Colombia: results of the national surveillance program for the years 2006-2010.’, Biomédica : revista del Instituto Nacional de Salud, 32(3), pp. 386–98. doi: 10.1590/S0120-41572012000300009.spa
dc.relation.referencesFaustino, C. and Pinheiro, L. (2020) ‘Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy’. doi: 10.3390/pharmaceutics12010029.spa
dc.relation.referencesFredrickson, G. H., Liu, A. J. and Bates, F. S. (1994) ‘Entropic Corrections to the Flory-Huggins Theory of Polymer Blends: Architectural and Conformational Effects’, Macromolecules, 27(9), pp. 2503–2511. doi: 10.1021/ma00087a019.spa
dc.relation.referencesFukushima, K. (2016) ‘Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials’, Biomaterials Science, 4(1), pp. 9–24. doi: 10.1039/c5bm00123d.spa
dc.relation.referencesGarbuzenko, O. et al. (2005) ‘Electrostatics of PEGylated Micelles and Liposomes Containing Charged and Neutral Lipopolymers’, Langmuir, 21(6), pp. 2560–2568. doi: 10.1021/la0479105 CCCspa
dc.relation.referencesGong, J. et al. (2012) ‘Polymeric micelles drug delivery system in oncology’, Journal of Controlled Release. Elsevier B.V., 159(3), pp. 312–323. doi: 10.1016/j.jconrel.2011.12.012.spa
dc.relation.referencesGray, K. C. et al. (2012) ‘Amphotericin primarily kills yeast by simply binding ergosterol’, 109(7). doi: 10.1073/pnas.1117280109.spa
dc.relation.referencesGrund, S., Bauer, M. and Fischer, D. (2011) ‘Polymers in drug delivery-state of the art and future trends’, Advanced Engineering Materials, 13(3), pp. 61–87. doi: 10.1002/adem.201080088.spa
dc.relation.referencesGuo, L. S. S. et al. (1991) ‘Novel antifungal drug delivery: stable amphotericin B-cholesteryl sulfate discs’, International Journal of Pharmaceutics, 75(1), pp. 45–54. doi: 10.1016/0378-5173(91)90249-N.spa
dc.relation.referencesHalperin, A. and Alexander, S. (1989) ‘Polymeric Micelles: Their Relaxation Kinetics’, Macromolecules, 22(5), pp. 2403–2412. doi: 10.1021/ma00195a069.spa
dc.relation.referencesHein, C. D., Liu, X. M. and Wang, D. (2008) ‘Click chemistry, a powerful tool for pharmaceutical sciences’, Pharmaceutical Research, 25(10), pp. 2216–2230. doi: 10.1007/s11095-008-9616-1.spa
dc.relation.referencesJenkins, A. D. et al. (1996) ‘Glossary of basic terms in polymer science’, Pure and Applied Chemistry, 68(12), pp. 171–173. doi: 10.1351/pac199668122287.spa
dc.relation.referencesJones, M. C. and Leroux, J. C. (1999) ‘Polymeric micelles - A new generation of colloidal drug carriers’, European Journal of Pharmaceutics and Biopharmaceutics, 48(2), pp. 101–111. doi: 10.1016/S0939-6411(99)00039-9.spa
dc.relation.referencesJones, S. P. et al. (2008) ‘Synergistic effects in gene delivery – A structure-activity approach to the optimisation of hybrid dendritic-lipidic transfection agents’.spa
dc.relation.referencesJung, T. et al. (2000) ‘Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake?’, European Journal of Pharmaceutics and Biopharmaceutics, 50(1), pp. 147–160. doi: 10.1016/S0939-6411(00)00084-9.spa
dc.relation.referencesKai-Steffen Krannig and Schlaad, H. (2014) ‘Soft Matter Emerging bioinspired polymers : glycopolypeptides’, The Royal Society of Chemistry, 10, pp. 4228–4235. doi: 10.1039/c4sm00352g.spa
dc.relation.referencesKamiński, D. M. (2014) ‘Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments’, European Biophysics Journal, 43(10–11), pp. 453–467. doi: 10.1007/s00249-014-0983-8.spa
dc.relation.referencesKatime, I., Quintana, J. and Villacampa, M. (2003) ‘Micelas’, Revista Iberoamericana de Polímeros, 4(2), pp. 123–151.spa
dc.relation.referencesKim, Y. (2012) ‘Effect of Cross-Linking on the Performance of Micelles As Drug Delivery Carriers: A Cell Uptake Study’, Biomacromolecules, 13, pp. 814–825. doi: 10.1021/bm201730p.spa
dc.relation.referencesLaskar, P. et al. (2014) ‘In vitro evaluation of pH-sensitive cholesterol-containing stable polymeric micelles for delivery of camptothecin’, Journal of Colloid and Interface Science. Elsevier Inc., 430, pp. 305–314. doi: 10.1016/j.jcis.2014.05.068.spa
dc.relation.referencesLecomte, P. et al. (2008) ‘Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and “click” chemistry’, Macromolecular Rapid Communications, 29(12–13), pp. 982–997. doi: 10.1002/marc.200800174.spa
dc.relation.referencesLetchford, K. and Burt, H. (2007) ‘A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes’, European Journal of Pharmaceutics and Biopharmaceutics, 65(3), pp. 259–269. doi: 10.1016/j.ejpb.2006.11.009.spa
dc.relation.referencesLi, W., Feng, S. S. and Guo, Y. (2012) ‘Block copolymer micelles for nanomedicine’, Nanomedicine, 7(2), pp. 169–172. doi: 10.2217/nnm.11.182.spa
dc.relation.referencesLu, Y. and Park, K. (2013) ‘Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs’, International Journal of Pharmaceutics. Elsevier B.V., 453(1), pp. 198–214. doi: 10.1016/j.ijpharm.2012.08.04.spa
dc.relation.referencesLuengo-Alonso, C. et al. (2015) ‘A novel performing PEG-cholane nanoformulation for Amphotericin B delivery’, International Journal of Pharmaceutics. Elsevier B.V., 495(1), pp. 41–51. doi: 10.1016/j.ijpharm.2015.08.070.spa
dc.relation.referencesMadeleine, M. et al. (2005) ‘Biomimetism and bioinspiration as tools for the design of innovative materials and systems’, Nature Materials, 4(April), pp. 277–288.spa
dc.relation.referencesMakadia, H. K. and Siegel, S. J. (2011) ‘Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier’, Polymers, 3(3), pp. 1377–1397. doi: 10.3390/polym3031377.spa
dc.relation.referencesMiñones, J. et al. (2003) ‘Miscibility of amphotericin B - Dipalmitoyl phosphatidyl serine mixed monolayers spread on the air/water interface’, Journal of Physical Chemistry B, 107(17), pp. 4189–4195. doi: 10.1021/jp0207275.spa
dc.relation.referencesNarain, R. (2016) Polymers and Nanomaterials for Gene Therapy, Polymers and Nanomaterials for Gene Therapy. doi: 10.1016/C2014-0-04876-9.spa
dc.relation.referencesNuyken, O. and Pask, S. D. (2013) ‘Ring-opening polymerization-An introductory review’, Polymers, 5(2), pp. 361–403. doi: 10.3390/polym5020361.spa
dc.relation.referencesOdian, G. (2004) Principles of Polymerization. Fourth Edi. John Wiley & Sons, Inc., Hoboken, New Jersey.spa
dc.relation.referencesPaquet, M. J. et al. (2002) ‘The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by2H NMR’, Chemistry and Physics of Lipids, 119(1–2), pp. 1–11. doi: 10.1016/S0009-3084(02)00071-3.spa
dc.relation.referencesPark, E. K. et al. (2005) ‘Folate-conjugated methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery’, Journal of Controlled Release, 109(1–3), pp. 158–168. doi: 10.1016/j.jconrel.2005.09.039.spa
dc.relation.referencesParra-Giraldo, C. M. et al. (2018) ‘First report of sporadic cases of Candida auris in Colombia’, International Journal of Infectious Diseases, 69. doi: 10.1016/j.ijid.2018.01.034.spa
dc.relation.referencesPozzi, D. et al. (2014) ‘the bio – nano-interactions between PEGylated lipid nanoparticles and biological fl uids : from nanostructure to uptake in cancer cells’. doi: 10.1039/c3nr05559k.spa
dc.relation.referencesRighetti, M. C. (2017) ‘Crystallization of polymers investigated by temperature-modulated DSC’, Materials, 10(4). doi: 10.3390/ma10040442.spa
dc.relation.referencesRiva, R. et al. (2007) ‘Combination of ring-opening polymerization and “click chemistry”: Toward functionalization and grafting of poly(ε-caprolactone)’, Macromolecules, 40(4), pp. 796–803. doi: 10.1021/ma0624090.spa
dc.relation.referencesRobert K. Murray, David A. Bender, Kathleen M. Botham, Peter J. Kennelly, Victor W. Rodwell, P. A. W. (2013) Harper Bioquímica Ilustrada, Harper- Bioquímica Ilustrada.spa
dc.relation.referencesSanta, Cristiam Fernando; López, B. L. (2013) ‘QUÍMICA MATERIALES POLIMÉRICOS EN NANOMEDICINA : TRANSPORTE’, Revista Academia Colombiana de Ciencias, 37(142), pp. 115–124.spa
dc.relation.referencesSerrano, D. R. and Lalatsa, A. (2017) ‘Oral amphotericin B: The journey from bench to market’, Journal of Drug Delivery Science and Technology. Elsevier B.V., 42, pp. 75–83. doi: 10.1016/j.jddst.2017.04.017.spa
dc.relation.referencesShuai, X. et al. (2003) ‘Novel Biodegradable Ternary Copolymers hy -PEI- g -PCL- b -PEG : Synthesis , Characterization , and Potential as Efficient Nonviral Gene Delivery Vectors’, Macromolecules, 36, pp. 5751–5759.spa
dc.relation.referencesSilva, A. E. et al. (2013) ‘Development of oil-in-water microemulsions for the oral delivery of amphotericin B’, International Journal of Pharmaceutics. Elsevier B.V., 454(2), pp. 641–648. doi: 10.1016/j.ijpharm.2013.05.044.spa
dc.relation.referencesSong, Y. et al. (2014) ‘Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system’, International Journal of Nanomedicine, 9(1), pp. 2307–2317. doi: 10.2147/IJN.S61220.spa
dc.relation.referencesStanislav I. Presolski, Vu Phong Hong, M. G. F. (2011) ‘“Click” Reaction in Conjunction with Diazeniumdiolate Chemistry: Developing High-Load Nitric Oxide Donors’, Current Protocols in Chemical Biology, 3(4), pp. 153–162. doi: 10.1002/9780470559277.ch110148.Copper-Catalyzed.spa
dc.relation.referencesStolnik, S., Illum, L. and Davis, S. S. (2012) ‘Long circulating microparticulate drug carriers’, Advanced Drug Delivery Reviews, 64(SUPPL.), pp. 290–301. doi: 10.1016/j.addr.2012.09.029.spa
dc.relation.referencesSu, W.-F. (2013) ‘Principles of Polymer Design and Synthesis, Chapter 1: Interoduction’, in Principles of Polymer Design and Synthesis, pp. 137–183. doi: 10.1007/978-3-642-38730-2.spa
dc.relation.referencesTan, T. R. M. et al. (2016) ‘Characterization of a polyethylene glycol-amphotericin B conjugate loaded with free AMB for improved antifungal efficacy’, PLOS ONE, 11(3), pp. 1–18. doi: 10.1371/journal.pone.0152112.spa
dc.relation.referencesThakur, Vijay Kumar. Thakur, M. K. (2015) Handbook of Polymers for Pharmaceutical Technologies. 2nd edn. Salem, Massachusetts.spa
dc.relation.referencesThanki, K., Date, T. and Jain, S. (2019) ‘Improved Oral Bioavailability and Gastrointestinal Stability of Amphotericin B through Fatty Acid Conjugation Approach’, Molecular Pharmaceutics, 16(11), pp. 4519–4529. doi: 10.1021/acs.molpharmaceut.9b00662spa
dc.relation.referencesVandermeulen, G. et al. (2006) ‘Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly(ε- caprolactone-co-trimethylenecarbonate) polymeric micelles’, International Journal of Pharmaceutics, 309(1–2), pp. 234–240. doi: 10.1016/j.ijpharm.2005.11.031.spa
dc.relation.referencesVillamil, J. C., Parra-Giraldo, C. M. and Pérez, L. D. (2019) ‘Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol’, Colloids and Surfaces A: Physicochemical and Engineering Aspects. Elsevier, 572(January), pp. 79–87. doi: 10.1016/j.colsurfa.2019.03.086.spa
dc.relation.referencesVogelsinger, H. et al. (2006) ‘Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion’, Journal of Antimicrobial Chemotherapy, 57(6), pp. 1153–1160. doi: 10.1093/jac/dkl141.spa
dc.relation.referencesWang, C. H., Wang, W. T. and Hsiue, G. H. (2009) ‘Development of polyion complex micelles for encapsulating and delivering amphotericin B’, Biomaterials. Elsevier Ltd, 30(19), pp. 3352–3358. doi: 10.1016/j.biomaterials.2009.02.041.spa
dc.relation.referencesWang, Y. et al. (2016) ‘Biodegradable functional polycarbonate micelles for controlled release of amphotericin B’, Acta Biomaterialia. Acta Materialia Inc., 46, pp. 211–220. doi: 10.1016/j.actbio.2016.09.036.spa
dc.relation.referencesWiarachai, O. et al. (2016) ‘Clickable and Antifouling Platform of Poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] for Biosensing Applications’, Langmuir, 32(4), pp. 1184–1194. doi: 10.1021/acs.langmuir.5b02727spa
dc.relation.referencesWorrell, B. T., Malik, J. A. and Fokin, V. V. (2013) ‘Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions’, Science, 340(6131), pp. 457–460. doi: 10.1126/science.1229506.spa
dc.relation.referencesXiao, R. Z. et al. (2010) ‘Recent advances in PEG-PLA block copolymer nanoparticles’, International Journal of Nanomedicine, 5(1), pp. 1057–1065. doi: 10.2147/IJN.S14912.spa
dc.relation.referencesYokoyama, M. et al. (1993) ‘Analysis of Micelle Formation of an Adriamycin-Conjugated Poly(Ethylene Glycol)–Poly(Aspartic Acid) Block Copolymer by Gel Permeation Chromatography’, Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, pp. 895–899. doi: 10.1023/A:1018921513605.spa
dc.relation.referencesZhang, X. et al. (2009) ‘Preparation and self-assembly of amphiphilic triblock copolymers with polyrotaxane as a middle block and their application as carrier for the controlled release of Amphotericin B’, Polymer. Elsevier Ltd, 50(18), pp. 4343–4351. doi: 10.1016/j.polymer.2009.07.006.spa
dc.relation.referencesZhang, Y. et al. (2014) ‘Synthesis and Characterization of Star-Shaped Block Copolymer sPCL-b-PEG-GA’, 2014.spa
dc.relation.referencesZielińska, J. et al. (2016) ‘Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail’, Scientific Reports, 6. doi: 10.1038/srep19109.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalAnfotericina Bspa
dc.subject.proposalcopolímerosspa
dc.subject.proposalpolycaprolactoneeng
dc.subject.proposalbiomoléculasspa
dc.subject.proposalmicelleseng
dc.titleSíntesis de copolímeros dibloque biodegradables conjugados con biomoléculas como plataforma de administración de fármacosspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015413321.2020.pdf.pdf
Tamaño:
9.36 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: