Algunas relaciones entre álgebras de caminos y variedades algebraicas afines

dc.contributor.advisorMoreno Cañadas, Agustín
dc.contributor.authorArteaga Bastidas, Ricardo Hugo
dc.contributor.researchgroupTerenufia-Unalspa
dc.date.accessioned2024-01-29T13:27:20Z
dc.date.available2024-01-29T13:27:20Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figurasspa
dc.description.abstractEl objetivo principal de este trabajo es estudiar algunas relaciones entre los cocientes del álgebra de caminos de un carcaj y ciertas variedades algebraicas afines por medio de bases de Gröbner no conmutativas, así como también las propiedades que comparten las álgebras asociadas a una variedad. Con este fin, iniciamos con una exposición de los temas básicos de la teoría de representación de álgebras asociativas, incluyendo una introducción a la geometría de representación de álgebras y su desarrollo con teoría de invariantes geométrica (GIT). Con estos fundamentos, procedemos a revisar la teoría de bases de Gröbner no conmutativas, donde estudiamos los ordenamientos monomiales aplicables a álgebras de caminos y los algoritmos existentes para la obtención de estas bases. Revisamos también los sistemas de software disponibles que automatizan estos cálculos. Posteriormente abordamos conceptos básicos e introductorios de la geometría algebraica. Definimos la topología de Zariski y el célebre teorema de los ceros de Hilbert, temas fundamentales para una comprensión del último capítulo, donde finalmente estudiamos las relaciones entre álgebras de caminos y sus variedades algebraicas asociadas. Allí estudiamos el teorema de correspondencia y cómo las álgebras graduadas se pueden ver como una clase especial de subvariedades. Terminamos esta exposición considerando los ideales admisibles en la construcción de variedades algebraicas afines. Por último, tenemos un capítulo de conclusiones y trabajos futuros, donde revisamos las posibles direcciones de pueden tomar las investigaciones en estas áreas. (Texto tomado de la fuente)spa
dc.description.abstractThe main objective of this work is to study some relationships between the quotients of the path algebra of a quiver and certain affine algebraic varieties using non-commutative Gröbner bases, as well as properties shared by algebras associated with a variety. To this end, we begin with an exposition of the basic themes of the representation theory of associative algebras, including an introduction to the geometry of the representation of algebras and its development with geometric invariant theory (GIT). With these foundations, we review the theory of non-commutative Gröbner bases, where we study the monomial orderings applicable to path algebras and existing algorithms for obtaining these bases. We also review the available software systems that automate these calculations. Later we approach basic and introductory concepts of algebraic geometry. We define the topology of Zariski and Hilbert's famous theorem of zeros, fundamental themes for an understanding of the last chapter, where we finally studied the relationships between path algebras and related algebraic varieties. Over there we study the correspondence theorem and how graded algebras can be seen as a particular class of subvarieties. We end up considering the admissible ideals in constructing related algebraic varieties. Finally, we have a chapter on conclusions and future work, reviewing the possible directions research in these areas can take.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaÁlgebraspa
dc.format.extentviii, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85477
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesJ. Apel and U. Klaus, Felix, a special computer algebra system for the computation in commutative and non-commutative rings and modules., 1998. http://felix.hgb-leipzig.de/.spa
dc.relation.referencesIbrahim Assem, Andrzej Skowronski, and Daniel Simson, Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, Cambridge University Press, 2006.spa
dc.relation.referencesJ. Backelin, The grobner basis calculator Bergman, 2006. https://servus.math.su.se/bergman/.spa
dc.relation.referencesMichael Barot, Introduction to the Representation Theory of Algebras, Springer International Pu- blishing, Cham, 2015. https://link.springer.com/10.1007/978-3-319-11475-0.spa
dc.relation.referencesBruno Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal, Ph.D. Thesis, 1965.spa
dc.relation.referencesHarm Derksen and Jerzy Weyman, An Introduction to Quiver Representations, American Mathematical Society, Providence, Rhode Island, 2017.spa
dc.relation.referencesY. Drozd, Introduction to Algebraic Geometry, Unpublished Textbook, 2004.spa
dc.relation.referencesP. I. Etingof (ed.), Introduction to representation theory, Student Mathematical Library, American Mathematical Society, Providence, R.I, 2011.spa
dc.relation.referencesD.R. Farkas, C. Feustel, and E.L. Green, Synergy in the theories of Gröbner bases and path algebras, Canad. J. Mathematics 45 (1993), 727– 739.spa
dc.relation.referencesPeter Gabriel, Unzerlegbare Darstellungen I, manuscripta mathematica 6 (March 1972), no. 1, 71– 103. https://doi.org/10.1007/BF01298413.spa
dc.relation.referencesPeter Gabriel, Indecomposable representations. II, 1973.spa
dc.relation.referencesEdward L. Green, Noncommutative Gröbner Bases, and Projective Resolutions, Computational Methods for Representations of Groups and Algebras, 1999, pp. 29– 60.spa
dc.relation.referencesEdward L. Green, Multiplicative Bases, Gröbner Bases, and Right Gröbner Bases, Journal of Symbolic Computation 29 (May 2000), no. 4, 601– 623. http://www.sciencedirect.com/science/article/pii/S0747717199903243.spa
dc.relation.referencesEdward L. Green, Lutz Hille, and Sibylle Schroll, Algebras and Varieties, Algebras and Representation Theory 24 (March 2020), 367– 388. https://doi.org/10.1007/s10468-020-09951-3.spa
dc.relation.referencesWilliam H. Gustafson, The history of algebras and their representations, Representations of Algebras, 1982, pp. 1– 28.spa
dc.relation.referencesRyan Kinser, Introduction to Geometry of Representation of Algebras. Lecture Notes., 2018.spa
dc.relation.referencesV Levandovsky and G Greuel, Plural. A subsystem for computations with non-commutative polynomial algebras., 2006. https://www.singular.uni-kl.de/.spa
dc.relation.referencesT. Mora, Gröbner bases for non-commutative polynomial rings, Proc. AAECC3, L.N.C.S 229 (1986).spa
dc.relation.referencesClaus Michael Ringel, Report on the Brauer-Thrall conjectures: Rojter’s theorem and the theorem of Nazarova and Rojter (on algorithms for solving vectorspace problems. I), Representation Theory I: Proceedings of the Workshop on the Present Trends in Representation Theory, Ottawa, Carleton University, August 13 – 18, 1979, 1980, pp. 104– 136. https://doi.org/10.1007/BFb0089780.spa
dc.relation.referencesClaus Michael Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, Heidelberg, 1984. http://link.springer.com/10.1007/BFb0072870.spa
dc.relation.referencesRalf Schiffler, Quiver Representations, CMS Books in Mathematics, Springer International Publishing, 2014. https://www.springer.com/gp/book/9783319092034.spa
dc.relation.referencesThe QPA Team, QPA. Quivers and path algebras., 2011. https://folk.ntnu.no/oyvinso/QPA/.spa
dc.relation.referencesGeorge V Wilson, The Cartan map on categories of graded modules, Journal of Algebra 85 (December 1983), no. 2, 390– 398. https://www.sciencedirect.com/science/article/pii/ 0021869383901035.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.lccCurvas algebraicasspa
dc.subject.lccAlgebraic varietieseng
dc.subject.proposalTeorı́a de representación de anillos y álgebras asociativasspa
dc.subject.proposalBases de Gröbner no conmutativasspa
dc.subject.proposalÁlgebras de Caminosspa
dc.subject.proposalRepresentaciones de carcajesspa
dc.subject.proposalRepresentation theory of associative rings and algebraseng
dc.subject.proposalNon-commutative Gröbner basiseng
dc.subject.proposalPath algebraseng
dc.subject.proposalQuiver representationseng
dc.subject.proposalVariedades algebraicasspa
dc.subject.proposalAnillos y álgebras asociativasspa
dc.subject.proposalAlgebraic varietieseng
dc.subject.proposalAssociative rings and algebraseng
dc.subject.wikidataVariedades algebraicasspa
dc.subject.wikidataGröbner basesspa
dc.subject.wikidataGröbner basiseng
dc.titleAlgunas relaciones entre álgebras de caminos y variedades algebraicas afinesspa
dc.title.translatedSome relationships between path algebras and affine algebraic varietieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79684796.2023.pdf
Tamaño:
791.58 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: