Caracterización funcional in vitro de medios condicionados de células madre mesenquimales derivadas de tejido adiposo humano: efecto de la liofilización

dc.contributor.advisorChaparro Garzón, Orlandospa
dc.contributor.advisorLinero Segrera, Italispa
dc.contributor.authorMartínez Solano, Luisa Fernandaspa
dc.contributor.orcidMartínez Solano, Luisa Fernanda [000000033387425X]spa
dc.contributor.researchgroupBiología de Células Madrespa
dc.date.accessioned2025-03-04T13:18:40Z
dc.date.available2025-03-04T13:18:40Z
dc.date.issued2021
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIntroducción. La terapia de regeneración de tejido óseo empleando de medios condicionados de células madre mesenquimales (MSCs-MC) ha sido propuesta recientemente como una alternativa prometedora. Para mejorar sus condiciones de transporte y almacenamiento con el propósito de trasladar su aplicación a pacientes, se ha propuesto la liofilización de los MSCs-MC. Sin embargo, es imprescindible evaluar si las funciones pro-angiogénicas y pro-osteogénicas de los medios condicionados de células madre mesenquimales derivadas tejido adiposo humano (hAMSCs-MC) se alteran cuando son sometidos al proceso de liofilización. Por lo anterior, el objetivo de este estudio fue evaluar mediante ensayos in vitro , el efecto de la liofilización sobre la función pro- osteogénica y angiogénica de los hAMSCs-MC. Materiales y Métodos. Se realizó la producción de hAMSCs-MC liofilizados y sin liofilizar de dos lotes AD27 y AD28, para posteriormente realizar la caracterización funcional de los mismos, mediante tres modelos in vitro de angiogénesis: migración de células endoteliales, formación de estructuras tubulares en matriz de membrana basal y formación de brotes angiogénicos mediante la técnica de explantes de ventrículo de corazón de ratón. Además, mediante un modelo adicional se evaluó la capacidad de los hAMSCs-MC liofilizados y no liofilizados de potencializar la inducción de la diferenciación osteogénica in vitro . Resultados. Los ensayos de angiogénesis no mostraron diferencias significativas entre los medios liofilizados y no liofilizados para los dos grupos. Este mismo resultado se observó en el ensayo de osteogénesis, donde no se encontraron diferencias estadísticamente significativas entre el grupo de medios condicionados liofilizados y no liofilizados. Conclusiones. La liofilización de los hAMSCs-MC no altera significativamente su capacidad pro-angiogénica y pro-osteogénica in vitro, lo cual sugiere que el liofilizado es un proceso adecuado para mejorar las condiciones de estabilidad de los hAMSCs-MC, durante el almacenamiento y transporte. Como recomendaciones se sugiere continuar con estudios que evalúen el efecto del liofilizado sobre los posibles cambios proteicos de los hAMSCs-MC cuando son sometidos al proceso de liofilización (Texto tomado de la fuente).spa
dc.description.abstractIntroduction: Bone tissue regeneration therapy through human adipose derived mesenchymal stem cell conditioned media (hAMSCs-MC) has been recently proposed as a promising alternative. In order to develop clinical application methods for hAMSCs-MC, transportation and storage improvements are needed to elaborate and the lyophilization of hAMSCs-MC has been proposed. However, it is essential to evaluate whether the pro-angiogenic and pro-osteogenic functions of the conditioned media of human adipose tissue derived mesenchymal stem cells (hAMSCs-MC) are altered when subjected to the lyophilization process. Therefore, the objective of this study was to evaluate, the effect of lyophilization on the pro-osteogenic and angiogenic functions of hAMSCs-MC when undergo the lyophilization process. Materials and methods. To being with, isolation, culture, and identification of hAMSCs was performed, followed by the production of lyophilized and not lyophilized hAMSCs-MC from two different batches AD27 and AD28. Once lyophilized and not lyophilized conditioned media was produced, three in vitro angiogenesis assays were carried out to evaluate by comparation the functional capabilities of the lyophilized and not lyophilized hAMSCs-MC. The three in vitro angiogenesis assays were: migration of endothelial cells, formation of tubular structures in basement membrane matrix and formation of angiogenic buds by the mouse heart ventricular explant technique. In addition, to evaluate the ability of potentialize the induction of osteogenic differentiation using lyophilized and non-lyophilized hAMSCs-MC, an in vitro osteogenic assay was executed. Results. In general, the three angiogenesis assays showed that there were no significant differences between lyophilized and non-lyophilized media for both two groups AD27 and AD28. On the other hand, a similar pattern was observed in the osteogenesis assay where no significant differences were observed between lyophilized and non-lyophilized hAMSCs-MC groups. Conclusions. Lyophilization of the hAMSCs-MC does not significantly affect the pro-angiogenic and pro-osteogenic ability of the conditioned media, which suggests that lyophilization is a suitable process to improve the stability conditions during storage and transport of the hAMSCs-MC. However further studies with focus on the protein changes of hAMSCs-MC lyophilized are needed.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Odontologíaspa
dc.description.methodsEstudio In-vitrospa
dc.description.researchareaBiociencia molecular y estructura bucodentalspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87582
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Odontologíaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Odontología - Maestría en Odontologíaspa
dc.relation.references1. Atala A. Ingeniería de tejidos. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson JL, Loscalzo J, editors. Harrison Principios de Medicina Interna, 19e [Internet]. New York, NY: McGraw-Hill Education; 2016. Available from: http://accessmedicina.mhmedical.com/content.aspx?aid=1137919967spa
dc.relation.references2. Editor S, Turksen K. Stem Cells in Regenerative Medicine [Internet]. Vol. 482. 2009. Available from: http://link.springer.com/10.1007/978-1-59745-060-7spa
dc.relation.references3. Rodríguez ASS, Ríos AM, Bañuelos JJG, Borunda JA. Células madre y su aplicación en la terapia celular. In: Montes AMS, Rodríguez ASS, Borunda JSA, editors. Biología Molecular Fundamentos y aplicaciones en las ciencias de la salud, 2e [Internet]. New York, NY: McGraw-Hill Education; 2016. Available from: http://accessmedicina.mhmedical.com/content.aspx?aid=1127411726spa
dc.relation.references4. Linero & Chaparro. Regeneración ósea por implante de células madre mesenquimales derivadas de tejido humano adiposo en un modelo animal. 2012;108.spa
dc.relation.references5. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions – A 21st Century Perspective. Nat Publ Gr [Internet]. 2013;1(3):216–48. Available from: http://dx.doi.org/10.4248/BR201303002spa
dc.relation.references6. Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noël L, Strong DM. Adverse reactions and events related to musculoskeletal allografts: Reviewed by World Health Organisation Project NOTIFY. Int Orthop. 2012;36(3):633–41.spa
dc.relation.references7. Tolar J, Osborn MJ, Daughters R, Banga A, Wagner J. Regenerative Medicine: Multipotential Cell Therapy for Tissue Repair. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams Hematology, 9e [Internet]. New York, NY: McGraw-Hill Education; 2015. Available from: http://accessmedicine.mhmedical.com/content.aspx?aid=1121091169spa
dc.relation.references8. Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014;9(9).spa
dc.relation.references9. Escobar, Carlos Hugo 2016. Producción xenofree de células madre mesenquimales derivadas de tejido adiposo humano y su evaluación de su secretoma neovascularizante. Tesis Doctoral. Universidad Nacional de Colombia; 2016.spa
dc.relation.references10. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.spa
dc.relation.references11. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9).spa
dc.relation.references12. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129(11):2182–9.spa
dc.relation.references13. Peng Y, Xuan M, Zou J, Liu H, Zhuo Z, Wan Y, et al. Freeze-dried rat bone marrow mesenchymal stem cell paracrine factors: A simplified novel material for skin wound therapy. Tissue Eng - Part A. 2015;21(5–6):1036–46.spa
dc.relation.references14. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008 Nov;103(11):1204–19.spa
dc.relation.references15. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. Tissue Eng - Part B Rev. 2017;23(6):515–28.spa
dc.relation.references16. Liu R, Chang W, Wei H, Zhang K. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin. Stem Cells Int. 2016;2016.spa
dc.relation.references17. Lu H, Wang F, Mei H, Wang S, Cheng L. Human adipose mesenchymal stem cells show more efficient angiogenesis promotion on endothelial colony-forming cells than umbilical cord and endometrium. Stem Cells Int. 2018;2018.spa
dc.relation.references18. Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol. 2020;235(7–8):5555–69.spa
dc.relation.references19. Chen YT, Tsai MJ, Hsieh N, Lo MJ, Lee MJ, Cheng H, et al. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Stem Cell Res Ther. 2019;10(1):1–15.spa
dc.relation.references20. Noverina R, Widowati W, Ayuningtyas W, Kurniawan D, Afifah E, Laksmitawati DR, et al. Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs). Clin Nutr Exp. 2019;24:34–44.spa
dc.relation.references21. Pawitan JA. Prospect of Stem Cell Conditioned Medium in 10.1155/2014/965849 Medicine. Biomed Res Int [Internet]. 2014;2014:965849. Available from: http://www.hindawi.com/journals/oximed/2013/184598/abs/%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4229962&tool=pmcentrez&rendertype=abstractspa
dc.relation.references22. Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T, et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep. 2015;12(1):20–30.spa
dc.relation.references23. Luo Et al, 2018. Curr Med Sci. 2018;38(1):124–30.spa
dc.relation.references24. Golle L, Gerth HU, Beul K, Heitplatz B, Barth P, Fobker M, et al. Bone marrow-derived cells and their conditioned medium induce microvascular repair in uremic rats by stimulation of endogenous repair mechanisms. Sci Rep. 2017;7(1):1–15.spa
dc.relation.references25. Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y, et al. Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration. Tissue Eng - Part A. 2017;23(9–10):367–77.spa
dc.relation.references26. Dowling P, Clynes M. Conditioned media from cell lines: A complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics. 2011;11(4):794–804.spa
dc.relation.references27. Wankhade UD, Shen M, Kolhe R, Fulzele S. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells Int. 2016;2016.spa
dc.relation.references28. Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol. 2020;8(April):1–12.spa
dc.relation.references29. Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O. Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity. PLoS One. 2012;7(10).spa
dc.relation.references30. Yousefi F, Ebtekar M, Soudi S, Soleimani M, Hashemi SM. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett [Internet]. 2016;172:94–105. Available from: http://dx.doi.org/10.1016/j.imlet.2016.02.016spa
dc.relation.references31. Pouya S, Heidari M, Baghaei K, Asadzadeh Aghdaei H, Moradi A, Namaki S, et al. Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol [Internet]. 2018;54(October 2017):86–94. Available from: http://dx.doi.org/10.1016/j.intimp.2017.11.001spa
dc.relation.references32. Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, et al. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis. Sci Rep. 2017;7(1).spa
dc.relation.references33. Bely AE, Nyberg KG. Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol [Internet]. 2018 Apr 20;25(3):161–70. Available from: http://dx.doi.org/10.1016/j.tree.2009.08.005spa
dc.relation.references34. Doncel A. Comparación in vitro del efectoangiogénico de medios condicionados de células madre mesenquimales humanas obtenidas a partir de tejido adiposo y medula ósea cultivadas en normoxia e hipoxia. Universidad Nacional de Colombia; 2010.spa
dc.relation.references35. Langer R, Vacanti JP. - ARTICLES Tissue Engineering. Science (80- ). 1993;260(May):920–6.spa
dc.relation.references36. Huang X, Liu X, Shang Y, Qiao F, Chen G. Current Trends in Research on Bone Regeneration: A Bibliometric Analysis. Biomed Res Int. 2020;2020.spa
dc.relation.references37. Znaor A. Neutropenia inducida por quimioterapia : el punto de vista del oncólogo Consideraciones perioperatorias en el paciente oncológico sometido a hepatectomía Editor en Jefe Dr . Francisco Javier Ochoa Carrillo. 2016.spa
dc.relation.references38. Ferdiansyah F, Novembri Utomo D, Suroto H. Immunogenicity of Bone Graft Using Xenograft Freeze-Dried Cortical Bovine, Allograft Freeze-Dried Cortical New Zealand White Rabbit, Xenograft Hydroxyapatite Bovine, And Xenograft Demineralized Bone Matrix Bovine In Bone Defect Of Femoral Diaphysis White . Vol. 3, KnE Life Sciences. 2017. 344 p.spa
dc.relation.references39. Shrivats AR, Alvarez P, Schutte L, Hollinger JO. Bone Regeneration [Internet]. Fourth Edi. Principles of Tissue Engineering: Fourth Edition. Elsevier; 2013. 1201–1221 p. Available from: http://dx.doi.org/10.1016/B978-0-12-398358-9.00055-0spa
dc.relation.references40. Chaparro OL. Regenerative Medicine : A New Paradigm in Bone Regeneration Regenerative Medicine : A New Paradigm in Bone Regeneration. In 2016.spa
dc.relation.references41. Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21(9).spa
dc.relation.references42. Kyle H. Vining and David J. Mooney. . and Regeneration. System [Internet]. 2017;18(12):30–8. Available from: http://dx.doi.org/10.1038/s41582-019-0280-3spa
dc.relation.references43. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003 Oct;31(10):890–6.spa
dc.relation.references44. Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013 Dec;95(12):2196–211.spa
dc.relation.references45. Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie. 2013 Dec;95(12):2212–21.spa
dc.relation.references46. Liang X, Ding Y, Zhang Y, Tse H-F, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59.spa
dc.relation.references47. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012 Feb;1(2):142–9.spa
dc.relation.references48. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med [Internet]. 2010;5(1):121–43. Available from: http://www.futuremedicine.com/doi/10.2217/rme.09.74spa
dc.relation.references49. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011 Jul;9(1):11–5.spa
dc.relation.references50. Haumer A, Bourgine PE, Occhetta P, Born G, Tasso R, Martin I. Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev [Internet]. 2018; Available from: https://doi.org/10.1016/j.addr.2018.01.010spa
dc.relation.references51. Pereira T, Armada-da Silva PAS, Amorim I, Rema A, Caseiro AR, Gartner A, et al. Effects of Human Mesenchymal Stem Cells Isolated from Wharton’s Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells Int. 2014;2014:376918.spa
dc.relation.references52. Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 2013;8(8):e69515.spa
dc.relation.references53. Linero Doncel & Chaparro. Proliferación y diferenciación osteogénica de células madre mesenquimales en hidrogeles de plasma sanguíneo humano. Biomédica [Internet]. 2013;34(1):67. Available from: http://www.revistabiomedica.org/index.php/biomedica/article/view/1465spa
dc.relation.references54. Sanchez Rafael; Chaparro Orlando. Comparación del efecto de medios condicionados de cultivos de 2 tipos de células madre mesenquimales sobre la cicatrizaciónde heridas en ratones. Universidad Nacional de Colombia; 2011.spa
dc.relation.references55. Cyster JG, Ngo VN, Ekland EH, Gunn MD, Sedgwick JD, Ansel KM. Chemokines and B-cell Homing to Follicles. In: Melchers F, Potter M, editors. Mechanisms of B Cell Neoplasia 1998. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 87–93.spa
dc.relation.references56. Benavides-Castellanos MP, Garzón-Orjuela N, Linero I. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: a systematic review and meta-analysis. Cell Regen. 2020;9(1):1–22.spa
dc.relation.references57. Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury [Internet]. 2011;42(6):556–61. Available from: http://dx.doi.org/10.1016/j.injury.2011.03.035spa
dc.relation.references58. Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthop Transl [Internet]. 2017;9:19–27. Available from: http://dx.doi.org/10.1016/j.jot.2017.03.002spa
dc.relation.references59. Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol. 2019;7(November):1–20.spa
dc.relation.references60. Jiang, L., He, L., Fountoulakis M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Chromatogr. 2004;(1023):317–320.spa
dc.relation.references61. Eiró N, Sendon-Lago J, Seoane S, Bermúdez MA, Lamelas ML, Garcia-Caballero T, et al. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget [Internet]. 2014;5(21). Available from: http://www.oncotarget.com/fulltext/2530spa
dc.relation.references62. Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, Lombardi G, et al. Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy. 2012;14(2):153–61.spa
dc.relation.references63. Sefati N, Norouzian M, Abbaszadeh HA, Abdollahifar MA, Amini A, Bagheri M, et al. Effects of bone marrow mesenchymal stem cells-conditioned medium on tibial partial osteotomy model of fracture healing in hypothyroidism rats. Iran Biomed J. 2018;22(2):90–8.spa
dc.relation.references64. Fukuoka H, Suga H, Narita K, Watanabe R, Shintani S. The Latest Advance in Hair Regeneration Therapy Using Proteins Secreted by Adipose-Derived Stem Cells. Am J Cosmet Surg. 2012;29(4):273–82.spa
dc.relation.references65. Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell [Internet]. 2016;48(5):533–43. Available from: http://dx.doi.org/10.1016/j.tice.2016.06.010spa
dc.relation.references66. Selvasandran K, Makhoul G, Jaiswal PK, Jurakhan R, Li L, Ridwan K, et al. A Tumor Necrosis Factor-α and Hypoxia-Induced Secretome Therapy for Myocardial Repair. Ann Thorac Surg. 2018;105(3):715–23.spa
dc.relation.references67. Matejtschuk P. Lyophilization of Proteins. In: Day JG, Stacey GN, editors. Cryopreservation and Freeze-Drying Protocols [Internet]. Totowa, NJ: Humana Press; 2007. p. 59–72. Available from: https://doi.org/10.1007/978-1-59745-362-2_4spa
dc.relation.references68. Nidhi K, Indrajeet S, Khushboo M, Gauri K, Sen DJ. Hydrotropy: A promising tool for solubility enhancement: A review. Int J Drug Dev Res. 2011;3(2):26–33.spa
dc.relation.references69. Xu J, Wang B, Sun Y, Wu T, Liu Y, Zhang J, et al. Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther [Internet]. 2016;7(1):1–12. Available from: http://dx.doi.org/10.1186/s13287-016-0392-2spa
dc.relation.references70. Aranda E, Owen GI. A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009;42(3):377–89.spa
dc.relation.references71. Carpentier G, Berndt S, Ferratge S, Rasband W, Cuendet M, Uzan G, et al. Angiogenesis Analyzer for ImageJ — A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay.” Sci Rep. 2020;10(1):1–13.spa
dc.relation.references72. Carpentier G. ANGIOGENESIS ANALYZER FOR IMAGEJ. [Internet]. 2012. Available from: http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ&lang=en&artpage=3-6#outil_sommaire_3spa
dc.relation.references73. Kiefer FN, Munk VC, Humar R, Dieterle T, Landmann L, Battegay EJ. A versatile in vitro assay for investigating angiogenesis of the heart. Exp Cell Res. 2004;300(2):272–82.spa
dc.relation.references74. Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest. 1990 Jul;63(1):115–22.spa
dc.relation.references75. {R Core Team}{R Foundation for Statistical Computing}. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2020. Available from: https://www.r-project.org/spa
dc.relation.references76. Tonelli P, Duvina M, Barbato L, Biondi E, Nuti N, Brancato L, et al. Bone regeneration in dentistry. Clin Cases Miner Bone Metab. 2011;8(3):24–8.spa
dc.relation.references77. Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H. The current and future therapies of bone regeneration to repair bone defects. Int J Dent. 2012;2012:1–8.spa
dc.relation.references78. Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ. Periodontitis in US Adults: National Health and Nutrition Examination Survey 2009-2014. J Am Dent Assoc [Internet]. 2018;149(7):576-588.e6. Available from: https://www.sciencedirect.com/science/article/pii/S0002817718302769spa
dc.relation.references79. Ministerio de Salud y Protección Social, MINSALUD. IV Estudio Nacional De Salud Bucal - ENSAB IV. Bogotá, Colomb. 2014;3:381.spa
dc.relation.references80. Ghanbari H, Vakili-Ghartavol R. Bone Regeneration: Current Status and Future Prospects. Adv Tech Bone Regen. 2016;3–26.spa
dc.relation.references81. Caldwell S. 12 - Bone Grafting Complications. In: Resnik RR, Misch CE, editors. Misch’s Avoiding Complications in Oral Implantology [Internet]. Mosby; 2018. p. 440–98. Available from: https://www.sciencedirect.com/science/article/pii/B9780323375801000123spa
dc.relation.references82. Yamada Y. Trends in clinical trials on bone regeneration in dentistry — towards an innovative development in dental implant treatment. 2019;5(4):8–17.spa
dc.relation.references83. Liu J, Kerns DG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J. 2014;8(1):56–65.spa
dc.relation.references84. Santos A Dos, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SD. Differentiation capacity of human mesenchymal stem cells into keratocyte lineage. Investig Ophthalmol Vis Sci. 2019;60(8):3013–23.spa
dc.relation.references85. Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009;1(1):97–106.spa
dc.relation.references86. Gale AL, Linardi RL, McClung G, Mammone RM, Ortved KF. Comparison of the chondrogenic differentiation potential of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Front Vet Sci. 2019;6(JUN):1–10.spa
dc.relation.references87. Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: Role of tissue source and inducing factors. Stem Cell Res Ther. 2010;1(4):1–9.spa
dc.relation.references88. Munir H, Ward LSC, Sheriff L, Kemble S, Nayar S, Barone F, et al. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner. Stem Cells. 2017;35(6):1636–46.spa
dc.relation.references89. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: Challenges and unfulfilled expectations. Tissue Eng - Part B Rev. 2014;20(6):596–608.spa
dc.relation.references90. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen Med [Internet]. 2019;4(1). Available from: http://dx.doi.org/10.1038/s41536-019-0083-6spa
dc.relation.references91. Yelick PC, Zhang W. Mesenchymal stem cells. Tissue Eng Princ Pract. 2012;10-1-10–4.spa
dc.relation.references92. Katagiri W, Watanabe J, Toyama N, Osugi M, Sakaguchi K, Hibi H. Clinical Study of Bone Regeneration by Conditioned Medium from Mesenchymal Stem Cells after Maxillary Sinus Floor Elevation. Implant Dent. 2017;26(4):607–12.spa
dc.relation.references93. Katagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head Face Med [Internet]. 2016;12(1):5. Available from: http://www.head-face-med.com/content/12/1/5spa
dc.relation.references94. Henao LN 2016 (Universidad N de C. Evaluación de la capacidad de Medios Condicionados producidos por Células Madre Mesenquimales Humanas para inducir la regeneración ósea en alveolos de pacientes con exodoncia de terceros molares inferiores. Universidad Nacional de Colombia; 2016.spa
dc.relation.references95. El Baradie KBY, Nouh M, O’Brien F, Liu Y, Fulzele S, Eroglu A, et al. Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury. Front Cell Dev Biol. 2020;8(March):1–12.spa
dc.relation.references96. Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, et al. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells. 2018;7(11):190.spa
dc.relation.references97. Trivedi A, Miyazawa B, Gibb S, Valanoski K, Vivona L, Lin M, et al. Bone marrow donor selection and characterization of MSCs is critical for pre-clinical and clinical cell dose production. J Transl Med [Internet]. 2019;17(1):1–16. Available from: https://doi.org/10.1186/s12967-019-1877-4spa
dc.relation.references98. Zhang C, Zhou L, Wang Z, Gao W, Chen W, Zhang H, et al. Eradication of specific donor-dependent variations of mesenchymal stem cells in immunomodulation to enhance therapeutic values. Cell Death Dis. 2021;12(4).spa
dc.relation.references99. Kang I, Lee BC, Choi SW, Lee JY, Kim JJ, Kim BE, et al. Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med [Internet]. 2018;50(4). Available from: http://dx.doi.org/10.1038/s12276-017-0014-9spa
dc.relation.references100. Rashedi I, Talele N, Wang X-H, Hinz B, Radisic M, Keating A. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One [Internet]. 2017 Oct 31;12(10):e0187348. Available from: https://doi.org/10.1371/journal.pone.0187348spa
dc.relation.references101. Liu J, Liu X, Zhou G, Xiao R, Cao Y. Conditioned medium from chondrocyte/scaffold constructs induced chondrogenic differentiation of bone marrow stromal cells. Anat Rec (Hoboken). 2012 Jul;295(7):1109–16.spa
dc.relation.references102. Omori M, Tsuchiya S, Hara K, Kuroda K, Hibi H, Okido M, et al. A new application of cell-free bone regeneration: Immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther [Internet]. 2015;6(1):1–13. Available from: http://dx.doi.org/10.1186/s13287-015-0114-1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::611 - Anatomía humana, citología, histologíaspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiologíaspa
dc.subject.decsCélulas Madre Mesenquimatosasspa
dc.subject.decsMesenchymal Stem Cellseng
dc.subject.decsCélulas del Tejido Conectivospa
dc.subject.decsConnective Tissue Cellseng
dc.subject.decsCélulas Madrespa
dc.subject.decsStem Cellseng
dc.subject.decsTejido Adiposospa
dc.subject.decsAdipose Tissueeng
dc.subject.decsLiofilizaciónspa
dc.subject.decsFreeze Dryingeng
dc.subject.decsAngiogénesisspa
dc.subject.decsAngiogenesiseng
dc.subject.decsOsteogenesisspa
dc.subject.proposalMedios condicionadosspa
dc.subject.proposalLiofilizaciónspa
dc.subject.proposalAngiogénesisspa
dc.subject.proposalOsteogénesisspa
dc.subject.proposalConditioned mediaeng
dc.subject.proposalLyophilizationeng
dc.subject.proposalAngiogenesiseng
dc.subject.proposalOsteogenesiseng
dc.titleCaracterización funcional in vitro de medios condicionados de células madre mesenquimales derivadas de tejido adiposo humano: efecto de la liofilizaciónspa
dc.title.translatedFunctional in vitro characterization of human adipose tissue derived mesenchymal stem cells conditioned media: lyophilization effecteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CARACTERIZACIÓN FUNCIONAL IN VITRODE MEDIOS CONDICIONADOS DE CÉLULAS MADRE MESENQUIMALES DERIVADAS DE TEJIDO ADIPOSO HUMANO- EFECTO DE LA LIOFILIZACIÓN.pdf
Tamaño:
6.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Odontología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: