Caracterización funcional in vitro de medios condicionados de células madre mesenquimales derivadas de tejido adiposo humano: efecto de la liofilización
dc.contributor.advisor | Chaparro Garzón, Orlando | spa |
dc.contributor.advisor | Linero Segrera, Itali | spa |
dc.contributor.author | Martínez Solano, Luisa Fernanda | spa |
dc.contributor.orcid | Martínez Solano, Luisa Fernanda [000000033387425X] | spa |
dc.contributor.researchgroup | Biología de Células Madre | spa |
dc.date.accessioned | 2025-03-04T13:18:40Z | |
dc.date.available | 2025-03-04T13:18:40Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Introducción. La terapia de regeneración de tejido óseo empleando de medios condicionados de células madre mesenquimales (MSCs-MC) ha sido propuesta recientemente como una alternativa prometedora. Para mejorar sus condiciones de transporte y almacenamiento con el propósito de trasladar su aplicación a pacientes, se ha propuesto la liofilización de los MSCs-MC. Sin embargo, es imprescindible evaluar si las funciones pro-angiogénicas y pro-osteogénicas de los medios condicionados de células madre mesenquimales derivadas tejido adiposo humano (hAMSCs-MC) se alteran cuando son sometidos al proceso de liofilización. Por lo anterior, el objetivo de este estudio fue evaluar mediante ensayos in vitro , el efecto de la liofilización sobre la función pro- osteogénica y angiogénica de los hAMSCs-MC. Materiales y Métodos. Se realizó la producción de hAMSCs-MC liofilizados y sin liofilizar de dos lotes AD27 y AD28, para posteriormente realizar la caracterización funcional de los mismos, mediante tres modelos in vitro de angiogénesis: migración de células endoteliales, formación de estructuras tubulares en matriz de membrana basal y formación de brotes angiogénicos mediante la técnica de explantes de ventrículo de corazón de ratón. Además, mediante un modelo adicional se evaluó la capacidad de los hAMSCs-MC liofilizados y no liofilizados de potencializar la inducción de la diferenciación osteogénica in vitro . Resultados. Los ensayos de angiogénesis no mostraron diferencias significativas entre los medios liofilizados y no liofilizados para los dos grupos. Este mismo resultado se observó en el ensayo de osteogénesis, donde no se encontraron diferencias estadísticamente significativas entre el grupo de medios condicionados liofilizados y no liofilizados. Conclusiones. La liofilización de los hAMSCs-MC no altera significativamente su capacidad pro-angiogénica y pro-osteogénica in vitro, lo cual sugiere que el liofilizado es un proceso adecuado para mejorar las condiciones de estabilidad de los hAMSCs-MC, durante el almacenamiento y transporte. Como recomendaciones se sugiere continuar con estudios que evalúen el efecto del liofilizado sobre los posibles cambios proteicos de los hAMSCs-MC cuando son sometidos al proceso de liofilización (Texto tomado de la fuente). | spa |
dc.description.abstract | Introduction: Bone tissue regeneration therapy through human adipose derived mesenchymal stem cell conditioned media (hAMSCs-MC) has been recently proposed as a promising alternative. In order to develop clinical application methods for hAMSCs-MC, transportation and storage improvements are needed to elaborate and the lyophilization of hAMSCs-MC has been proposed. However, it is essential to evaluate whether the pro-angiogenic and pro-osteogenic functions of the conditioned media of human adipose tissue derived mesenchymal stem cells (hAMSCs-MC) are altered when subjected to the lyophilization process. Therefore, the objective of this study was to evaluate, the effect of lyophilization on the pro-osteogenic and angiogenic functions of hAMSCs-MC when undergo the lyophilization process. Materials and methods. To being with, isolation, culture, and identification of hAMSCs was performed, followed by the production of lyophilized and not lyophilized hAMSCs-MC from two different batches AD27 and AD28. Once lyophilized and not lyophilized conditioned media was produced, three in vitro angiogenesis assays were carried out to evaluate by comparation the functional capabilities of the lyophilized and not lyophilized hAMSCs-MC. The three in vitro angiogenesis assays were: migration of endothelial cells, formation of tubular structures in basement membrane matrix and formation of angiogenic buds by the mouse heart ventricular explant technique. In addition, to evaluate the ability of potentialize the induction of osteogenic differentiation using lyophilized and non-lyophilized hAMSCs-MC, an in vitro osteogenic assay was executed. Results. In general, the three angiogenesis assays showed that there were no significant differences between lyophilized and non-lyophilized media for both two groups AD27 and AD28. On the other hand, a similar pattern was observed in the osteogenesis assay where no significant differences were observed between lyophilized and non-lyophilized hAMSCs-MC groups. Conclusions. Lyophilization of the hAMSCs-MC does not significantly affect the pro-angiogenic and pro-osteogenic ability of the conditioned media, which suggests that lyophilization is a suitable process to improve the stability conditions during storage and transport of the hAMSCs-MC. However further studies with focus on the protein changes of hAMSCs-MC lyophilized are needed. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Odontología | spa |
dc.description.methods | Estudio In-vitro | spa |
dc.description.researcharea | Biociencia molecular y estructura bucodental | spa |
dc.format.extent | 101 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87582 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Odontología | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Odontología - Maestría en Odontología | spa |
dc.relation.references | 1. Atala A. Ingeniería de tejidos. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson JL, Loscalzo J, editors. Harrison Principios de Medicina Interna, 19e [Internet]. New York, NY: McGraw-Hill Education; 2016. Available from: http://accessmedicina.mhmedical.com/content.aspx?aid=1137919967 | spa |
dc.relation.references | 2. Editor S, Turksen K. Stem Cells in Regenerative Medicine [Internet]. Vol. 482. 2009. Available from: http://link.springer.com/10.1007/978-1-59745-060-7 | spa |
dc.relation.references | 3. Rodríguez ASS, Ríos AM, Bañuelos JJG, Borunda JA. Células madre y su aplicación en la terapia celular. In: Montes AMS, Rodríguez ASS, Borunda JSA, editors. Biología Molecular Fundamentos y aplicaciones en las ciencias de la salud, 2e [Internet]. New York, NY: McGraw-Hill Education; 2016. Available from: http://accessmedicina.mhmedical.com/content.aspx?aid=1127411726 | spa |
dc.relation.references | 4. Linero & Chaparro. Regeneración ósea por implante de células madre mesenquimales derivadas de tejido humano adiposo en un modelo animal. 2012;108. | spa |
dc.relation.references | 5. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions – A 21st Century Perspective. Nat Publ Gr [Internet]. 2013;1(3):216–48. Available from: http://dx.doi.org/10.4248/BR201303002 | spa |
dc.relation.references | 6. Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noël L, Strong DM. Adverse reactions and events related to musculoskeletal allografts: Reviewed by World Health Organisation Project NOTIFY. Int Orthop. 2012;36(3):633–41. | spa |
dc.relation.references | 7. Tolar J, Osborn MJ, Daughters R, Banga A, Wagner J. Regenerative Medicine: Multipotential Cell Therapy for Tissue Repair. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams Hematology, 9e [Internet]. New York, NY: McGraw-Hill Education; 2015. Available from: http://accessmedicine.mhmedical.com/content.aspx?aid=1121091169 | spa |
dc.relation.references | 8. Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014;9(9). | spa |
dc.relation.references | 9. Escobar, Carlos Hugo 2016. Producción xenofree de células madre mesenquimales derivadas de tejido adiposo humano y su evaluación de su secretoma neovascularizante. Tesis Doctoral. Universidad Nacional de Colombia; 2016. | spa |
dc.relation.references | 10. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. | spa |
dc.relation.references | 11. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9). | spa |
dc.relation.references | 12. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129(11):2182–9. | spa |
dc.relation.references | 13. Peng Y, Xuan M, Zou J, Liu H, Zhuo Z, Wan Y, et al. Freeze-dried rat bone marrow mesenchymal stem cell paracrine factors: A simplified novel material for skin wound therapy. Tissue Eng - Part A. 2015;21(5–6):1036–46. | spa |
dc.relation.references | 14. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008 Nov;103(11):1204–19. | spa |
dc.relation.references | 15. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. Tissue Eng - Part B Rev. 2017;23(6):515–28. | spa |
dc.relation.references | 16. Liu R, Chang W, Wei H, Zhang K. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin. Stem Cells Int. 2016;2016. | spa |
dc.relation.references | 17. Lu H, Wang F, Mei H, Wang S, Cheng L. Human adipose mesenchymal stem cells show more efficient angiogenesis promotion on endothelial colony-forming cells than umbilical cord and endometrium. Stem Cells Int. 2018;2018. | spa |
dc.relation.references | 18. Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol. 2020;235(7–8):5555–69. | spa |
dc.relation.references | 19. Chen YT, Tsai MJ, Hsieh N, Lo MJ, Lee MJ, Cheng H, et al. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Stem Cell Res Ther. 2019;10(1):1–15. | spa |
dc.relation.references | 20. Noverina R, Widowati W, Ayuningtyas W, Kurniawan D, Afifah E, Laksmitawati DR, et al. Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs). Clin Nutr Exp. 2019;24:34–44. | spa |
dc.relation.references | 21. Pawitan JA. Prospect of Stem Cell Conditioned Medium in 10.1155/2014/965849 Medicine. Biomed Res Int [Internet]. 2014;2014:965849. Available from: http://www.hindawi.com/journals/oximed/2013/184598/abs/%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4229962&tool=pmcentrez&rendertype=abstract | spa |
dc.relation.references | 22. Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T, et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep. 2015;12(1):20–30. | spa |
dc.relation.references | 23. Luo Et al, 2018. Curr Med Sci. 2018;38(1):124–30. | spa |
dc.relation.references | 24. Golle L, Gerth HU, Beul K, Heitplatz B, Barth P, Fobker M, et al. Bone marrow-derived cells and their conditioned medium induce microvascular repair in uremic rats by stimulation of endogenous repair mechanisms. Sci Rep. 2017;7(1):1–15. | spa |
dc.relation.references | 25. Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y, et al. Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration. Tissue Eng - Part A. 2017;23(9–10):367–77. | spa |
dc.relation.references | 26. Dowling P, Clynes M. Conditioned media from cell lines: A complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics. 2011;11(4):794–804. | spa |
dc.relation.references | 27. Wankhade UD, Shen M, Kolhe R, Fulzele S. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells Int. 2016;2016. | spa |
dc.relation.references | 28. Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol. 2020;8(April):1–12. | spa |
dc.relation.references | 29. Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O. Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity. PLoS One. 2012;7(10). | spa |
dc.relation.references | 30. Yousefi F, Ebtekar M, Soudi S, Soleimani M, Hashemi SM. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett [Internet]. 2016;172:94–105. Available from: http://dx.doi.org/10.1016/j.imlet.2016.02.016 | spa |
dc.relation.references | 31. Pouya S, Heidari M, Baghaei K, Asadzadeh Aghdaei H, Moradi A, Namaki S, et al. Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol [Internet]. 2018;54(October 2017):86–94. Available from: http://dx.doi.org/10.1016/j.intimp.2017.11.001 | spa |
dc.relation.references | 32. Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, et al. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis. Sci Rep. 2017;7(1). | spa |
dc.relation.references | 33. Bely AE, Nyberg KG. Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol [Internet]. 2018 Apr 20;25(3):161–70. Available from: http://dx.doi.org/10.1016/j.tree.2009.08.005 | spa |
dc.relation.references | 34. Doncel A. Comparación in vitro del efectoangiogénico de medios condicionados de células madre mesenquimales humanas obtenidas a partir de tejido adiposo y medula ósea cultivadas en normoxia e hipoxia. Universidad Nacional de Colombia; 2010. | spa |
dc.relation.references | 35. Langer R, Vacanti JP. - ARTICLES Tissue Engineering. Science (80- ). 1993;260(May):920–6. | spa |
dc.relation.references | 36. Huang X, Liu X, Shang Y, Qiao F, Chen G. Current Trends in Research on Bone Regeneration: A Bibliometric Analysis. Biomed Res Int. 2020;2020. | spa |
dc.relation.references | 37. Znaor A. Neutropenia inducida por quimioterapia : el punto de vista del oncólogo Consideraciones perioperatorias en el paciente oncológico sometido a hepatectomía Editor en Jefe Dr . Francisco Javier Ochoa Carrillo. 2016. | spa |
dc.relation.references | 38. Ferdiansyah F, Novembri Utomo D, Suroto H. Immunogenicity of Bone Graft Using Xenograft Freeze-Dried Cortical Bovine, Allograft Freeze-Dried Cortical New Zealand White Rabbit, Xenograft Hydroxyapatite Bovine, And Xenograft Demineralized Bone Matrix Bovine In Bone Defect Of Femoral Diaphysis White . Vol. 3, KnE Life Sciences. 2017. 344 p. | spa |
dc.relation.references | 39. Shrivats AR, Alvarez P, Schutte L, Hollinger JO. Bone Regeneration [Internet]. Fourth Edi. Principles of Tissue Engineering: Fourth Edition. Elsevier; 2013. 1201–1221 p. Available from: http://dx.doi.org/10.1016/B978-0-12-398358-9.00055-0 | spa |
dc.relation.references | 40. Chaparro OL. Regenerative Medicine : A New Paradigm in Bone Regeneration Regenerative Medicine : A New Paradigm in Bone Regeneration. In 2016. | spa |
dc.relation.references | 41. Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21(9). | spa |
dc.relation.references | 42. Kyle H. Vining and David J. Mooney. . and Regeneration. System [Internet]. 2017;18(12):30–8. Available from: http://dx.doi.org/10.1038/s41582-019-0280-3 | spa |
dc.relation.references | 43. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003 Oct;31(10):890–6. | spa |
dc.relation.references | 44. Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013 Dec;95(12):2196–211. | spa |
dc.relation.references | 45. Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie. 2013 Dec;95(12):2212–21. | spa |
dc.relation.references | 46. Liang X, Ding Y, Zhang Y, Tse H-F, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59. | spa |
dc.relation.references | 47. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012 Feb;1(2):142–9. | spa |
dc.relation.references | 48. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med [Internet]. 2010;5(1):121–43. Available from: http://www.futuremedicine.com/doi/10.2217/rme.09.74 | spa |
dc.relation.references | 49. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011 Jul;9(1):11–5. | spa |
dc.relation.references | 50. Haumer A, Bourgine PE, Occhetta P, Born G, Tasso R, Martin I. Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev [Internet]. 2018; Available from: https://doi.org/10.1016/j.addr.2018.01.010 | spa |
dc.relation.references | 51. Pereira T, Armada-da Silva PAS, Amorim I, Rema A, Caseiro AR, Gartner A, et al. Effects of Human Mesenchymal Stem Cells Isolated from Wharton’s Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells Int. 2014;2014:376918. | spa |
dc.relation.references | 52. Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 2013;8(8):e69515. | spa |
dc.relation.references | 53. Linero Doncel & Chaparro. Proliferación y diferenciación osteogénica de células madre mesenquimales en hidrogeles de plasma sanguíneo humano. Biomédica [Internet]. 2013;34(1):67. Available from: http://www.revistabiomedica.org/index.php/biomedica/article/view/1465 | spa |
dc.relation.references | 54. Sanchez Rafael; Chaparro Orlando. Comparación del efecto de medios condicionados de cultivos de 2 tipos de células madre mesenquimales sobre la cicatrizaciónde heridas en ratones. Universidad Nacional de Colombia; 2011. | spa |
dc.relation.references | 55. Cyster JG, Ngo VN, Ekland EH, Gunn MD, Sedgwick JD, Ansel KM. Chemokines and B-cell Homing to Follicles. In: Melchers F, Potter M, editors. Mechanisms of B Cell Neoplasia 1998. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 87–93. | spa |
dc.relation.references | 56. Benavides-Castellanos MP, Garzón-Orjuela N, Linero I. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: a systematic review and meta-analysis. Cell Regen. 2020;9(1):1–22. | spa |
dc.relation.references | 57. Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury [Internet]. 2011;42(6):556–61. Available from: http://dx.doi.org/10.1016/j.injury.2011.03.035 | spa |
dc.relation.references | 58. Lin W, Xu L, Zwingenberger S, Gibon E, Goodman SB, Li G. Mesenchymal stem cells homing to improve bone healing. J Orthop Transl [Internet]. 2017;9:19–27. Available from: http://dx.doi.org/10.1016/j.jot.2017.03.002 | spa |
dc.relation.references | 59. Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol. 2019;7(November):1–20. | spa |
dc.relation.references | 60. Jiang, L., He, L., Fountoulakis M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Chromatogr. 2004;(1023):317–320. | spa |
dc.relation.references | 61. Eiró N, Sendon-Lago J, Seoane S, Bermúdez MA, Lamelas ML, Garcia-Caballero T, et al. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget [Internet]. 2014;5(21). Available from: http://www.oncotarget.com/fulltext/2530 | spa |
dc.relation.references | 62. Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, Lombardi G, et al. Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy. 2012;14(2):153–61. | spa |
dc.relation.references | 63. Sefati N, Norouzian M, Abbaszadeh HA, Abdollahifar MA, Amini A, Bagheri M, et al. Effects of bone marrow mesenchymal stem cells-conditioned medium on tibial partial osteotomy model of fracture healing in hypothyroidism rats. Iran Biomed J. 2018;22(2):90–8. | spa |
dc.relation.references | 64. Fukuoka H, Suga H, Narita K, Watanabe R, Shintani S. The Latest Advance in Hair Regeneration Therapy Using Proteins Secreted by Adipose-Derived Stem Cells. Am J Cosmet Surg. 2012;29(4):273–82. | spa |
dc.relation.references | 65. Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell [Internet]. 2016;48(5):533–43. Available from: http://dx.doi.org/10.1016/j.tice.2016.06.010 | spa |
dc.relation.references | 66. Selvasandran K, Makhoul G, Jaiswal PK, Jurakhan R, Li L, Ridwan K, et al. A Tumor Necrosis Factor-α and Hypoxia-Induced Secretome Therapy for Myocardial Repair. Ann Thorac Surg. 2018;105(3):715–23. | spa |
dc.relation.references | 67. Matejtschuk P. Lyophilization of Proteins. In: Day JG, Stacey GN, editors. Cryopreservation and Freeze-Drying Protocols [Internet]. Totowa, NJ: Humana Press; 2007. p. 59–72. Available from: https://doi.org/10.1007/978-1-59745-362-2_4 | spa |
dc.relation.references | 68. Nidhi K, Indrajeet S, Khushboo M, Gauri K, Sen DJ. Hydrotropy: A promising tool for solubility enhancement: A review. Int J Drug Dev Res. 2011;3(2):26–33. | spa |
dc.relation.references | 69. Xu J, Wang B, Sun Y, Wu T, Liu Y, Zhang J, et al. Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther [Internet]. 2016;7(1):1–12. Available from: http://dx.doi.org/10.1186/s13287-016-0392-2 | spa |
dc.relation.references | 70. Aranda E, Owen GI. A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009;42(3):377–89. | spa |
dc.relation.references | 71. Carpentier G, Berndt S, Ferratge S, Rasband W, Cuendet M, Uzan G, et al. Angiogenesis Analyzer for ImageJ — A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay.” Sci Rep. 2020;10(1):1–13. | spa |
dc.relation.references | 72. Carpentier G. ANGIOGENESIS ANALYZER FOR IMAGEJ. [Internet]. 2012. Available from: http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ&lang=en&artpage=3-6#outil_sommaire_3 | spa |
dc.relation.references | 73. Kiefer FN, Munk VC, Humar R, Dieterle T, Landmann L, Battegay EJ. A versatile in vitro assay for investigating angiogenesis of the heart. Exp Cell Res. 2004;300(2):272–82. | spa |
dc.relation.references | 74. Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest. 1990 Jul;63(1):115–22. | spa |
dc.relation.references | 75. {R Core Team}{R Foundation for Statistical Computing}. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2020. Available from: https://www.r-project.org/ | spa |
dc.relation.references | 76. Tonelli P, Duvina M, Barbato L, Biondi E, Nuti N, Brancato L, et al. Bone regeneration in dentistry. Clin Cases Miner Bone Metab. 2011;8(3):24–8. | spa |
dc.relation.references | 77. Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H. The current and future therapies of bone regeneration to repair bone defects. Int J Dent. 2012;2012:1–8. | spa |
dc.relation.references | 78. Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ. Periodontitis in US Adults: National Health and Nutrition Examination Survey 2009-2014. J Am Dent Assoc [Internet]. 2018;149(7):576-588.e6. Available from: https://www.sciencedirect.com/science/article/pii/S0002817718302769 | spa |
dc.relation.references | 79. Ministerio de Salud y Protección Social, MINSALUD. IV Estudio Nacional De Salud Bucal - ENSAB IV. Bogotá, Colomb. 2014;3:381. | spa |
dc.relation.references | 80. Ghanbari H, Vakili-Ghartavol R. Bone Regeneration: Current Status and Future Prospects. Adv Tech Bone Regen. 2016;3–26. | spa |
dc.relation.references | 81. Caldwell S. 12 - Bone Grafting Complications. In: Resnik RR, Misch CE, editors. Misch’s Avoiding Complications in Oral Implantology [Internet]. Mosby; 2018. p. 440–98. Available from: https://www.sciencedirect.com/science/article/pii/B9780323375801000123 | spa |
dc.relation.references | 82. Yamada Y. Trends in clinical trials on bone regeneration in dentistry — towards an innovative development in dental implant treatment. 2019;5(4):8–17. | spa |
dc.relation.references | 83. Liu J, Kerns DG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J. 2014;8(1):56–65. | spa |
dc.relation.references | 84. Santos A Dos, Balayan A, Funderburgh ML, Ngo J, Funderburgh JL, Deng SD. Differentiation capacity of human mesenchymal stem cells into keratocyte lineage. Investig Ophthalmol Vis Sci. 2019;60(8):3013–23. | spa |
dc.relation.references | 85. Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009;1(1):97–106. | spa |
dc.relation.references | 86. Gale AL, Linardi RL, McClung G, Mammone RM, Ortved KF. Comparison of the chondrogenic differentiation potential of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Front Vet Sci. 2019;6(JUN):1–10. | spa |
dc.relation.references | 87. Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: Role of tissue source and inducing factors. Stem Cell Res Ther. 2010;1(4):1–9. | spa |
dc.relation.references | 88. Munir H, Ward LSC, Sheriff L, Kemble S, Nayar S, Barone F, et al. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner. Stem Cells. 2017;35(6):1636–46. | spa |
dc.relation.references | 89. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: Challenges and unfulfilled expectations. Tissue Eng - Part B Rev. 2014;20(6):596–608. | spa |
dc.relation.references | 90. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen Med [Internet]. 2019;4(1). Available from: http://dx.doi.org/10.1038/s41536-019-0083-6 | spa |
dc.relation.references | 91. Yelick PC, Zhang W. Mesenchymal stem cells. Tissue Eng Princ Pract. 2012;10-1-10–4. | spa |
dc.relation.references | 92. Katagiri W, Watanabe J, Toyama N, Osugi M, Sakaguchi K, Hibi H. Clinical Study of Bone Regeneration by Conditioned Medium from Mesenchymal Stem Cells after Maxillary Sinus Floor Elevation. Implant Dent. 2017;26(4):607–12. | spa |
dc.relation.references | 93. Katagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head Face Med [Internet]. 2016;12(1):5. Available from: http://www.head-face-med.com/content/12/1/5 | spa |
dc.relation.references | 94. Henao LN 2016 (Universidad N de C. Evaluación de la capacidad de Medios Condicionados producidos por Células Madre Mesenquimales Humanas para inducir la regeneración ósea en alveolos de pacientes con exodoncia de terceros molares inferiores. Universidad Nacional de Colombia; 2016. | spa |
dc.relation.references | 95. El Baradie KBY, Nouh M, O’Brien F, Liu Y, Fulzele S, Eroglu A, et al. Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury. Front Cell Dev Biol. 2020;8(March):1–12. | spa |
dc.relation.references | 96. Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, et al. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells. 2018;7(11):190. | spa |
dc.relation.references | 97. Trivedi A, Miyazawa B, Gibb S, Valanoski K, Vivona L, Lin M, et al. Bone marrow donor selection and characterization of MSCs is critical for pre-clinical and clinical cell dose production. J Transl Med [Internet]. 2019;17(1):1–16. Available from: https://doi.org/10.1186/s12967-019-1877-4 | spa |
dc.relation.references | 98. Zhang C, Zhou L, Wang Z, Gao W, Chen W, Zhang H, et al. Eradication of specific donor-dependent variations of mesenchymal stem cells in immunomodulation to enhance therapeutic values. Cell Death Dis. 2021;12(4). | spa |
dc.relation.references | 99. Kang I, Lee BC, Choi SW, Lee JY, Kim JJ, Kim BE, et al. Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med [Internet]. 2018;50(4). Available from: http://dx.doi.org/10.1038/s12276-017-0014-9 | spa |
dc.relation.references | 100. Rashedi I, Talele N, Wang X-H, Hinz B, Radisic M, Keating A. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One [Internet]. 2017 Oct 31;12(10):e0187348. Available from: https://doi.org/10.1371/journal.pone.0187348 | spa |
dc.relation.references | 101. Liu J, Liu X, Zhou G, Xiao R, Cao Y. Conditioned medium from chondrocyte/scaffold constructs induced chondrogenic differentiation of bone marrow stromal cells. Anat Rec (Hoboken). 2012 Jul;295(7):1109–16. | spa |
dc.relation.references | 102. Omori M, Tsuchiya S, Hara K, Kuroda K, Hibi H, Okido M, et al. A new application of cell-free bone regeneration: Immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther [Internet]. 2015;6(1):1–13. Available from: http://dx.doi.org/10.1186/s13287-015-0114-1 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::611 - Anatomía humana, citología, histología | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.ddc | 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología | spa |
dc.subject.decs | Células Madre Mesenquimatosas | spa |
dc.subject.decs | Mesenchymal Stem Cells | eng |
dc.subject.decs | Células del Tejido Conectivo | spa |
dc.subject.decs | Connective Tissue Cells | eng |
dc.subject.decs | Células Madre | spa |
dc.subject.decs | Stem Cells | eng |
dc.subject.decs | Tejido Adiposo | spa |
dc.subject.decs | Adipose Tissue | eng |
dc.subject.decs | Liofilización | spa |
dc.subject.decs | Freeze Drying | eng |
dc.subject.decs | Angiogénesis | spa |
dc.subject.decs | Angiogenesis | eng |
dc.subject.decs | Osteogenesis | spa |
dc.subject.proposal | Medios condicionados | spa |
dc.subject.proposal | Liofilización | spa |
dc.subject.proposal | Angiogénesis | spa |
dc.subject.proposal | Osteogénesis | spa |
dc.subject.proposal | Conditioned media | eng |
dc.subject.proposal | Lyophilization | eng |
dc.subject.proposal | Angiogenesis | eng |
dc.subject.proposal | Osteogenesis | eng |
dc.title | Caracterización funcional in vitro de medios condicionados de células madre mesenquimales derivadas de tejido adiposo humano: efecto de la liofilización | spa |
dc.title.translated | Functional in vitro characterization of human adipose tissue derived mesenchymal stem cells conditioned media: lyophilization effect | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- CARACTERIZACIÓN FUNCIONAL IN VITRODE MEDIOS CONDICIONADOS DE CÉLULAS MADRE MESENQUIMALES DERIVADAS DE TEJIDO ADIPOSO HUMANO- EFECTO DE LA LIOFILIZACIÓN.pdf
- Tamaño:
- 6.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Odontología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: