Caracterización fenotípica y genotípica de la resistencia antimicrobiana de aislamientos de Salmonella spp. provenientes de granjas avícolas

dc.contributor.advisorGómez Ramírez, Arlen Patriciaspa
dc.contributor.advisorÁlvarez Mira, Diana Marcelaspa
dc.contributor.authorRodríguez Beltrán, Karen Lorenaspa
dc.contributor.researchgroupMicrobiología y Epidemiología – Facultad de Medicina Veterinaria y de Zootecnia, UNAL Bogotáspa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-07-28T13:15:28Z
dc.date.available2025-07-28T13:15:28Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, tablasspa
dc.description.abstractSalmonelosis es una de las enfermedades más importantes para la industria avícola y una de las causas de intoxicación alimentaria en humanos debido al potencial zoonótico de algunos serovares. El uso inapropiado de antimicrobianos como profilácticos y promotores de crecimiento en industria pecuaria ha contribuido al desarrollo de resistencia en las bacterias de este género. Por esta razón, es importante identificar los perfiles de resistencia antimicrobiana (RAM) como parte de las medidas de control. El objetivo de este estudio fue determinar el perfil fenotípico y genotípico asociado con RAM de aislamientos de Salmonella spp., obtenidos de granjas avícolas en tres departamentos del país. Para cumplir este objetivo, se realizó la técnica de Kirby-Bauer en aislamientos de Salmonella spp. de la colección de cepas del Laboratorio de Patología Aviar; de esta manera, se determinaron los perfiles fenotípicos. Para los genotipos de RAM, se evaluaron 20 genes mediadores de los mecanismos de resistencia contra diferentes familias de antibióticos. Como resultado de esta investigación, se encontró una mayor RAM en las muestras ambientales (90%) en comparación con las obtenidas de aves (20%). El gen integrón se detectó en el 24% de los aislados. S. Infantis mostró la mayor RAM frente a casi todos los antibióticos evaluados. El serovar con menor RAM fue S. Gallinarum. En conclusión, el estudio revela RAM en aislados de Salmonella spp. de granjas avícolas, particularmente en muestras ambientales, destacando la importancia de los monitoreos en estos entornos. La detección del gen integrón en los aislados sugiere una posible transferencia horizontal de genes de RAM, complicando el control y tratamiento de esta enfermedad. Este estudio proporciona información para el desarrollo de estrategias que controlen la RAM, protegiendo la salud animal y humana frente a los riesgos que representa este patógeno (Texto tomado de la fuente).spa
dc.description.abstractSalmonellosis is one of the most significant diseases affecting the poultry industry and a leading cause of foodborne illness in humans due to the zoonotic potential of certain serovars. The inappropriate use of antimicrobials as prophylactics and growth promoters in the livestock industry has contributed to the development of resistance in bacteria of this genus. Therefore, identifying antimicrobial resistance profiles (AMR) is crucial as part of control measures. The objective of this study was to determine the phenotypic and genotypic profiles associated with AMR in Salmonella spp. isolates obtained from poultry farms in three regions of the country. To achieve this, the Kirby-Bauer technique was applied to Salmonella spp. isolates from the Avian Pathology Laboratory's strain collection, allowing the determination of phenotypic profiles. For AMR genotypes, 20 genes associated with resistance mechanisms against various antibiotic families were evaluated. As a result of this research, a higher AMR was observed in environmental samples (90%) compared to those obtained from poultry (20%). The integron gene was detected in 24% of the isolates. S. Infantis exhibited the highest AMR against nearly all antibiotics tested, while S. Gallinarum showed the lowest AMR. In conclusion, the study reveals the presence of AMR in Salmonella spp. isolates from poultry farms, particularly in environmental samples, emphasizing the importance of monitoring these environments. The detection of the integron gene suggests the potential for horizontal gene transfer of AMR genes, complicating the control and treatment of this disease. This study provides valuable information for the development of strategies to control AMR, thereby safeguarding both animal and human health from the risks posed by this pathogen.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.methodsSe empleó un enfoque cuantitativo, de tipo descriptivo y transversal. Se trabajó con aislamientos de Salmonella spp. provenientes de granjas avícolas de tres departamentos de Colombia, conservados en el banco de cepas del Laboratorio de Patología Aviar de la Universidad Nacional de Colombia. La caracterización fenotípica de resistencia antimicrobiana se realizó mediante el método de difusión en disco de Kirby-Bauer, y la caracterización genotípica mediante PCR múltiplex para detección de genes asociados a resistencia. Finalmente, se aplicaron análisis estadísticos descriptivos y de correlación entre los perfiles fenotípico y genotípico.spa
dc.description.researchareaMicrobiología molecular: resistencia antimicrobiana y virulencia en patógenos veterinariosspa
dc.format.extentxv, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88383
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAbdelhamid, A. G., & Yousef, A. E. (2022). Carvacrol and thymol combat desiccation resistance mechanisms in Salmonella enterica serovar tennessee. Microorganisms, 10(1). https://doi.org/10.3390/microorganisms10010044spa
dc.relation.referencesAbdulhaleem, N., Garba, B., Younis, H., Mahmuda, A., Hamat, R. A., Majid, R. B. A., Lung, L. T. T., Unyah, N. Z., Sattar, A., & Saidu, B. (2019). Current trend on the economic and public health significance of salmonellosis in Iraq. In Advances in Animal and Veterinary Sciences (Vol. 7, Issue 6, pp. 484–491). Nexus Academic Publishers. https://doi.org/10.17582/journal.aavs/2019/7.6.484.491spa
dc.relation.referencesAbukhattab, S., Taweel, H., Awad, A., Crump, L., Vonaesch, P., Zinsstag, J., Hattendorf, J., & Abu-Rmeileh, N. M. E. (2022). Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. In Antibiotics (Vol. 11, Issue 5). MDPI. https://doi.org/10.3390/antibiotics11050536spa
dc.relation.referencesAldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of quinolone action and resistance. In Biochemistry (Vol. 53, Issue 10, pp. 1565–1574). American Chemical Society. https://doi.org/10.1021/bi5000564spa
dc.relation.referencesAl-Hadidi, S. H., Al Mana, H., Almoghrabi, S. Z., El-Obeid, T., Alali, W. Q., & Eltai, N. O. (2022). Retail Chicken Carcasses as a Reservoir of Multidrug-Resistant Salmonella . Microbial Drug Resistance, 28(7), 824–831. https://doi.org/10.1089/mdr.2021.0414spa
dc.relation.referencesAntunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. In Clinical Microbiology and Infection (Vol. 22, Issue 2, pp. 110–121). Elsevier B.V. https://doi.org/10.1016/j.cmi.2015.12.004spa
dc.relation.referencesAydin, M., Carter-Conger, J., Gao, N., Gilmore, D. F., Ricke, S. C., & Ahn, S. (2018). Molecular identification of common Salmonella serovars using multiplex DNA sensorbased suspension array. Analytical and Bioanalytical Chemistry, 410(10), 2637–2646. https://doi.org/10.1007/s00216-018-0938-5spa
dc.relation.referencesBahl, M. (2009). Horizontal Gene Transfer (M. B. Gogarten, J. P. Gogarten, & L. C. Olendzenski, Eds.; Vol. 532). Humana Press. https://doi.org/10.1007/978-1-60327- 853-9spa
dc.relation.referencesBaudry-Simner, P. J., Singh, A., Karlowsky, J. A., Hoban, D. J., Zhanel, G. G., Baudry- Simner Bsc, P. J., Singh Bsc, A., Karlowsky, J. A., Hoban, D. J., Zhanel, G. G., Antimicrobial, C., & Alliance, R. (2012). Mechanisms of reduced susceptibility to ciprofloxacin in Escherichia coli isolates from Canadian hospitals. In Can J Infect Dis Med Microbiol (Vol. 23, Issue 3). www.can-r.caspa
dc.relation.referencesBell, R. L., Zheng, J., Burrows, E., Allard, S., Wang, C. Y., Keys, C. E., Melka, D. C., Strain, E., Luo, Y., Allard, M. W., Rideout, S., & Brown, E. W. (2015). Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore. Frontiers in Microbiology, 6(MAY). https://doi.org/10.3389/fmicb.2015.00415spa
dc.relation.referencesBermúdez, P. M., Pulecio, S. L., & Suárez, M. C. (2016). Susceptibilidad antimicrobiana de aislamientos de Salmonella enterica provenientes de pisos, equipos, utensilios y producto terminado en el beneficio porcino en Colombia. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 63(1), 39–53. https://doi.org/10.15446/rfmvz.v63n1.56903spa
dc.relation.referencesBertelloni, F., Bresciani, F., Cagnoli, G., Scotti, B., Lazzerini, L., Marcucci, M., Colombani, G., Bilei, S., Bossù, T., De Marchis, M. L., & Ebani, V. V. (2023). House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella . Veterinary Sciences, 10(2). https://doi.org/10.3390/vetsci100201spa
dc.relation.referencesBlair, J. M. A., Smith, H. E., Ricci, V., Lawler, A. J., Thompson, L. J., & Piddock, L. J. V. (2015). Expression of homologous RND efflux pump genes is dependent upon AcrB expression: Implications for efflux and virulence inhibitor design. Journal of Antimicrobial Chemotherapy, 70(2), 424–431. https://doi.org/10.1093/jac/dku380spa
dc.relation.referencesBlixt, O., Hoffmann, J., Svenson, S., & Norberg, T. (2008). Pathogen specific carbohydrate antigen microarrays: A chip for detection of Salmonella O-antigen specific antibodies. Glycoconjugate Journal, 25(1), 27–36. https://doi.org/10.1007/s10719-007-9045-0spa
dc.relation.referencesBoelaert, F., Van der Stede, Y., Stoicescu, A., Amore, G., Nagy, K., Rizzi, V., Felicio, M. T. D. S., Messens, W., Pelaez, A. O., Hempen, M., Sarno, E., Thomas, D., Verdonck, F., Niskanen, T., Haussig, J., Merk, H., Dias, J. G., Barco, L., Mancin, M., … Lombard, B. (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal, 16(12). https://doi.org/10.2903/j.efsa.2018.5500spa
dc.relation.referencesBöttger, E. C. (1989). Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiology Letters, 65(1–2), 171–176. https://doi.org/10.1111/j.1574-6968.1989.tb03617.xspa
dc.relation.referencesBrolund, A., Sundqvist, M., Kahlmeter, G., & Grape, M. (2010). Molecular characterisation of trimethoprim resistance in Escherichia coli and Klebsiella pneumoniae during a two year intervention on trimethoprim use. PLoS ONE, 5(2). https://doi.org/10.1371/journal.pone.0009233spa
dc.relation.referencesBush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. In Antimicrobial Agents and Chemotherapy (Vol. 54, Issue 3, pp. 969–976). https://doi.org/10.1128/AAC.01009-09spa
dc.relation.referencesCarey, M. E., Dyson, Z. A., Ingle, D. J., Amir, A., Aworh, M. K., Chattaway, M. A., Chew, K. L., Crump, J. A., Feasey, N. A., Howden, B. P., Keddy, K. H., Maes, M., Parry, C. M., Van Puyvelde, S., Webb, H. E., Afolayan, A. O., Alexander, A. P., Anandan, S., Andrews, J. R., … Typhoid, G. (2023). Agila Kumari Pragasam 22 , Firdausi Qadri 30 , Farah N Qamar 50 , Sadia Isfat Ara Rahman 30 , Savitra Devi Rambocus 16 , David A Rasko 69. Mohammad Saiful Islam Sajib, 12, 83. https://doi.org/10.7554/eLifespa
dc.relation.referencesCarroll, A. C., & Wong, A. (2018). Plasmid Persistence: Costs, Benefits and the Plasmid Paradox 5 6 1125 Colonel By Drive Ottawa, ON K1S 5B6. In Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF CONNECTICUT on. www.nrcresearchpress.comspa
dc.relation.referencesCarson, C., Li, X. Z., Agunos, A., Loest, D., Chapman, B., Finley, R., Mehrotra, M., Sherk, L. M., Gaumond, R., & Irwin, R. (2019). Ceftiofur-resistant Salmonella enterica serovar Heidelberg of poultry origin - a risk profile using the Codex framework. In Epidemiology and infection (Vol. 147, p. e296). NLM (Medline). https://doi.org/10.1017/S0950268819001778spa
dc.relation.referencesCasin, I., Breuil, J., Darchis, J. P., Guelpa, C., & Collatz, E. (2003). Fluoroquinolone Resistance Linked to GyrA, GyrB, and ParC Mutations in Salmonella enterica Typhimurium Isolates in Humans. Emerging Infectious Diseases, 9(11), 1482–1483. https://doi.org/10.3201/eid0911.030317spa
dc.relation.referencesCastañeda-Salazar, R., Del Pilar Pulido-Villamarín, A., Mendoza-Gómez, M. F., Carrascal- Camacho, A. K., & Sandoval-Rojas, K. L. (2017). Salmonella spp. Isolation and identification in eggs for human consumption from different urban areas in Bogotá, Colombia, 2015. Infectio, 21(3), 154–159. https://doi.org/10.22354/in.v21i3.672spa
dc.relation.referencesCastañeda-Salazar, R., Pereira-Bazurdo, A. N., Pulido-Villamarín, A. D. P., & Mendoza- Gómez, M. F. (2018). Estimación de la prevalencia de Salmonella spp. en pechugas de pollo para consumo humano provenientes de cuatro localidades de Bogotá- Colombia. Infectio, 23(1), 27. https://doi.org/10.22354/in.v23i1.752spa
dc.relation.referencesCastro-Vargas, R. E., Herrera-Sánchez, M. P., Rodríguez-Hernández, R., & Rondón- Barragán, I. S. (2020). Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Veterinary World, 13(10), 2070–2084. https://doi.org/10.14202/vetworld.2020.2070-2084spa
dc.relation.referencesCenters for Disease Control and Prevention. (2011, June). Making Food Safer to Eat Reducing contamination from the farm to the tablespa
dc.relation.referencesChen, Q., Gong, X., Zheng, F., Ji, P., Yuan, Z., Liu, Y., & Wei, Y. (2019). Prevalence and characteristics of quinolone resistance in Salmonella isolated from retail foods in Lanzhou, China. Journal of Food Protection, 82(9), 1591–1597. https://doi.org/10.4315/0362-028X.JFP-19-001spa
dc.relation.referencesChen, S., Zhao, S., White, D. G., Schroeder, C. M., Lu, R., Yang, H., McDermott, P. F., Ayers, S., & Meng, J. (2004). Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats. Applied and Environmental Microbiology, 70(1), 1–7. https://doi.org/10.1128/AEM.70.1.1-7.2004spa
dc.relation.referencesChiu, C.-H., & Ou, J. T. (1996). Rapid Identification of Salmonella Serovars in Feces by Specific Detection of Virulence Genes, invA and spvC, by an Enrichment Broth Culture-Multiplex PCR Combination Assay. In JOURNAL OF CLINICAL MICROBIOLOGY (Vol. 34, Issue 10).spa
dc.relation.referencesChristaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In Journal of Molecular Evolution (Vol. 88, Issue 1, pp. 26–40). Springer. https://doi.org/10.1007/s00239-019-09914-3spa
dc.relation.referencesCibin, V., Busetti, M., Longo, A., Petrin, S., Knezevich, A., Ricci, A., Barco, L., & Losasso, C. (2019). Whole Genome Sequencing of Salmonella Serovar Stanleyville from Two Italian Outbreaks Resulted in Unexpected Genomic Diversity Within and between Outbreaks. In Foodborne Pathogens and Disease (Vol. 16, Issue 4, pp. 307–308). Mary Ann Liebert Inc. https://doi.org/10.1089/fpd.2018.2564spa
dc.relation.referencesCoipan, C. E., Westrell, T., van Hoek, A. H. A. M., Alm, E., Kotila, S., Berbers, B., de Keersmaecker, S. C. J., Ceyssens, P. J., Borg, M. L., Chattaway, M., McCormick, J., Dallman, T. J., & Franz, E. (2020). Genomic epidemiology of emerging ESBLproducing Salmonella Kentucky bla CTX-M-14b in Europe. Emerging Microbes and Infections, 9(1), 2124–2135. https://doi.org/10.1080/22221751.2020.1821582spa
dc.relation.referencesConnell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance. In Antimicrobial Agents and Chemotherapy (Vol. 47, Issue 12, pp. 3675–3681). https://doi.org/10.1128/AAC.47.12.3675-3681.2003spa
dc.relation.referencesCostelloe, C., Metcalfe, C., Lovering, A., Mant, D., & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. In BMJ (Online) (Vol. 340, Issue 7756, p. 1120). https://doi.org/10.1136/bmj.c2096spa
dc.relation.referencesDeng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. In Annals of Clinical Microbiology and Antimicrobials (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12941-015-0100-6spa
dc.relation.referencesDi Francesco, C. E., Smoglica, C., Profeta, F., Farooq, M., Di Giannatale, E., Toscani, T., & Marsilio, F. (2021). Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Poultry Science, 100(5). https://doi.org/10.1016/j.psj.2021.101084spa
dc.relation.referencesDietrich, J., Hammerl, J.-A., Johne, A., Kappenstein, O., Loeffler, C., Nöckler, K., Rosner, B., Spielmeyer, A., Szabo, I., & Richter, M. H. (2023). Impact of climate change on foodborne infections and intoxications. Journal of Health Monitoring, 8(Suppl 3), 78– 92. https://doi.org/10.25646/11403spa
dc.relation.referencesDjeffal, S., Mamache, B., Elgroud, R., Hireche, S., & Bouaziz, O. (2018). Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Veterinary World, 11(8), 1102–1108. https://doi.org/10.14202/vetworld.2018.1102-1108spa
dc.relation.referencesDonado-Godoy, P., Bernal, J. F., Rodríguez, F., Gomez, Y., Agarwala, R., Landsman, D., & Mariño-Ramírez, L. (2015). Genome sequences of multidrug-resistant Salmonella enterica serovar Paratyphi B (dT+) and Heidelberg strains from the Colombian poultry chain. Genome Announcements, 3(5). https://doi.org/10.1128/genomeA.01265-15spa
dc.relation.referencesDonado-godoy, P., Byrne, B. A., León, M., Castellanos, R., Vanegas, C., Coral, A., Arevalo, A., Clavijo, V., Vargas, M., Romero Zuñiga, J. J., Tafur, M., Pérez-Gutierrez, E., & Smith, W. A. (2015). Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. Journal of Food Protection, 78(4), 751–759. https://doi.org/10.4315/0362-028X.JFP-14-349spa
dc.relation.referencesDonado-Godoy, P., Clavijo, V., Leó n, M., Tafur, M. A., Gonzales, S., Hume, M., Alali, W., Walls, I., Lo Fo Wong, D. M. A., & Doyle, M. P. (2012). Prevalence of Salmonella on retail broiler chicken meat carcasses in colombia. Journal of Food Protection, 75(6), 1134–1138. https://doi.org/10.4315/0362-028X.JFP-11-513spa
dc.relation.referencesDróżdż, M., Małaszczuk, M., Paluch, E., & Pawlak, A. (2021). Zoonotic potential and prevalence of Salmonella serovars isolated from pets. In Infection Ecology and Epidemiology (Vol. 11, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/20008686.2021.1975530spa
dc.relation.referencesDufour-Zavala, Louise. (2008). A laboratory manual for the isolation, identification and characterization of avian pathogens. American Association of Avian Pathologists.spa
dc.relation.referencesEhuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella , food safety and food handling practices. Foods, 10(5). https://doi.org/10.3390/foods10050907spa
dc.relation.referencesEllis, M. J., Tsai, C. N., Johnson, J. W., French, S., Elhenawy, W., Porwollik, S., Andrews- Polymenis, H., McClelland, M., Magolan, J., Coombes, B. K., & Brown, E. D. (2019). A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08190-xspa
dc.relation.referencesEspejo, L. J., Rodríguez, K. L., Rodríguez, M. F., & Ramírez, A. P. G. (2019). Genotype identification of Staphylococcus with methicillin-resistant phenotype isolated from human, animal and environmental samples. Revista de Investigaciones Veterinarias Del Peru, 30(1), 364–376. https://doi.org/10.15381/rivep.v30i1.14614spa
dc.relation.referencesEvangelopoulou, G., Filioussis, G., Kritas, S., Christodoulopoulos, G., Triantafillou, E. A., & Burriel, A. R. (2015). Short communication: Colonisation of pig gallbladders with Salmonella species important to public health. Veterinary Record, 176(7), 174. https://doi.org/10.1136/vr.102822spa
dc.relation.referencesFang, Z., & Méresse, S. (2022). Endomembrane remodeling and dynamics in Salmonella infection. In Microbial Cell (Vol. 9, Issue 2, pp. 24–41). Shared Science Publishers OG. https://doi.org/10.15698/mic2022.02.769spa
dc.relation.referencesFederación Nacional de Avicultores de Colombia [Fenavi]. (2023). ESTADÍSTICAS DEL SECTOR. https://fenavi.org/informacion-estadistica/spa
dc.relation.referencesFeng, P. (1992). Commercial Assay Systems for Detecting Foodborne Salmonella : A Review. Journal of Food Protection, 55(11), 927–934. https://doi.org/10.4315/0362- 028X-55.11.927spa
dc.relation.referencesFernández, L., Breidenstein, E. B. M., & Hancock, R. E. W. (2011). Creeping baselines and adaptive resistance to antibiotics. Drug Resistance Updates, 14(1), 1–21. https://doi.org/10.1016/j.drup.2011.01.001spa
dc.relation.referencesFernández, L., & Hancock, R. E. W. (2012). Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews, 25(4), 661– 681. https://doi.org/10.1128/CMR.00043-12spa
dc.relation.referencesFišarová, L., Pantůček, R., Botka, T., & Doškař, J. (2019). Variability of resistance plasmids in coagulase-negative staphylococci and their importance as a reservoir of antimicrobial resistance. Research in Microbiology, 170(2), 105–111. https://doi.org/10.1016/j.resmic.2018.11.004spa
dc.relation.referencesFlensburg, J., & Sköld, O. (1987). Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. European Journal of Biochemistry, 162(3), 473–476. https://doi.org/10.1111/j.1432-1033.1987.tb10664.xspa
dc.relation.referencesFlores, V., & Fernandez, C. (2016). Protocolo de crioconservación de cepas bacterianas - RNIA (pp. 1–8).spa
dc.relation.referencesFoley, S. L., Zhao, S., & Walker, R. D. (2007). Comparison of Molecular Typing Methods for the Differentiation of Salmonella Foodborne Pathogens. Foodborne Pathogens and Disease, 4(3), 253–276. https://doi.org/10.1089/fpd.2007.0085spa
dc.relation.referencesFrana, T. S., Carlson, S. A., & Griffith, R. W. (2001). Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype typhimurium phage type DT104. Applied and Environmental Microbiology, 67(1), 445–448. https://doi.org/10.1128/AEM.67.1.445-448.2001spa
dc.relation.referencesFrieden, T. R., Harold Jaffe, D. W., Stephens, J. W., Thacker, S. B., Casey, C. G., Holtzman, D., John Iglehart, G. K., Maki, D. G., LaPete, M. A., Spriggs, S. R., Starr, T. M., Doan, Q. M., King, P. H., Remington, P. L., Barbara Rimer, W. K., Hill, C., John Rullan, N. V, Juan, S., William Schaffner, P., … Roper, W. L. (2007). Centers for Disease Control and Prevention MMWR Editorial and Production Staff MMWR Editorial Board.spa
dc.relation.referencesGallegos-Robles, M. A., Morales-Loredo, A., Álvarez-Ojeda, G., Osuna-García, J. A., Martínez, I. O., Morales-Ramos, L. H., & Fratamico, P. (2009). PCR detection and microbiological isolation of Salmonella spp. from fresh beef and cantaloupes. Journal of Food Science, 74(1). https://doi.org/10.1111/j.1750-3841.2008.01006.xspa
dc.relation.referencesGautam, A. (2022). Antimicrobial Resistance: The Next Probable Pandemic. Journal of the Nepal Medical Association, 60(246), 225–228. https://doi.org/10.31729/jnma.7174spa
dc.relation.referencesGebreyes, W. A., & Altier, C. (2002). Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. Journal of Clinical Microbiology, 40(8), 2813–2822. https://doi.org/10.1128/JCM.40.8.2813-2822.2002spa
dc.relation.referencesGharavi, M. J., Zarei, J., Roshani-Asl, P., Yazdanyar, Z., Sharif, M., & Rashidi, N. (2021). Comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79791-0spa
dc.relation.referencesGniadkowski, M. (2008). Evolution of extended-spectrum β-lactamases by mutation. In Clinical Microbiology and Infection (Vol. 14, Issue SUPPL. 1, pp. 11–32). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1469-0691.2007.01854.xspa
dc.relation.referencesGonzalez-Zorn, C. S. B. (2022). Antimicrobial resistance and One Health. Revista Espanola de Quimioterapia, 35, 37–40. https://doi.org/10.37201/req/s03.09.2022spa
dc.relation.referencesGreen, M. R., & Sambrook, J. (2018). Isolation and quantification of DNA. Cold Spring Harbor Protocols, 2018(6), 403–414. https://doi.org/10.1101/pdb.top093336spa
dc.relation.referencesGuard, J., Jones, D. R., Gast, R. K., Garcia, J. S., & Rothrock, M. J. (2023). Serotype Screening of Salmonella enterica Subspecies I by Intergenic Sequence Ribotyping (ISR): Critical Updates. Microorganisms, 11(1). https://doi.org/10.3390/microorganisms11010097spa
dc.relation.referencesHardie, K. M., Guerin, M. T., Ellis, A., & Leclair, D. (2019). Associations of processing level variables with Salmonella prevalence and concentration on broiler chicken carcasses and parts in Canada. Preventive Veterinary Medicine, 168, 39–51. https://doi.org/10.1016/j.prevetmed.2019.03.027spa
dc.relation.referencesHeran, K., And, D., & Miller, V. L. (1999). Molecular Basis of the Interaction of Salmonella with the Intestinal Mucosa. In CLINICAL MICROBIOLOGY REVIEWS (Vol. 12, Issue 3).spa
dc.relation.referencesHernando-Amado, S., Blanco, P., Alcalde-Rico, M., Corona, F., Reales-Calderón, J. A., Sánchez, M. B., & Martínez, J. L. (2016). Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. In Drug Resistance Updates (Vol. 28, pp. 13–27). Churchill Livingstone. https://doi.org/10.1016/j.drup.2016.06.007spa
dc.relation.referencesHerrera-Sánchez, M. P., Castro-Vargas, R. E., Fandiño-De-Rubio, L. C., Rodríguez- Hernández, R., & Rondón-Barragán, I. S. (2021). Molecular identification of fluoroquinolone resistance in Salmonella spp. Isolated from broiler farms and human samples obtained from two regions in Colombia. Veterinary World, 14(7), 1767–1773. https://doi.org/10.14202/vetworld.2021.1767-1773spa
dc.relation.referencesHinchliffe, P., Yang, Q. E., Portal, E., Young, T., Li, H., Tooke, C. L., Carvalho, M. J., Paterson, N. G., Brem, J., Niumsup, P. R., Tansawai, U., Lei, L., Li, M., Shen, Z., Wang, Y., Schofield, C. J., Mulholland, A. J., Shen, J., Fey, N., … Spencer, J. (2017). Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Scientific Reports, 7. https://doi.org/10.1038/srep39392spa
dc.relation.referencesHirose, K., Hashimoto, A., Tamura, K., Kawamura, Y., Ezaki, T., Sagara, H., & Watanabe, H. (2002). DNA sequence analysis of DNA gyrase and DNA topoisomerase IV quinolone resistance-determining regions of Salmonella enterica serovar Typhi and serovar Paratyphi A. Antimicrobial Agents and Chemotherapy, 46(10), 3249–3252. https://doi.org/10.1128/AAC.46.10.3249-3252.2002spa
dc.relation.referencesHoelzer, K., Switt, A. I. M., & Wiedmann, M. (2011). Animal contact as a source of human non-typhoidal salmonellosis. In Veterinary Research (Vol. 42, Issue 1). https://doi.org/10.1186/1297-9716-42-34spa
dc.relation.referencesHolmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. In The Lancet (Vol. 387, Issue 10014, pp. 176–187). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)00473-0spa
dc.relation.referencesHooper, D. C., & Jacoby, G. A. (2016). Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor Perspectives in Medicine, 6(9). https://doi.org/10.1101/cshperspect.a025320spa
dc.relation.referencesHuovinen, P. (2001). Resistance to Trimethoprim-Sulfamethoxazole. https://academic.oup.com/cid/article/32/11/1608/464214spa
dc.relation.referencesHwang, S. M., Kim, M. S., Park, K. U., Song, J., & Kim, E. C. (2011). tuf gene sequence analysis has greater discriminatory power than 16S rRNA sequence analysis in identification of clinical isolates of coagulase-negative staphylococci. Journal of Clinical Microbiology, 49(12), 4142–4149. https://doi.org/10.1128/JCM.05213-11spa
dc.relation.referencesICA. (2023). PROGRAMA NACIONAL DE CONTROL DE LOS SEROVARES DE SALMONELLA PULLORUM, GALLINARUM, Y DISMINUCIÓN DE LA PREVALENCIA DE LAS SALMONELLA S PARATÍFICAS ENTERITIDIS Y TIPHYMURIUM SUBGERENCIA DE PROTECCIÓN ANIMAL DIRECCIÓN TÉCNICA DE SANIDAD ANIMAL 2023. https://www.ica.gov.co/getattachment/Areas/Pecuaria/Servicios/Enfermedades-Animales/SALMONELLA /PRA-SPA-PROG-8-V-1.pdf.aspx?lang=es-COspa
dc.relation.referencesINS. (2019). Fideicomisos Instituidos en Relación con la Agricultura [FIRA]. (2019). Panorama agroalimentario, dirección de investigación y evaluación económica sectorial. https://www.inforural.com.mx/wp-content/uploads/2019/09/Panorama- Agroalimentario-Carne-de-pollo-2). . https://www.ins.gov.co/BibliotecaDigital/informede-vigilancia-por-laboratorio-Salmonella -spp-colombia-1997-2018.pdfspa
dc.relation.referencesINS. (2024). Boletín Epidemiológico Semanal. https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2024_Boletín_epidemiologico_semana_3.pdfspa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos (Invima). (2016). OFICINA DE LABORATORIOS Y CONTROL DE CALIDAD ASEGURAMIENTO DE CALIDAD.spa
dc.relation.referencesJacoby, G. A. (2009). AmpC Β-Lactamases. In Clinical Microbiology Reviews (Vol. 22, Issue 1, pp. 161–182). https://doi.org/10.1128/CMR.00036-08spa
dc.relation.referencesJacoby, G. A., Strahilevitz, J., & Hooper, D. C. (2014). Plasmid-Mediated Quinolone Resistance. https://doi.org/10.1128/microbiolspec.PLAS-0006spa
dc.relation.referencesJiang, X., Zhang, X., Sun, Y., Sun, Z., Li, X., & Liu, L. (2023). Effects of Salmonella Enteritidis infection on TLRs gene expression and microbial diversity in cecum of laying hens. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16414spa
dc.relation.referencesKary, S. C., Yoneda, J. R. K., Olshefsky, S. C., Stewart, L. A., West, S. B., & Cameron, A. D. S. (2017). The Global Regulatory Cyclic AMP Receptor Protein (CRP) Controls Multifactorial Fluoroquinolone Susceptibility in Salmonella enterica Serovar Typhimurium. https://doi.org/10.1128/AACspa
dc.relation.referencesKelemen, G. H., Cundliffe, E., & Financsek, I. (1991). Cloning and characterization of gentamicin-resistance genes from Micromonospora Micromonospora rosea (Recombinant DNA; aminoglycoside-resistance; transcript mapping; ribosomal RNA methylase). In I Biochin Biotechnological Company. Budapest (Vol. 98).spa
dc.relation.referencesKhan, S. B., Khan, M. A., Ahmad, I., ur Rehman, T., Ullah, S., Dad, R., Sultan, A., & Memon, A. M. (2019). Phentotypic, gentotypic antimicrobial resistance and pathogenicity of Salmonella enterica serovars Typimurium and Enteriditis in poultry and poultry products. Microbial Pathogenesis, 129, 118–124. https://doi.org/10.1016/j.micpath.2019.01.046spa
dc.relation.referencesKnothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11(6), 315–317. https://doi.org/10.1007/BF01641355spa
dc.relation.referencesLamut, A., Peterlin Mašič, L., Kikelj, D., & Tomašič, T. (2019). Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. In Medicinal Research Reviews (Vol. 39, Issue 6, pp. 2460–2504). John Wiley and Sons Inc. https://doi.org/10.1002/med.21591spa
dc.relation.referencesLe Roux, F., & Blokesch, M. (2018). Eco-evolutionary Dynamics Linked to Horizontal Gene Transfer in Vibrios. 14, 29. https://doi.org/10.1146/annurev-micro-090817spa
dc.relation.referencesLeclercq, R. (2002). Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the Resistance Elements and Their Clinical Implications. https://academic.oup.com/cid/article/34/4/482/412492spa
dc.relation.referencesLee, J. H. (2019). Perspectives towards antibiotic resistance: from molecules to population. In Journal of Microbiology (Vol. 57, Issue 3, pp. 181–184). Microbiological Society of Korea. https://doi.org/10.1007/s12275-019-0718-8spa
dc.relation.referencesLee, S., Park, N., Yun, S., Hur, E., Song, J., Lee, H., Kim, Y., & Ryu, S. (2021). Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. In Gut Pathogens (Vol. 13, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13099-021-00431-7spa
dc.relation.referencesLeinyuy, J. F., Ali, I. M., Ousenu, K., & Tume, C. B. (2023). Molecular characterization of antimicrobial resistance related genes in E. coli, Salmonella and Klebsiella isolates from broilers in the West Region of Cameroon. PLoS ONE, 18(1 January). https://doi.org/10.1371/journal.pone.0280150spa
dc.relation.referencesLevin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., & Balaban, N. Q. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355(6327), 826–830. https://doi.org/10.1126/science.aaj2191spa
dc.relation.referencesLewis, J. S., Weinstein, M. P., Bobenchik, A. M., Campeau, S., & Cullen, S. (2023). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. 33rd Edition. www.clsi.org.spa
dc.relation.referencesLi, B., Ke, B., Zhao, X., Guo, Y., Wang, W., Wang, X., & Zhu, H. (2018). Antimicrobial resistance profile of mcr-1 positive clinical isolates of Escherichia coli in China from 2013 to 2016. In Frontiers in Microbiology (Vol. 9, Issue OCT). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.02514spa
dc.relation.referencesLi, L., Liao, X. P., Liu, Z. Z., Huang, T., Li, X., Sun, J., Liu, B. T., Zhang, Q., & Liu, Y. H. (2014). Co-spread of oqxAB and blaCTX-M-9G in non-Typhi Salmonella enterica isolates mediated by ST2-IncHI2 plasmids. International Journal of Antimicrobial Agents, 44(3), 263–268. https://doi.org/10.1016/j.ijantimicag.2014.05.014spa
dc.relation.referencesLi, P., Zhan, L., Wang, H., Yan, Y., Jia, M., Gao, L., Sun, Y., Zhu, G., & Chen, Z. (2024). Prevalence and Antimicrobial Resistance Diversity of Salmonella Isolates in Jiaxing City, China. Antibiotics, 13(5). https://doi.org/10.3390/antibiotics13050443spa
dc.relation.referencesLiu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H., & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7spa
dc.relation.referencesLópez, F. E., de las Mercedes Pescaretti, M., Morero, R., & Delgado, M. A. (2012). Salmonella Typhimurium general virulence factors: A battle of David against Goliath? In Food Research International (Vol. 45, Issue 2, pp. 842–851). https://doi.org/10.1016/j.foodres.2011.08.009spa
dc.relation.referencesLozano-Villegas, K. J., & Rondon-Barragan, I. S. (2024). Virulence and Antimicrobial- Resistant Gene Profiles of Salmonella spp. Isolates from Chicken Carcasses Markets in Ibague City, Colombia. International Journal of Microbiology, 2024. https://doi.org/10.1155/2024/4674138spa
dc.relation.referencesLu, Y., Wu, C.-M., Wu, G.-J., Zhao, H.-Y., He, T., Cao, X.-Y., Dai, L., Xia, L.-N., Qin, S.-S., & Shen, J.-Z. (2011). Prevalence of Antimicrobial Resistance Among Salmonella Isolates from Chicken in China. Foodborne Pathogens and Disease, 8(1), 45–53. https://doi.org/10.1089/fpd.2010.0605spa
dc.relation.referencesLubbers, B. V, Diaz-Campos, D. V, Schwarz, S., Sweeney, M. T., Burbick, C. R., Govendir, M., Harris, B., Holliday, N. M., Hayes, J., Lawhon, S. D., Li, X.-Z., Miller, R. A., Morrissey, I., Murphy, F. K. M., Papich, M. G., & Simjee, S. (2024). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 44(1).spa
dc.relation.referencesMahzounieh, M., Khoshnood, S., Ebrahimi, A., Habibian, S., & Yaghoubian, M. (2014). Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. isolated from burn patients. Jundishapur Journal of Natural Pharmaceutical Products, 9(2). https://doi.org/10.17795/jjnpp-15402spa
dc.relation.referencesMalorny, B., Hoorfar, J., Bunge, C., & Helmuth, R. (2003). Multicenter validation of the analytical accuracy of Salmonella PCR: Towards an international standard. Applied and Environmental Microbiology, 69(1), 290–296. https://doi.org/10.1128/AEM.69.1.290-296.2003spa
dc.relation.referencesMantilla, J., Pulido, M., & Jaime, J. (2010). Prueba de sensibilidad antimicrobiana de cePas de Salmonella gruPo d (móviles e inmóviles) aisladas de Ponedoras comerciales en colombia. https://revistas.unal.edu.co/index.php/remevez/article/view/18252/19162spa
dc.relation.referencesManyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. In Molecules (Vol. 23, Issue 4). MDPI AG. https://doi.org/10.3390/molecules23040795spa
dc.relation.referencesMcmurry, L., Petrucci, R. E., & Levy, S. B. (1980). Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli (everted membrane vesicles/tetracycline transport/transposon TnlO/plasmids). In Biochemistry (Vol. 77, Issue 7).spa
dc.relation.referencesMir, R., Salari, S., Najimi, M., & Rashki, A. (2022). Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Veterinary Medicine and Science, 8(1), 229–236. https://doi.org/10.1002/vms3.647spa
dc.relation.referencesMohammed, B. T. (2024). Identification and bioinformatic analysis of invA gene of Salmonella in free range chicken. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.263363spa
dc.relation.referencesMorales, C. A., Gast, R., & Guard-Bouldin, J. (2006). Linkage of avian and reproductive tract tropism with sequence divergence adjacent to the 5S ribosomal subunit rrfH of Salmonella enterica. FEMS Microbiology Letters, 264(1), 48–58. https://doi.org/10.1111/j.1574-6968.2006.00432.xspa
dc.relation.referencesMotta, S. S., Cluzel, P., & Aldana, M. (2015). Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118464spa
dc.relation.referencesMulchandani, R., Wang, Y., Gilbert, M., & Van Boeckel, T. P. (2023). Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Global Public Health, 3(2). https://doi.org/10.1371/journal.pgph.0001305spa
dc.relation.referencesMunita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015spa
dc.relation.referencesMurray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0spa
dc.relation.referencesNaghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., Robles Aguilar, G., Mestrovic, T., Smith, G., Han, C., Hsu, R. L., Chalek, J., Araki, D. T., Chung, E., Raggi, C., Gershberg Hayoon, A., Davis Weaver, N., Lindstedt, P. A., Smith, A. E., … Murray, C. J. L. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, 404(10459), 1199–1226. https://doi.org/10.1016/S0140-6736(24)01867-1spa
dc.relation.referencesNikaido, H., & Pagès, J. M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. In FEMS Microbiology Reviews (Vol. 36, Issue 2, pp. 340–363). https://doi.org/10.1111/j.1574-6976.2011.00290.xspa
dc.relation.referencesNowakiewicz, A., Zięba, P., Gnat, S., & Matuszewski, Ł. (2020). Last call for replacement of antimicrobials in animal production: Modern challenges, opportunities, and potential solutions. In Antibiotics (Vol. 9, Issue 12, pp. 1–21). MDPI AG. https://doi.org/10.3390/antibiotics9120883spa
dc.relation.referencesOkolie, C. E., Wooldridge, K. G., Turner, D. P. J., Cockayne, A., & James, R. (2015). Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes. BMC Microbiology, 15(1). https://doi.org/10.1186/s12866-015-0490-9spa
dc.relation.referencesOlubisose, E. T., Ajayi, A., Adeleye, A. I., & Smith, S. I. (2021). Molecular and phenotypic characterization of efflux pump and biofilm in multi-drug resistant non-typhoidal Salmonella Serovars isolated from food animals and handlers in Lagos Nigeria. One Health Outlook, 3(1). https://doi.org/10.1186/s42522-021-00035-wspa
dc.relation.referencesOMSA. (2022). Estrategia sobre la resistencia a los agentes antimicrobianos y su uso prudente Preservando la eficacia de los antimicrobianos. https://www.woah.org/app/uploads/2021/12/es-amr-strategy-2022-final-pages-1.pdfspa
dc.relation.referencesO’Neill, J. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdfspa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura, & O. M. de la Salud. (2023). PROGRAMA CONJUNTO FAO/OMS SOBRE NORMAS ALIMENTARIAS COMITÉ DEL CODEX SOBRE ADITIVOS ALIMENTARIOS. https://doi.org/10.5281/zenodo.4461577spa
dc.relation.referencesOrganización Mundial de la Salud (OMS). (2018, February 20). Salmonella (no tifoidea). https://www.who.int/es/news-room/fact-sheets/detail/Salmonella -(non-typhoidal)spa
dc.relation.referencesPagès, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. In Nature Reviews Microbiology (Vol. 6, Issue 12, pp. 893–903). Nature Publishing Group. https://doi.org/10.1038/nrmicro1994spa
dc.relation.referencesPallecchi, L., Lucchetti, C., Bartoloni, A., Bartalesi, F., Mantella, A., Gamboa, H., Carattoli, A., Paradisi, F., & Rossolini, G. M. (2007). Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrobial Agents and Chemotherapy, 51(4), 1179–1184. https://doi.org/10.1128/AAC.01101-06spa
dc.relation.referencesPanzenhagen, P. H. N., Aguiar, W. S., da Silva Frasão, B., de Almeida Pereira, V. L., da Costa Abreu, D. L., dos Prazeres Rodrigues, D., do Nascimento, E. R., & de Aquino, M. H. C. (2016). Prevalence and fluoroquinolones resistance of Campylobacter and Salmonella isolates from poultry carcasses in Rio de Janeiro, Brazil. Food Control, 61, 243–247. https://doi.org/10.1016/j.foodcont.2015.10.002spa
dc.relation.referencesPapatheodorou, S. A., Halvatsiotis, P., & Houhoula, D. (2021). A comparison of different dna extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiology, 7(3), 304–316. https://doi.org/10.3934/microbiol.2021019spa
dc.relation.referencesPatel, J. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313–321. https://doi.org/10.1054/modi.2001.29158spa
dc.relation.referencesPeterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(NOV). https://doi.org/10.3389/fmicb.2018.02928spa
dc.relation.referencesPiddock, L. J. V. (2006). O P I N I O N Multidrug-resistance efflux pumps-not just for resistance. www.nature.com/reviews/microspa
dc.relation.referencesPormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. In Infection and Drugspa
dc.relation.referencesProcura, F., Bueno, D. J., Bruno, S. B., & Rogé, A. D. (2019). Prevalence, antimicrobial resistance profile and comparison of methods for the isolation of Salmonella in chicken liver from Argentina. Food Research International, 119, 541–546. https://doi.org/10.1016/j.foodres.2017.08.008spa
dc.relation.referencesPublic Health Agency of Canada. (2017). CANADIAN INTEGRATED PROGRAM FOR ANTIMICROBIAL RESISTANCE SURVEILLANCE (CIPARS). EDITIONS UNIVERSITAIRES E.spa
dc.relation.referencesPulido-Landínez, M. (2019). Food safety - Salmonella update in broilers. In Animal Feed Science and Technology (Vol. 250, pp. 53–58). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2019.01.008spa
dc.relation.referencesPulido-Landínez, M., Sánchez-Ingunza, R., Guard, J., & Do Nascimento, V. P. (2014). Presence of Salmonella enteritidis and Salmonella gallinarum in commercial laying hens diagnosed with fowl typhoid disease in Colombia. Avian Diseases, 58(1), 165–170. https://doi.org/10.1637/10598-062613-Case.1spa
dc.relation.referencesPulido-Landínez, M., Sánchez-Ingunza, R., Guard, J., & Nascimento, V. P. Do. (2013). Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in southern Brazil. Letters in Applied Microbiology, 57(4), 288–294. https://doi.org/10.1111/lam.12110spa
dc.relation.referencesQuino Sifuentes, W., Hurtado, C. V., Escalante-Maldonado, O., Flores-León, D., Mestanza, O., Vences-Rosales, F., Zamudio, M. L., & Gavilán, R. G. (2019). Multidrug resistance of Salmonella infantis in Peru: A study through next generation sequencing. Revista Peruana de Medicina Experimental y Salud Publica, 36(1), 37–45. https://doi.org/10.17843/rpmesp.2019.361.3934spa
dc.relation.referencesRahn,’, K., De Grandis, S. A., Clarke, R. C., Mcewen, S. A., Galin, J. E., Ginocchio, ; C, Curtiss, R., & Gyles, C. L. (1992). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella . In Molecular and Cellular Probes (Vol. 6).spa
dc.relation.referencesRamirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes.spa
dc.relation.referencesRamirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151–171. https://doi.org/10.1016/j.drup.2010.08.003spa
dc.relation.referencesRamirez-Hernandez, A., Carrascal-Camacho, A. K., Varón-García, A., Brashears, M. M., & Sanchez-Plata, M. X. (2021). Genotypic characterization of antimicrobial resistant Salmonella spp. Strains from three poultry processing plants in colombia. Foods, 10(3), 1–17. https://doi.org/10.3390/foods10030491spa
dc.relation.referencesRandall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V., & Woodward, M. J. (2004). Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. Journal of Antimicrobial Chemotherapy, 53(2), 208–216. https://doi.org/10.1093/jac/dkh070spa
dc.relation.referencesRebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J. A., Battisti, A., Franco, A., Alba, P., Perrin-Guyomard, A., Granier, S. A., de Frutos, C., Escobar, Malhotra-Kumar, S., Villa, L., … Hendriksen, R. S. (2018). Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance, 23(6). https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672spa
dc.relation.referencesRiesenfeld, C. S., Goodman, R. M., & Handelsman, J. (2004). Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environmental Microbiology, 6(9), 981–989. https://doi.org/10.1111/j.1462-2920.2004.00664.xspa
dc.relation.referencesRodríguez-Hernández, R., Bernal, J. F., Cifuentes, J. F., Fandiño, L. C., Herrera-Sánchez, M. P., Rondón-Barragán, I., & Garcia, N. V. (2021). Prevalence and molecular characterization of Salmonella isolated from broiler farms at the Tolima region—Colombia. Animals, 11(4). https://doi.org/10.3390/ani11040970spa
dc.relation.referencesRodríguez-Rubio, L., Serna, C., Ares-Arroyo, M., Matamoros, B. R., Delgado-Blas, J. F., Montero, N., Bernabe-Balas, C., Wedel, E. F., Mendez, I. S., Muniesa, M., & Gonzalez-Zorn, B. (2020). Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. Journal of Antimicrobial Chemotherapy, 75(11), 3173–3180. https://doi.org/10.1093/jac/dkaa311spa
dc.relation.referencesRuppé, E., Cherkaoui, A., Charretier, Y., Girard, M., Schicklin, S., Lazarevic, V., & Schrenzel, J. (2020). From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: a clinical perspective. Clinical Microbiology and Infection, 26(5), 643.e1-643.e7. https://doi.org/10.1016/j.cmi.2019.09.018spa
dc.relation.referencesSandvang, D., Aarestrup, F. M., & Jensen, L. B. (1998). Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104 . FEMS Microbiology Letters, 160(1), 37–41. https://doi.org/10.1111/j.1574-6968.1998.tb12887.xspa
dc.relation.referencesShah, D. H., Paul, N. C., Sischo, W. C., Crespo, R., & Guard, J. (2017). Microbiology and food safety: Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Science, 96(3), 687–702. https://doi.org/10.3382/ps/pew342spa
dc.relation.referencesShaji, S., Selvaraj, R. K., & Shanmugasundaram, R. (2023). Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. In Microorganisms (Vol. 11, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/microorganisms11112814spa
dc.relation.referencesShanmugasamy, M., Velayutham, T., & Rajeswar, J. (2011). Inv a gene specific pcr for detection of Salmonella from broilers. Veterinary World, 4(12), 562–564. https://doi.org/10.5455/vetworld.2011.562-564spa
dc.relation.referencesSommer, M. O. A., Church, G. M., & Dantas, G. (2010). The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence, 1(4), 299–303. https://doi.org/10.4161/viru.1.4.12010spa
dc.relation.referencesSun, Y., Hu, X., Guo, D., Shi, C., Zhang, C., Peng, X., Yang, H., & Xia, X. (2019a). Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken. Microbial Drug Resistance, 25(5), 703–711. https://doi.org/10.1089/mdr.2018.0175spa
dc.relation.referencesSun, Y., Hu, X., Guo, D., Shi, C., Zhang, C., Peng, X., Yang, H., & Xia, X. (2019b). Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken. Microbial Drug Resistance, 25(5), 703–711. https://doi.org/10.1089/mdr.2018.0175spa
dc.relation.referencesTang, B., Elbediwi, M., Nambiar, R. B., Yang, H., Lin, J., & Yue, M. (2022). Genomic Characterization of Antimicrobial-Resistant Salmonella enterica in Duck, Chicken, and Pig Farms and Retail Markets in Eastern China. Microbiology Spectrum, 10(5). https://doi.org/10.1128/spectrum.01257-22spa
dc.relation.referencesTeklemariam, A. D., Al-Hindi, R. R., Albiheyri, R. S., Alharbi, M. G., Alghamdi, M. A., Filimban, A. A. R., Al Mutiri, A. S., Al-Alyani, A. M., Alseghayer, M. S., Almaneea, A. M., Albar, A. H., Khormi, M. A., & Bhunia, A. K. (2023a). Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. In Foods (Vol. 12, Issue 9). MDPI. https://doi.org/10.3390/foods12091756spa
dc.relation.referencesTeklu, D. S., Negeri, A. A., Legese, M. H., Bedada, T. L., Woldemariam, H. K., & Tullu, K. D. (2019). Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance and Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0488-4spa
dc.relation.referencesThe United States Pharmacopeial Convention. (2007). Evidence Quality Evidence Type A Good evidence to support a recommendation for use B Moderate evidence to support a recommendation for use.spa
dc.relation.referencesTiedje, J. M., Wang, F., Manaia, C. M., Virta, M., Sheng, H., Ma, L., Zhang, T., & Topp, E. (2019). Antibiotic Resistance Genes in the Human-Impacted Environment: A One Health Perspective. Pedosphere, 29(3), 273–282. https://doi.org/10.1016/S1002-0160(18)60062-1spa
dc.relation.referencesUnlu, O., Aktas, Z., & Tugrul, H. M. (2018). Analysis of virulence factors and antimicrobial resistance in Salmonella using molecular techniques and identification of clonal relationships among the strains. Microbial Drug Resistance, 24(10), 1475–1482. https://doi.org/10.1089/mdr.2018.0042spa
dc.relation.referencesUsmael, B., Abraha, B., Alemu, S., Mummed, B., Hiko, A., & Abdurehman, A. (2022). Isolation, antimicrobial susceptibility patterns, and risk factors assessment of non-typhoidal Salmonella from apparently healthy and diarrheic dogs. BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-021-03135-xspa
dc.relation.referencesUyttendaele, M., Vanwildemeersch, K., & Debevere, J. (2003). Evaluation of real-time PCR vs automated ELISA and a conventional culture method using a semi-solid medium for detection of Salmonella . Letters in Applied Microbiology, 37(5), 386–391. https://doi.org/10.1046/j.1472-765X.2003.01415.xspa
dc.relation.referencesUzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. In Epidemiology and Infection (Vol. 125, Issue 2, pp. 229–255). https://doi.org/10.1017/S0950268899004379spa
dc.relation.referencesVan, T. T. H., Nguyen, H. N. K., Smooker, P. M., & Coloe, P. J. (2012). The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. In International Journal of Food Microbiology (Vol. 154, Issue 3, pp. 98–106). https://doi.org/10.1016/j.ijfoodmicro.2011.12.032spa
dc.relation.referencesVargas-Alzate, C. A., Higuita-Gutiérrez, L. F., & Jiménez-Quiceno, J. N. (2019). Direct medical costs of urinary tract infections by gram-negative bacilli resistant to Beta-lactams in a tertiary care hospital, Medellín, Colombia. Biomedica, 39, 35–49. https://doi.org/10.7705/biomedica.v39i1.3981spa
dc.relation.referencesVelasquez, C. G., MacKlin, K. S., Kumar, S., Bailey, M., Ebner, P. E., Oliver, H. F., Martin-Gonzalez, F. S., & Singh, M. (2018). Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poultry Science, 97(6), 2144–2152. https://doi.org/10.3382/ps/pex449spa
dc.relation.referencesVenkat, H., Matthews, J., Lumadao, P., Caballero, B., Collins, J., Fowle, N., Kellis, M., Tewell, M., White, S., Hassan, R., Classon, A., Joung, Y., Komatsu, K., Weiss, J., Zusy, S., & Sunenshine, R. (2018). Salmonella enterica Serotype Javiana Infections Linked to a Seafood Restaurant in Maricopa County, Arizona, 2016. Journal of Food Protection, 81(8), 1283–1292. https://doi.org/10.4315/0362-028X.JFP-17-494spa
dc.relation.referencesWalker, R. A., Lindsay, E., Woodward, M. J., Ward, L. R., & Threlfall, E. J. (2001). Variation in Clonality and Antibiotic-Resistance Genes Among Multiresistant Salmonella enterica Serotype typhimurium Phage-Type U302 (MR U302) from Humans, Animals, and Foods. In MICROBIAL DRUG RESISTANCE (Vol. 7, Issue 1). Mary Ann Liebert, Inc.spa
dc.relation.referencesWatkins, R. R., & Bonomo, R. A. (2020). Overview: The Ongoing Threat of Antimicrobial Resistance. In Infectious Disease Clinics of North America (Vol. 34, Issue 4, pp. 649–658). W.B. Saunders. https://doi.org/10.1016/j.idc.2020.04.002spa
dc.relation.referencesWeinstein, M. P. . (2018). Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute.spa
dc.relation.referencesWHO Bacterial Priority Pathogens List. (2024). Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1spa
dc.relation.referencesWibisono, F. M., Wibisono, F. J., Helmi Effendi, M., Plumeriastuti, H., Hidayatullah, A. R., Hartadi, E. B., & Sofiana, E. D. (2020). A Review of Salmonellosis on Poultry Farms: Public Health Importance. In Systematic Reviews in Pharmacy (Vol. 11, Issue 9).spa
dc.relation.referencesWilkens, S. (2015). Structure and mechanism of ABC transporters. F1000Prime Reports, 7. https://doi.org/10.12703/P7-14spa
dc.relation.referencesWilson, A., Fox, E. M., Fegan, N., & Ípek Kurtböke, D. (2019). Comparative Genomics and Phenotypic Investigations into Antibiotic, Heavy Metal, and Disinfectant Susceptibilities of Salmonella enterica Strains Isolated in Australia. Frontiers in Microbiology, 10(JULY). https://doi.org/10.3389/fmicb.2019.01620spa
dc.relation.referencesWilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. In Nature Reviews Microbiology (Vol. 12, Issue 1, pp. 35–48). https://doi.org/10.1038/nrmicro3155spa
dc.relation.referencesWoese, C. R. (1987). Bacterial Evolution. In MICROBIOLOGICAL REVIEWS (Vol. 51, Issue 2). https://journals.asm.org/journal/mrspa
dc.relation.referencesXu, Y., Zhou, X., Jiang, Z., Qi, Y., Ed-dra, A., & Yue, M. (2020). Epidemiological Investigation and Antimicrobial Resistance Profiles of Salmonella Isolated From Breeder Chicken Hatcheries in Henan, China. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00497spa
dc.relation.referencesYamane, K., Wachino, J. I., Suzuki, S., & Arakawa, Y. (2008). Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrobial Agents and Chemotherapy, 52(4), 1564–1566. https://doi.org/10.1128/AAC.01137-07spa
dc.relation.referencesYanestria, S. M., Rahmaniar, R. P., Wibisono, F. J., & Effendi, M. H. (2019). Detection of invA gene of Salmonella from milkfish (Chanos chanos) at Sidoarjo wet fish market, Indonesia, using polymerase chain reaction technique. Veterinary World, 12(1), 170–175. https://doi.org/10.14202/vetworld.2019.170-175spa
dc.relation.referencesYin, Y., & Zhou, D. (2018). Organoid and enteroid modeling of Salmonella Infection. In Frontiers in Cellular and Infection Microbiology (Vol. 8, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fcimb.2018.00102spa
dc.relation.referencesYu, F., Chen, Q., Yu, X., Pan, J., Li, Q., Yang, L., Chen, C., Zhuo, C., Li, X., Zhang, X., Huang, J., & Wang, L. (2011). High prevalence of plasmid-mediated quinolone resistance determinant aac(6′)-Ib-cr amongst Salmonella enterica serotype Typhimurium isolates from hospitalised paediatric patients with diarrhoea in China. International Journal of Antimicrobial Agents, 37(2), 152–155. https://doi.org/10.1016/j.ijantimicag.2010.10.021spa
dc.relation.referencesZhang, A. N., Gaston, J. M., Dai, C. L., Zhao, S., Poyet, M., Groussin, M., Yin, X., Li, L. G., van Loosdrecht, M. C. M., Topp, E., Gillings, M. R., Hanage, W. P., Tiedje, J. M., Moniz, K., Alm, E. J., & Zhang, T. (2021). An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25096-3spa
dc.relation.referencesZhang, C. Z., Ren, S. Q., Chang, M. X., Chen, P. X., Ding, H. Z., & Jiang, H. X. (2017). Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09151-yspa
dc.relation.referencesZhu, Y., Lai, H., Zou, L., Yin, S., Wang, C., Han, X., Xia, X., Hu, K., He, L., Zhou, K., Chen, S., Ao, X., & Liu, S. (2017). Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. International Journal of Food Microbiology, 259, 43–51. https://doi.org/10.1016/j.ijfoodmicro.2017.07.023spa
dc.relation.referencesZishiri, O. T., Mkhize, N., & Mukaratirwa, S. (2016). Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from south Africa and Brazil. Onderstepoort Journal of Veterinary Research, 83(1). https://doi.org/10.4102/ojvr.v83i1.1067spa
dc.relation.referencesZou, L., Meng, J., McDermott, P. F., Wang, F., Yang, Q., Cao, G., Hoffmann, M., & Zhao, S. (2014). Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. Journal of Antimicrobial Chemotherapy, 69(10), 2644–2649. https://doi.org/10.1093/jac/dku197spa
dc.relation.referencesZurfuh, K., Poirel, L., Nordmann, P., Nüesch-Inderbinen, M., Hächler, H., & Stephan, R. (2016). Occurrence of the Plasmid-Borne mcr-1 Colistin Resistance Gene in Extended-Spectrum-Lactamase-Producing Enterobacteriaceae in River Water and Imported Vegetable Samples in Switzerland. In Antimicrobial Agents and Chemotherapy (Vol. 60, Issue 4, pp. 2594–2595). American Society for Microbiology. https://doi.org/10.1128/AAC.00066-16spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc590 - Animalesspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembSALMONELOSIS EN ANIMALESspa
dc.subject.lembSalmonellosis in animalseng
dc.subject.lembENFERMEDADES BACTERIANAS EN ANIMALESspa
dc.subject.lembBacterial diseases in animalseng
dc.subject.lembBACTERIOLOGIA VETERINARIAspa
dc.subject.lembVeterinary bacteriologyeng
dc.subject.lembINDUSTRIA AVICOLAspa
dc.subject.lembPoultry industryeng
dc.subject.lembCONTROL DE AVES DE CORRALspa
dc.subject.lembPoultry inspectioneng
dc.subject.proposalAves de corralspa
dc.subject.proposalResistencia antimicrobianaspa
dc.subject.proposalSalmonelosisspa
dc.subject.proposalSalud Públicaspa
dc.subject.proposalAMReng
dc.subject.proposalOne Healtheng
dc.subject.proposalPoultryeng
dc.subject.proposalPublic healtheng
dc.subject.proposalSalmonellosiseng
dc.titleCaracterización fenotípica y genotípica de la resistencia antimicrobiana de aislamientos de Salmonella spp. provenientes de granjas avícolas
dc.title.translatedPhenotypic and genotypic characterization of antimicrobial resistance in Salmonella spp. isolates from poultry farmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022359120.2025.pdf
Tamaño:
2.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: