Caracterización fenotípica y genotípica de la resistencia antimicrobiana de aislamientos de Salmonella spp. provenientes de granjas avícolas
dc.contributor.advisor | Gómez Ramírez, Arlen Patricia | spa |
dc.contributor.advisor | Álvarez Mira, Diana Marcela | spa |
dc.contributor.author | Rodríguez Beltrán, Karen Lorena | spa |
dc.contributor.researchgroup | Microbiología y Epidemiología – Facultad de Medicina Veterinaria y de Zootecnia, UNAL Bogotá | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-07-28T13:15:28Z | |
dc.date.available | 2025-07-28T13:15:28Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, tablas | spa |
dc.description.abstract | Salmonelosis es una de las enfermedades más importantes para la industria avícola y una de las causas de intoxicación alimentaria en humanos debido al potencial zoonótico de algunos serovares. El uso inapropiado de antimicrobianos como profilácticos y promotores de crecimiento en industria pecuaria ha contribuido al desarrollo de resistencia en las bacterias de este género. Por esta razón, es importante identificar los perfiles de resistencia antimicrobiana (RAM) como parte de las medidas de control. El objetivo de este estudio fue determinar el perfil fenotípico y genotípico asociado con RAM de aislamientos de Salmonella spp., obtenidos de granjas avícolas en tres departamentos del país. Para cumplir este objetivo, se realizó la técnica de Kirby-Bauer en aislamientos de Salmonella spp. de la colección de cepas del Laboratorio de Patología Aviar; de esta manera, se determinaron los perfiles fenotípicos. Para los genotipos de RAM, se evaluaron 20 genes mediadores de los mecanismos de resistencia contra diferentes familias de antibióticos. Como resultado de esta investigación, se encontró una mayor RAM en las muestras ambientales (90%) en comparación con las obtenidas de aves (20%). El gen integrón se detectó en el 24% de los aislados. S. Infantis mostró la mayor RAM frente a casi todos los antibióticos evaluados. El serovar con menor RAM fue S. Gallinarum. En conclusión, el estudio revela RAM en aislados de Salmonella spp. de granjas avícolas, particularmente en muestras ambientales, destacando la importancia de los monitoreos en estos entornos. La detección del gen integrón en los aislados sugiere una posible transferencia horizontal de genes de RAM, complicando el control y tratamiento de esta enfermedad. Este estudio proporciona información para el desarrollo de estrategias que controlen la RAM, protegiendo la salud animal y humana frente a los riesgos que representa este patógeno (Texto tomado de la fuente). | spa |
dc.description.abstract | Salmonellosis is one of the most significant diseases affecting the poultry industry and a leading cause of foodborne illness in humans due to the zoonotic potential of certain serovars. The inappropriate use of antimicrobials as prophylactics and growth promoters in the livestock industry has contributed to the development of resistance in bacteria of this genus. Therefore, identifying antimicrobial resistance profiles (AMR) is crucial as part of control measures. The objective of this study was to determine the phenotypic and genotypic profiles associated with AMR in Salmonella spp. isolates obtained from poultry farms in three regions of the country. To achieve this, the Kirby-Bauer technique was applied to Salmonella spp. isolates from the Avian Pathology Laboratory's strain collection, allowing the determination of phenotypic profiles. For AMR genotypes, 20 genes associated with resistance mechanisms against various antibiotic families were evaluated. As a result of this research, a higher AMR was observed in environmental samples (90%) compared to those obtained from poultry (20%). The integron gene was detected in 24% of the isolates. S. Infantis exhibited the highest AMR against nearly all antibiotics tested, while S. Gallinarum showed the lowest AMR. In conclusion, the study reveals the presence of AMR in Salmonella spp. isolates from poultry farms, particularly in environmental samples, emphasizing the importance of monitoring these environments. The detection of the integron gene suggests the potential for horizontal gene transfer of AMR genes, complicating the control and treatment of this disease. This study provides valuable information for the development of strategies to control AMR, thereby safeguarding both animal and human health from the risks posed by this pathogen. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Salud Animal o Magíster en Producción Animal | spa |
dc.description.methods | Se empleó un enfoque cuantitativo, de tipo descriptivo y transversal. Se trabajó con aislamientos de Salmonella spp. provenientes de granjas avícolas de tres departamentos de Colombia, conservados en el banco de cepas del Laboratorio de Patología Aviar de la Universidad Nacional de Colombia. La caracterización fenotípica de resistencia antimicrobiana se realizó mediante el método de difusión en disco de Kirby-Bauer, y la caracterización genotípica mediante PCR múltiplex para detección de genes asociados a resistencia. Finalmente, se aplicaron análisis estadísticos descriptivos y de correlación entre los perfiles fenotípico y genotípico. | spa |
dc.description.researcharea | Microbiología molecular: resistencia antimicrobiana y virulencia en patógenos veterinarios | spa |
dc.format.extent | xv, 104 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88383 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y de Zootecnia | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal | spa |
dc.relation.references | Abdelhamid, A. G., & Yousef, A. E. (2022). Carvacrol and thymol combat desiccation resistance mechanisms in Salmonella enterica serovar tennessee. Microorganisms, 10(1). https://doi.org/10.3390/microorganisms10010044 | spa |
dc.relation.references | Abdulhaleem, N., Garba, B., Younis, H., Mahmuda, A., Hamat, R. A., Majid, R. B. A., Lung, L. T. T., Unyah, N. Z., Sattar, A., & Saidu, B. (2019). Current trend on the economic and public health significance of salmonellosis in Iraq. In Advances in Animal and Veterinary Sciences (Vol. 7, Issue 6, pp. 484–491). Nexus Academic Publishers. https://doi.org/10.17582/journal.aavs/2019/7.6.484.491 | spa |
dc.relation.references | Abukhattab, S., Taweel, H., Awad, A., Crump, L., Vonaesch, P., Zinsstag, J., Hattendorf, J., & Abu-Rmeileh, N. M. E. (2022). Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. In Antibiotics (Vol. 11, Issue 5). MDPI. https://doi.org/10.3390/antibiotics11050536 | spa |
dc.relation.references | Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of quinolone action and resistance. In Biochemistry (Vol. 53, Issue 10, pp. 1565–1574). American Chemical Society. https://doi.org/10.1021/bi5000564 | spa |
dc.relation.references | Al-Hadidi, S. H., Al Mana, H., Almoghrabi, S. Z., El-Obeid, T., Alali, W. Q., & Eltai, N. O. (2022). Retail Chicken Carcasses as a Reservoir of Multidrug-Resistant Salmonella . Microbial Drug Resistance, 28(7), 824–831. https://doi.org/10.1089/mdr.2021.0414 | spa |
dc.relation.references | Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. In Clinical Microbiology and Infection (Vol. 22, Issue 2, pp. 110–121). Elsevier B.V. https://doi.org/10.1016/j.cmi.2015.12.004 | spa |
dc.relation.references | Aydin, M., Carter-Conger, J., Gao, N., Gilmore, D. F., Ricke, S. C., & Ahn, S. (2018). Molecular identification of common Salmonella serovars using multiplex DNA sensorbased suspension array. Analytical and Bioanalytical Chemistry, 410(10), 2637–2646. https://doi.org/10.1007/s00216-018-0938-5 | spa |
dc.relation.references | Bahl, M. (2009). Horizontal Gene Transfer (M. B. Gogarten, J. P. Gogarten, & L. C. Olendzenski, Eds.; Vol. 532). Humana Press. https://doi.org/10.1007/978-1-60327- 853-9 | spa |
dc.relation.references | Baudry-Simner, P. J., Singh, A., Karlowsky, J. A., Hoban, D. J., Zhanel, G. G., Baudry- Simner Bsc, P. J., Singh Bsc, A., Karlowsky, J. A., Hoban, D. J., Zhanel, G. G., Antimicrobial, C., & Alliance, R. (2012). Mechanisms of reduced susceptibility to ciprofloxacin in Escherichia coli isolates from Canadian hospitals. In Can J Infect Dis Med Microbiol (Vol. 23, Issue 3). www.can-r.ca | spa |
dc.relation.references | Bell, R. L., Zheng, J., Burrows, E., Allard, S., Wang, C. Y., Keys, C. E., Melka, D. C., Strain, E., Luo, Y., Allard, M. W., Rideout, S., & Brown, E. W. (2015). Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore. Frontiers in Microbiology, 6(MAY). https://doi.org/10.3389/fmicb.2015.00415 | spa |
dc.relation.references | Bermúdez, P. M., Pulecio, S. L., & Suárez, M. C. (2016). Susceptibilidad antimicrobiana de aislamientos de Salmonella enterica provenientes de pisos, equipos, utensilios y producto terminado en el beneficio porcino en Colombia. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 63(1), 39–53. https://doi.org/10.15446/rfmvz.v63n1.56903 | spa |
dc.relation.references | Bertelloni, F., Bresciani, F., Cagnoli, G., Scotti, B., Lazzerini, L., Marcucci, M., Colombani, G., Bilei, S., Bossù, T., De Marchis, M. L., & Ebani, V. V. (2023). House Flies (Musca domestica) from Swine and Poultry Farms Carrying Antimicrobial Resistant Enterobacteriaceae and Salmonella . Veterinary Sciences, 10(2). https://doi.org/10.3390/vetsci100201 | spa |
dc.relation.references | Blair, J. M. A., Smith, H. E., Ricci, V., Lawler, A. J., Thompson, L. J., & Piddock, L. J. V. (2015). Expression of homologous RND efflux pump genes is dependent upon AcrB expression: Implications for efflux and virulence inhibitor design. Journal of Antimicrobial Chemotherapy, 70(2), 424–431. https://doi.org/10.1093/jac/dku380 | spa |
dc.relation.references | Blixt, O., Hoffmann, J., Svenson, S., & Norberg, T. (2008). Pathogen specific carbohydrate antigen microarrays: A chip for detection of Salmonella O-antigen specific antibodies. Glycoconjugate Journal, 25(1), 27–36. https://doi.org/10.1007/s10719-007-9045-0 | spa |
dc.relation.references | Boelaert, F., Van der Stede, Y., Stoicescu, A., Amore, G., Nagy, K., Rizzi, V., Felicio, M. T. D. S., Messens, W., Pelaez, A. O., Hempen, M., Sarno, E., Thomas, D., Verdonck, F., Niskanen, T., Haussig, J., Merk, H., Dias, J. G., Barco, L., Mancin, M., … Lombard, B. (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal, 16(12). https://doi.org/10.2903/j.efsa.2018.5500 | spa |
dc.relation.references | Böttger, E. C. (1989). Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiology Letters, 65(1–2), 171–176. https://doi.org/10.1111/j.1574-6968.1989.tb03617.x | spa |
dc.relation.references | Brolund, A., Sundqvist, M., Kahlmeter, G., & Grape, M. (2010). Molecular characterisation of trimethoprim resistance in Escherichia coli and Klebsiella pneumoniae during a two year intervention on trimethoprim use. PLoS ONE, 5(2). https://doi.org/10.1371/journal.pone.0009233 | spa |
dc.relation.references | Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. In Antimicrobial Agents and Chemotherapy (Vol. 54, Issue 3, pp. 969–976). https://doi.org/10.1128/AAC.01009-09 | spa |
dc.relation.references | Carey, M. E., Dyson, Z. A., Ingle, D. J., Amir, A., Aworh, M. K., Chattaway, M. A., Chew, K. L., Crump, J. A., Feasey, N. A., Howden, B. P., Keddy, K. H., Maes, M., Parry, C. M., Van Puyvelde, S., Webb, H. E., Afolayan, A. O., Alexander, A. P., Anandan, S., Andrews, J. R., … Typhoid, G. (2023). Agila Kumari Pragasam 22 , Firdausi Qadri 30 , Farah N Qamar 50 , Sadia Isfat Ara Rahman 30 , Savitra Devi Rambocus 16 , David A Rasko 69. Mohammad Saiful Islam Sajib, 12, 83. https://doi.org/10.7554/eLife | spa |
dc.relation.references | Carroll, A. C., & Wong, A. (2018). Plasmid Persistence: Costs, Benefits and the Plasmid Paradox 5 6 1125 Colonel By Drive Ottawa, ON K1S 5B6. In Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF CONNECTICUT on. www.nrcresearchpress.com | spa |
dc.relation.references | Carson, C., Li, X. Z., Agunos, A., Loest, D., Chapman, B., Finley, R., Mehrotra, M., Sherk, L. M., Gaumond, R., & Irwin, R. (2019). Ceftiofur-resistant Salmonella enterica serovar Heidelberg of poultry origin - a risk profile using the Codex framework. In Epidemiology and infection (Vol. 147, p. e296). NLM (Medline). https://doi.org/10.1017/S0950268819001778 | spa |
dc.relation.references | Casin, I., Breuil, J., Darchis, J. P., Guelpa, C., & Collatz, E. (2003). Fluoroquinolone Resistance Linked to GyrA, GyrB, and ParC Mutations in Salmonella enterica Typhimurium Isolates in Humans. Emerging Infectious Diseases, 9(11), 1482–1483. https://doi.org/10.3201/eid0911.030317 | spa |
dc.relation.references | Castañeda-Salazar, R., Del Pilar Pulido-Villamarín, A., Mendoza-Gómez, M. F., Carrascal- Camacho, A. K., & Sandoval-Rojas, K. L. (2017). Salmonella spp. Isolation and identification in eggs for human consumption from different urban areas in Bogotá, Colombia, 2015. Infectio, 21(3), 154–159. https://doi.org/10.22354/in.v21i3.672 | spa |
dc.relation.references | Castañeda-Salazar, R., Pereira-Bazurdo, A. N., Pulido-Villamarín, A. D. P., & Mendoza- Gómez, M. F. (2018). Estimación de la prevalencia de Salmonella spp. en pechugas de pollo para consumo humano provenientes de cuatro localidades de Bogotá- Colombia. Infectio, 23(1), 27. https://doi.org/10.22354/in.v23i1.752 | spa |
dc.relation.references | Castro-Vargas, R. E., Herrera-Sánchez, M. P., Rodríguez-Hernández, R., & Rondón- Barragán, I. S. (2020). Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Veterinary World, 13(10), 2070–2084. https://doi.org/10.14202/vetworld.2020.2070-2084 | spa |
dc.relation.references | Centers for Disease Control and Prevention. (2011, June). Making Food Safer to Eat Reducing contamination from the farm to the table | spa |
dc.relation.references | Chen, Q., Gong, X., Zheng, F., Ji, P., Yuan, Z., Liu, Y., & Wei, Y. (2019). Prevalence and characteristics of quinolone resistance in Salmonella isolated from retail foods in Lanzhou, China. Journal of Food Protection, 82(9), 1591–1597. https://doi.org/10.4315/0362-028X.JFP-19-001 | spa |
dc.relation.references | Chen, S., Zhao, S., White, D. G., Schroeder, C. M., Lu, R., Yang, H., McDermott, P. F., Ayers, S., & Meng, J. (2004). Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats. Applied and Environmental Microbiology, 70(1), 1–7. https://doi.org/10.1128/AEM.70.1.1-7.2004 | spa |
dc.relation.references | Chiu, C.-H., & Ou, J. T. (1996). Rapid Identification of Salmonella Serovars in Feces by Specific Detection of Virulence Genes, invA and spvC, by an Enrichment Broth Culture-Multiplex PCR Combination Assay. In JOURNAL OF CLINICAL MICROBIOLOGY (Vol. 34, Issue 10). | spa |
dc.relation.references | Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In Journal of Molecular Evolution (Vol. 88, Issue 1, pp. 26–40). Springer. https://doi.org/10.1007/s00239-019-09914-3 | spa |
dc.relation.references | Cibin, V., Busetti, M., Longo, A., Petrin, S., Knezevich, A., Ricci, A., Barco, L., & Losasso, C. (2019). Whole Genome Sequencing of Salmonella Serovar Stanleyville from Two Italian Outbreaks Resulted in Unexpected Genomic Diversity Within and between Outbreaks. In Foodborne Pathogens and Disease (Vol. 16, Issue 4, pp. 307–308). Mary Ann Liebert Inc. https://doi.org/10.1089/fpd.2018.2564 | spa |
dc.relation.references | Coipan, C. E., Westrell, T., van Hoek, A. H. A. M., Alm, E., Kotila, S., Berbers, B., de Keersmaecker, S. C. J., Ceyssens, P. J., Borg, M. L., Chattaway, M., McCormick, J., Dallman, T. J., & Franz, E. (2020). Genomic epidemiology of emerging ESBLproducing Salmonella Kentucky bla CTX-M-14b in Europe. Emerging Microbes and Infections, 9(1), 2124–2135. https://doi.org/10.1080/22221751.2020.1821582 | spa |
dc.relation.references | Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance. In Antimicrobial Agents and Chemotherapy (Vol. 47, Issue 12, pp. 3675–3681). https://doi.org/10.1128/AAC.47.12.3675-3681.2003 | spa |
dc.relation.references | Costelloe, C., Metcalfe, C., Lovering, A., Mant, D., & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. In BMJ (Online) (Vol. 340, Issue 7756, p. 1120). https://doi.org/10.1136/bmj.c2096 | spa |
dc.relation.references | Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. In Annals of Clinical Microbiology and Antimicrobials (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12941-015-0100-6 | spa |
dc.relation.references | Di Francesco, C. E., Smoglica, C., Profeta, F., Farooq, M., Di Giannatale, E., Toscani, T., & Marsilio, F. (2021). Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Poultry Science, 100(5). https://doi.org/10.1016/j.psj.2021.101084 | spa |
dc.relation.references | Dietrich, J., Hammerl, J.-A., Johne, A., Kappenstein, O., Loeffler, C., Nöckler, K., Rosner, B., Spielmeyer, A., Szabo, I., & Richter, M. H. (2023). Impact of climate change on foodborne infections and intoxications. Journal of Health Monitoring, 8(Suppl 3), 78– 92. https://doi.org/10.25646/11403 | spa |
dc.relation.references | Djeffal, S., Mamache, B., Elgroud, R., Hireche, S., & Bouaziz, O. (2018). Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Veterinary World, 11(8), 1102–1108. https://doi.org/10.14202/vetworld.2018.1102-1108 | spa |
dc.relation.references | Donado-Godoy, P., Bernal, J. F., Rodríguez, F., Gomez, Y., Agarwala, R., Landsman, D., & Mariño-Ramírez, L. (2015). Genome sequences of multidrug-resistant Salmonella enterica serovar Paratyphi B (dT+) and Heidelberg strains from the Colombian poultry chain. Genome Announcements, 3(5). https://doi.org/10.1128/genomeA.01265-15 | spa |
dc.relation.references | Donado-godoy, P., Byrne, B. A., León, M., Castellanos, R., Vanegas, C., Coral, A., Arevalo, A., Clavijo, V., Vargas, M., Romero Zuñiga, J. J., Tafur, M., Pérez-Gutierrez, E., & Smith, W. A. (2015). Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. Journal of Food Protection, 78(4), 751–759. https://doi.org/10.4315/0362-028X.JFP-14-349 | spa |
dc.relation.references | Donado-Godoy, P., Clavijo, V., Leó n, M., Tafur, M. A., Gonzales, S., Hume, M., Alali, W., Walls, I., Lo Fo Wong, D. M. A., & Doyle, M. P. (2012). Prevalence of Salmonella on retail broiler chicken meat carcasses in colombia. Journal of Food Protection, 75(6), 1134–1138. https://doi.org/10.4315/0362-028X.JFP-11-513 | spa |
dc.relation.references | Dróżdż, M., Małaszczuk, M., Paluch, E., & Pawlak, A. (2021). Zoonotic potential and prevalence of Salmonella serovars isolated from pets. In Infection Ecology and Epidemiology (Vol. 11, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/20008686.2021.1975530 | spa |
dc.relation.references | Dufour-Zavala, Louise. (2008). A laboratory manual for the isolation, identification and characterization of avian pathogens. American Association of Avian Pathologists. | spa |
dc.relation.references | Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella , food safety and food handling practices. Foods, 10(5). https://doi.org/10.3390/foods10050907 | spa |
dc.relation.references | Ellis, M. J., Tsai, C. N., Johnson, J. W., French, S., Elhenawy, W., Porwollik, S., Andrews- Polymenis, H., McClelland, M., Magolan, J., Coombes, B. K., & Brown, E. D. (2019). A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08190-x | spa |
dc.relation.references | Espejo, L. J., Rodríguez, K. L., Rodríguez, M. F., & Ramírez, A. P. G. (2019). Genotype identification of Staphylococcus with methicillin-resistant phenotype isolated from human, animal and environmental samples. Revista de Investigaciones Veterinarias Del Peru, 30(1), 364–376. https://doi.org/10.15381/rivep.v30i1.14614 | spa |
dc.relation.references | Evangelopoulou, G., Filioussis, G., Kritas, S., Christodoulopoulos, G., Triantafillou, E. A., & Burriel, A. R. (2015). Short communication: Colonisation of pig gallbladders with Salmonella species important to public health. Veterinary Record, 176(7), 174. https://doi.org/10.1136/vr.102822 | spa |
dc.relation.references | Fang, Z., & Méresse, S. (2022). Endomembrane remodeling and dynamics in Salmonella infection. In Microbial Cell (Vol. 9, Issue 2, pp. 24–41). Shared Science Publishers OG. https://doi.org/10.15698/mic2022.02.769 | spa |
dc.relation.references | Federación Nacional de Avicultores de Colombia [Fenavi]. (2023). ESTADÍSTICAS DEL SECTOR. https://fenavi.org/informacion-estadistica/ | spa |
dc.relation.references | Feng, P. (1992). Commercial Assay Systems for Detecting Foodborne Salmonella : A Review. Journal of Food Protection, 55(11), 927–934. https://doi.org/10.4315/0362- 028X-55.11.927 | spa |
dc.relation.references | Fernández, L., Breidenstein, E. B. M., & Hancock, R. E. W. (2011). Creeping baselines and adaptive resistance to antibiotics. Drug Resistance Updates, 14(1), 1–21. https://doi.org/10.1016/j.drup.2011.01.001 | spa |
dc.relation.references | Fernández, L., & Hancock, R. E. W. (2012). Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews, 25(4), 661– 681. https://doi.org/10.1128/CMR.00043-12 | spa |
dc.relation.references | Fišarová, L., Pantůček, R., Botka, T., & Doškař, J. (2019). Variability of resistance plasmids in coagulase-negative staphylococci and their importance as a reservoir of antimicrobial resistance. Research in Microbiology, 170(2), 105–111. https://doi.org/10.1016/j.resmic.2018.11.004 | spa |
dc.relation.references | Flensburg, J., & Sköld, O. (1987). Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. European Journal of Biochemistry, 162(3), 473–476. https://doi.org/10.1111/j.1432-1033.1987.tb10664.x | spa |
dc.relation.references | Flores, V., & Fernandez, C. (2016). Protocolo de crioconservación de cepas bacterianas - RNIA (pp. 1–8). | spa |
dc.relation.references | Foley, S. L., Zhao, S., & Walker, R. D. (2007). Comparison of Molecular Typing Methods for the Differentiation of Salmonella Foodborne Pathogens. Foodborne Pathogens and Disease, 4(3), 253–276. https://doi.org/10.1089/fpd.2007.0085 | spa |
dc.relation.references | Frana, T. S., Carlson, S. A., & Griffith, R. W. (2001). Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype typhimurium phage type DT104. Applied and Environmental Microbiology, 67(1), 445–448. https://doi.org/10.1128/AEM.67.1.445-448.2001 | spa |
dc.relation.references | Frieden, T. R., Harold Jaffe, D. W., Stephens, J. W., Thacker, S. B., Casey, C. G., Holtzman, D., John Iglehart, G. K., Maki, D. G., LaPete, M. A., Spriggs, S. R., Starr, T. M., Doan, Q. M., King, P. H., Remington, P. L., Barbara Rimer, W. K., Hill, C., John Rullan, N. V, Juan, S., William Schaffner, P., … Roper, W. L. (2007). Centers for Disease Control and Prevention MMWR Editorial and Production Staff MMWR Editorial Board. | spa |
dc.relation.references | Gallegos-Robles, M. A., Morales-Loredo, A., Álvarez-Ojeda, G., Osuna-García, J. A., Martínez, I. O., Morales-Ramos, L. H., & Fratamico, P. (2009). PCR detection and microbiological isolation of Salmonella spp. from fresh beef and cantaloupes. Journal of Food Science, 74(1). https://doi.org/10.1111/j.1750-3841.2008.01006.x | spa |
dc.relation.references | Gautam, A. (2022). Antimicrobial Resistance: The Next Probable Pandemic. Journal of the Nepal Medical Association, 60(246), 225–228. https://doi.org/10.31729/jnma.7174 | spa |
dc.relation.references | Gebreyes, W. A., & Altier, C. (2002). Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. Journal of Clinical Microbiology, 40(8), 2813–2822. https://doi.org/10.1128/JCM.40.8.2813-2822.2002 | spa |
dc.relation.references | Gharavi, M. J., Zarei, J., Roshani-Asl, P., Yazdanyar, Z., Sharif, M., & Rashidi, N. (2021). Comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79791-0 | spa |
dc.relation.references | Gniadkowski, M. (2008). Evolution of extended-spectrum β-lactamases by mutation. In Clinical Microbiology and Infection (Vol. 14, Issue SUPPL. 1, pp. 11–32). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1469-0691.2007.01854.x | spa |
dc.relation.references | Gonzalez-Zorn, C. S. B. (2022). Antimicrobial resistance and One Health. Revista Espanola de Quimioterapia, 35, 37–40. https://doi.org/10.37201/req/s03.09.2022 | spa |
dc.relation.references | Green, M. R., & Sambrook, J. (2018). Isolation and quantification of DNA. Cold Spring Harbor Protocols, 2018(6), 403–414. https://doi.org/10.1101/pdb.top093336 | spa |
dc.relation.references | Guard, J., Jones, D. R., Gast, R. K., Garcia, J. S., & Rothrock, M. J. (2023). Serotype Screening of Salmonella enterica Subspecies I by Intergenic Sequence Ribotyping (ISR): Critical Updates. Microorganisms, 11(1). https://doi.org/10.3390/microorganisms11010097 | spa |
dc.relation.references | Hardie, K. M., Guerin, M. T., Ellis, A., & Leclair, D. (2019). Associations of processing level variables with Salmonella prevalence and concentration on broiler chicken carcasses and parts in Canada. Preventive Veterinary Medicine, 168, 39–51. https://doi.org/10.1016/j.prevetmed.2019.03.027 | spa |
dc.relation.references | Heran, K., And, D., & Miller, V. L. (1999). Molecular Basis of the Interaction of Salmonella with the Intestinal Mucosa. In CLINICAL MICROBIOLOGY REVIEWS (Vol. 12, Issue 3). | spa |
dc.relation.references | Hernando-Amado, S., Blanco, P., Alcalde-Rico, M., Corona, F., Reales-Calderón, J. A., Sánchez, M. B., & Martínez, J. L. (2016). Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. In Drug Resistance Updates (Vol. 28, pp. 13–27). Churchill Livingstone. https://doi.org/10.1016/j.drup.2016.06.007 | spa |
dc.relation.references | Herrera-Sánchez, M. P., Castro-Vargas, R. E., Fandiño-De-Rubio, L. C., Rodríguez- Hernández, R., & Rondón-Barragán, I. S. (2021). Molecular identification of fluoroquinolone resistance in Salmonella spp. Isolated from broiler farms and human samples obtained from two regions in Colombia. Veterinary World, 14(7), 1767–1773. https://doi.org/10.14202/vetworld.2021.1767-1773 | spa |
dc.relation.references | Hinchliffe, P., Yang, Q. E., Portal, E., Young, T., Li, H., Tooke, C. L., Carvalho, M. J., Paterson, N. G., Brem, J., Niumsup, P. R., Tansawai, U., Lei, L., Li, M., Shen, Z., Wang, Y., Schofield, C. J., Mulholland, A. J., Shen, J., Fey, N., … Spencer, J. (2017). Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Scientific Reports, 7. https://doi.org/10.1038/srep39392 | spa |
dc.relation.references | Hirose, K., Hashimoto, A., Tamura, K., Kawamura, Y., Ezaki, T., Sagara, H., & Watanabe, H. (2002). DNA sequence analysis of DNA gyrase and DNA topoisomerase IV quinolone resistance-determining regions of Salmonella enterica serovar Typhi and serovar Paratyphi A. Antimicrobial Agents and Chemotherapy, 46(10), 3249–3252. https://doi.org/10.1128/AAC.46.10.3249-3252.2002 | spa |
dc.relation.references | Hoelzer, K., Switt, A. I. M., & Wiedmann, M. (2011). Animal contact as a source of human non-typhoidal salmonellosis. In Veterinary Research (Vol. 42, Issue 1). https://doi.org/10.1186/1297-9716-42-34 | spa |
dc.relation.references | Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. In The Lancet (Vol. 387, Issue 10014, pp. 176–187). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)00473-0 | spa |
dc.relation.references | Hooper, D. C., & Jacoby, G. A. (2016). Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor Perspectives in Medicine, 6(9). https://doi.org/10.1101/cshperspect.a025320 | spa |
dc.relation.references | Huovinen, P. (2001). Resistance to Trimethoprim-Sulfamethoxazole. https://academic.oup.com/cid/article/32/11/1608/464214 | spa |
dc.relation.references | Hwang, S. M., Kim, M. S., Park, K. U., Song, J., & Kim, E. C. (2011). tuf gene sequence analysis has greater discriminatory power than 16S rRNA sequence analysis in identification of clinical isolates of coagulase-negative staphylococci. Journal of Clinical Microbiology, 49(12), 4142–4149. https://doi.org/10.1128/JCM.05213-11 | spa |
dc.relation.references | ICA. (2023). PROGRAMA NACIONAL DE CONTROL DE LOS SEROVARES DE SALMONELLA PULLORUM, GALLINARUM, Y DISMINUCIÓN DE LA PREVALENCIA DE LAS SALMONELLA S PARATÍFICAS ENTERITIDIS Y TIPHYMURIUM SUBGERENCIA DE PROTECCIÓN ANIMAL DIRECCIÓN TÉCNICA DE SANIDAD ANIMAL 2023. https://www.ica.gov.co/getattachment/Areas/Pecuaria/Servicios/Enfermedades-Animales/SALMONELLA /PRA-SPA-PROG-8-V-1.pdf.aspx?lang=es-CO | spa |
dc.relation.references | INS. (2019). Fideicomisos Instituidos en Relación con la Agricultura [FIRA]. (2019). Panorama agroalimentario, dirección de investigación y evaluación económica sectorial. https://www.inforural.com.mx/wp-content/uploads/2019/09/Panorama- Agroalimentario-Carne-de-pollo-2). . https://www.ins.gov.co/BibliotecaDigital/informede-vigilancia-por-laboratorio-Salmonella -spp-colombia-1997-2018.pdf | spa |
dc.relation.references | INS. (2024). Boletín Epidemiológico Semanal. https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2024_Boletín_epidemiologico_semana_3.pdf | spa |
dc.relation.references | Instituto Nacional de Vigilancia de Medicamentos y Alimentos (Invima). (2016). OFICINA DE LABORATORIOS Y CONTROL DE CALIDAD ASEGURAMIENTO DE CALIDAD. | spa |
dc.relation.references | Jacoby, G. A. (2009). AmpC Β-Lactamases. In Clinical Microbiology Reviews (Vol. 22, Issue 1, pp. 161–182). https://doi.org/10.1128/CMR.00036-08 | spa |
dc.relation.references | Jacoby, G. A., Strahilevitz, J., & Hooper, D. C. (2014). Plasmid-Mediated Quinolone Resistance. https://doi.org/10.1128/microbiolspec.PLAS-0006 | spa |
dc.relation.references | Jiang, X., Zhang, X., Sun, Y., Sun, Z., Li, X., & Liu, L. (2023). Effects of Salmonella Enteritidis infection on TLRs gene expression and microbial diversity in cecum of laying hens. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16414 | spa |
dc.relation.references | Kary, S. C., Yoneda, J. R. K., Olshefsky, S. C., Stewart, L. A., West, S. B., & Cameron, A. D. S. (2017). The Global Regulatory Cyclic AMP Receptor Protein (CRP) Controls Multifactorial Fluoroquinolone Susceptibility in Salmonella enterica Serovar Typhimurium. https://doi.org/10.1128/AAC | spa |
dc.relation.references | Kelemen, G. H., Cundliffe, E., & Financsek, I. (1991). Cloning and characterization of gentamicin-resistance genes from Micromonospora Micromonospora rosea (Recombinant DNA; aminoglycoside-resistance; transcript mapping; ribosomal RNA methylase). In I Biochin Biotechnological Company. Budapest (Vol. 98). | spa |
dc.relation.references | Khan, S. B., Khan, M. A., Ahmad, I., ur Rehman, T., Ullah, S., Dad, R., Sultan, A., & Memon, A. M. (2019). Phentotypic, gentotypic antimicrobial resistance and pathogenicity of Salmonella enterica serovars Typimurium and Enteriditis in poultry and poultry products. Microbial Pathogenesis, 129, 118–124. https://doi.org/10.1016/j.micpath.2019.01.046 | spa |
dc.relation.references | Knothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11(6), 315–317. https://doi.org/10.1007/BF01641355 | spa |
dc.relation.references | Lamut, A., Peterlin Mašič, L., Kikelj, D., & Tomašič, T. (2019). Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. In Medicinal Research Reviews (Vol. 39, Issue 6, pp. 2460–2504). John Wiley and Sons Inc. https://doi.org/10.1002/med.21591 | spa |
dc.relation.references | Le Roux, F., & Blokesch, M. (2018). Eco-evolutionary Dynamics Linked to Horizontal Gene Transfer in Vibrios. 14, 29. https://doi.org/10.1146/annurev-micro-090817 | spa |
dc.relation.references | Leclercq, R. (2002). Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the Resistance Elements and Their Clinical Implications. https://academic.oup.com/cid/article/34/4/482/412492 | spa |
dc.relation.references | Lee, J. H. (2019). Perspectives towards antibiotic resistance: from molecules to population. In Journal of Microbiology (Vol. 57, Issue 3, pp. 181–184). Microbiological Society of Korea. https://doi.org/10.1007/s12275-019-0718-8 | spa |
dc.relation.references | Lee, S., Park, N., Yun, S., Hur, E., Song, J., Lee, H., Kim, Y., & Ryu, S. (2021). Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. In Gut Pathogens (Vol. 13, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13099-021-00431-7 | spa |
dc.relation.references | Leinyuy, J. F., Ali, I. M., Ousenu, K., & Tume, C. B. (2023). Molecular characterization of antimicrobial resistance related genes in E. coli, Salmonella and Klebsiella isolates from broilers in the West Region of Cameroon. PLoS ONE, 18(1 January). https://doi.org/10.1371/journal.pone.0280150 | spa |
dc.relation.references | Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., & Balaban, N. Q. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355(6327), 826–830. https://doi.org/10.1126/science.aaj2191 | spa |
dc.relation.references | Lewis, J. S., Weinstein, M. P., Bobenchik, A. M., Campeau, S., & Cullen, S. (2023). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. 33rd Edition. www.clsi.org. | spa |
dc.relation.references | Li, B., Ke, B., Zhao, X., Guo, Y., Wang, W., Wang, X., & Zhu, H. (2018). Antimicrobial resistance profile of mcr-1 positive clinical isolates of Escherichia coli in China from 2013 to 2016. In Frontiers in Microbiology (Vol. 9, Issue OCT). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.02514 | spa |
dc.relation.references | Li, L., Liao, X. P., Liu, Z. Z., Huang, T., Li, X., Sun, J., Liu, B. T., Zhang, Q., & Liu, Y. H. (2014). Co-spread of oqxAB and blaCTX-M-9G in non-Typhi Salmonella enterica isolates mediated by ST2-IncHI2 plasmids. International Journal of Antimicrobial Agents, 44(3), 263–268. https://doi.org/10.1016/j.ijantimicag.2014.05.014 | spa |
dc.relation.references | Li, P., Zhan, L., Wang, H., Yan, Y., Jia, M., Gao, L., Sun, Y., Zhu, G., & Chen, Z. (2024). Prevalence and Antimicrobial Resistance Diversity of Salmonella Isolates in Jiaxing City, China. Antibiotics, 13(5). https://doi.org/10.3390/antibiotics13050443 | spa |
dc.relation.references | Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H., & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7 | spa |
dc.relation.references | López, F. E., de las Mercedes Pescaretti, M., Morero, R., & Delgado, M. A. (2012). Salmonella Typhimurium general virulence factors: A battle of David against Goliath? In Food Research International (Vol. 45, Issue 2, pp. 842–851). https://doi.org/10.1016/j.foodres.2011.08.009 | spa |
dc.relation.references | Lozano-Villegas, K. J., & Rondon-Barragan, I. S. (2024). Virulence and Antimicrobial- Resistant Gene Profiles of Salmonella spp. Isolates from Chicken Carcasses Markets in Ibague City, Colombia. International Journal of Microbiology, 2024. https://doi.org/10.1155/2024/4674138 | spa |
dc.relation.references | Lu, Y., Wu, C.-M., Wu, G.-J., Zhao, H.-Y., He, T., Cao, X.-Y., Dai, L., Xia, L.-N., Qin, S.-S., & Shen, J.-Z. (2011). Prevalence of Antimicrobial Resistance Among Salmonella Isolates from Chicken in China. Foodborne Pathogens and Disease, 8(1), 45–53. https://doi.org/10.1089/fpd.2010.0605 | spa |
dc.relation.references | Lubbers, B. V, Diaz-Campos, D. V, Schwarz, S., Sweeney, M. T., Burbick, C. R., Govendir, M., Harris, B., Holliday, N. M., Hayes, J., Lawhon, S. D., Li, X.-Z., Miller, R. A., Morrissey, I., Murphy, F. K. M., Papich, M. G., & Simjee, S. (2024). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 44(1). | spa |
dc.relation.references | Mahzounieh, M., Khoshnood, S., Ebrahimi, A., Habibian, S., & Yaghoubian, M. (2014). Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. isolated from burn patients. Jundishapur Journal of Natural Pharmaceutical Products, 9(2). https://doi.org/10.17795/jjnpp-15402 | spa |
dc.relation.references | Malorny, B., Hoorfar, J., Bunge, C., & Helmuth, R. (2003). Multicenter validation of the analytical accuracy of Salmonella PCR: Towards an international standard. Applied and Environmental Microbiology, 69(1), 290–296. https://doi.org/10.1128/AEM.69.1.290-296.2003 | spa |
dc.relation.references | Mantilla, J., Pulido, M., & Jaime, J. (2010). Prueba de sensibilidad antimicrobiana de cePas de Salmonella gruPo d (móviles e inmóviles) aisladas de Ponedoras comerciales en colombia. https://revistas.unal.edu.co/index.php/remevez/article/view/18252/19162 | spa |
dc.relation.references | Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. In Molecules (Vol. 23, Issue 4). MDPI AG. https://doi.org/10.3390/molecules23040795 | spa |
dc.relation.references | Mcmurry, L., Petrucci, R. E., & Levy, S. B. (1980). Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli (everted membrane vesicles/tetracycline transport/transposon TnlO/plasmids). In Biochemistry (Vol. 77, Issue 7). | spa |
dc.relation.references | Mir, R., Salari, S., Najimi, M., & Rashki, A. (2022). Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Veterinary Medicine and Science, 8(1), 229–236. https://doi.org/10.1002/vms3.647 | spa |
dc.relation.references | Mohammed, B. T. (2024). Identification and bioinformatic analysis of invA gene of Salmonella in free range chicken. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.263363 | spa |
dc.relation.references | Morales, C. A., Gast, R., & Guard-Bouldin, J. (2006). Linkage of avian and reproductive tract tropism with sequence divergence adjacent to the 5S ribosomal subunit rrfH of Salmonella enterica. FEMS Microbiology Letters, 264(1), 48–58. https://doi.org/10.1111/j.1574-6968.2006.00432.x | spa |
dc.relation.references | Motta, S. S., Cluzel, P., & Aldana, M. (2015). Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118464 | spa |
dc.relation.references | Mulchandani, R., Wang, Y., Gilbert, M., & Van Boeckel, T. P. (2023). Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Global Public Health, 3(2). https://doi.org/10.1371/journal.pgph.0001305 | spa |
dc.relation.references | Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 | spa |
dc.relation.references | Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0 | spa |
dc.relation.references | Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., Robles Aguilar, G., Mestrovic, T., Smith, G., Han, C., Hsu, R. L., Chalek, J., Araki, D. T., Chung, E., Raggi, C., Gershberg Hayoon, A., Davis Weaver, N., Lindstedt, P. A., Smith, A. E., … Murray, C. J. L. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, 404(10459), 1199–1226. https://doi.org/10.1016/S0140-6736(24)01867-1 | spa |
dc.relation.references | Nikaido, H., & Pagès, J. M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. In FEMS Microbiology Reviews (Vol. 36, Issue 2, pp. 340–363). https://doi.org/10.1111/j.1574-6976.2011.00290.x | spa |
dc.relation.references | Nowakiewicz, A., Zięba, P., Gnat, S., & Matuszewski, Ł. (2020). Last call for replacement of antimicrobials in animal production: Modern challenges, opportunities, and potential solutions. In Antibiotics (Vol. 9, Issue 12, pp. 1–21). MDPI AG. https://doi.org/10.3390/antibiotics9120883 | spa |
dc.relation.references | Okolie, C. E., Wooldridge, K. G., Turner, D. P. J., Cockayne, A., & James, R. (2015). Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes. BMC Microbiology, 15(1). https://doi.org/10.1186/s12866-015-0490-9 | spa |
dc.relation.references | Olubisose, E. T., Ajayi, A., Adeleye, A. I., & Smith, S. I. (2021). Molecular and phenotypic characterization of efflux pump and biofilm in multi-drug resistant non-typhoidal Salmonella Serovars isolated from food animals and handlers in Lagos Nigeria. One Health Outlook, 3(1). https://doi.org/10.1186/s42522-021-00035-w | spa |
dc.relation.references | OMSA. (2022). Estrategia sobre la resistencia a los agentes antimicrobianos y su uso prudente Preservando la eficacia de los antimicrobianos. https://www.woah.org/app/uploads/2021/12/es-amr-strategy-2022-final-pages-1.pdf | spa |
dc.relation.references | O’Neill, J. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf | spa |
dc.relation.references | Organización de las Naciones Unidas para la Alimentación y la Agricultura, & O. M. de la Salud. (2023). PROGRAMA CONJUNTO FAO/OMS SOBRE NORMAS ALIMENTARIAS COMITÉ DEL CODEX SOBRE ADITIVOS ALIMENTARIOS. https://doi.org/10.5281/zenodo.4461577 | spa |
dc.relation.references | Organización Mundial de la Salud (OMS). (2018, February 20). Salmonella (no tifoidea). https://www.who.int/es/news-room/fact-sheets/detail/Salmonella -(non-typhoidal) | spa |
dc.relation.references | Pagès, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. In Nature Reviews Microbiology (Vol. 6, Issue 12, pp. 893–903). Nature Publishing Group. https://doi.org/10.1038/nrmicro1994 | spa |
dc.relation.references | Pallecchi, L., Lucchetti, C., Bartoloni, A., Bartalesi, F., Mantella, A., Gamboa, H., Carattoli, A., Paradisi, F., & Rossolini, G. M. (2007). Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrobial Agents and Chemotherapy, 51(4), 1179–1184. https://doi.org/10.1128/AAC.01101-06 | spa |
dc.relation.references | Panzenhagen, P. H. N., Aguiar, W. S., da Silva Frasão, B., de Almeida Pereira, V. L., da Costa Abreu, D. L., dos Prazeres Rodrigues, D., do Nascimento, E. R., & de Aquino, M. H. C. (2016). Prevalence and fluoroquinolones resistance of Campylobacter and Salmonella isolates from poultry carcasses in Rio de Janeiro, Brazil. Food Control, 61, 243–247. https://doi.org/10.1016/j.foodcont.2015.10.002 | spa |
dc.relation.references | Papatheodorou, S. A., Halvatsiotis, P., & Houhoula, D. (2021). A comparison of different dna extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiology, 7(3), 304–316. https://doi.org/10.3934/microbiol.2021019 | spa |
dc.relation.references | Patel, J. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313–321. https://doi.org/10.1054/modi.2001.29158 | spa |
dc.relation.references | Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(NOV). https://doi.org/10.3389/fmicb.2018.02928 | spa |
dc.relation.references | Piddock, L. J. V. (2006). O P I N I O N Multidrug-resistance efflux pumps-not just for resistance. www.nature.com/reviews/micro | spa |
dc.relation.references | Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. In Infection and Drug | spa |
dc.relation.references | Procura, F., Bueno, D. J., Bruno, S. B., & Rogé, A. D. (2019). Prevalence, antimicrobial resistance profile and comparison of methods for the isolation of Salmonella in chicken liver from Argentina. Food Research International, 119, 541–546. https://doi.org/10.1016/j.foodres.2017.08.008 | spa |
dc.relation.references | Public Health Agency of Canada. (2017). CANADIAN INTEGRATED PROGRAM FOR ANTIMICROBIAL RESISTANCE SURVEILLANCE (CIPARS). EDITIONS UNIVERSITAIRES E. | spa |
dc.relation.references | Pulido-Landínez, M. (2019). Food safety - Salmonella update in broilers. In Animal Feed Science and Technology (Vol. 250, pp. 53–58). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2019.01.008 | spa |
dc.relation.references | Pulido-Landínez, M., Sánchez-Ingunza, R., Guard, J., & Do Nascimento, V. P. (2014). Presence of Salmonella enteritidis and Salmonella gallinarum in commercial laying hens diagnosed with fowl typhoid disease in Colombia. Avian Diseases, 58(1), 165–170. https://doi.org/10.1637/10598-062613-Case.1 | spa |
dc.relation.references | Pulido-Landínez, M., Sánchez-Ingunza, R., Guard, J., & Nascimento, V. P. Do. (2013). Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in southern Brazil. Letters in Applied Microbiology, 57(4), 288–294. https://doi.org/10.1111/lam.12110 | spa |
dc.relation.references | Quino Sifuentes, W., Hurtado, C. V., Escalante-Maldonado, O., Flores-León, D., Mestanza, O., Vences-Rosales, F., Zamudio, M. L., & Gavilán, R. G. (2019). Multidrug resistance of Salmonella infantis in Peru: A study through next generation sequencing. Revista Peruana de Medicina Experimental y Salud Publica, 36(1), 37–45. https://doi.org/10.17843/rpmesp.2019.361.3934 | spa |
dc.relation.references | Rahn,’, K., De Grandis, S. A., Clarke, R. C., Mcewen, S. A., Galin, J. E., Ginocchio, ; C, Curtiss, R., & Gyles, C. L. (1992). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella . In Molecular and Cellular Probes (Vol. 6). | spa |
dc.relation.references | Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. | spa |
dc.relation.references | Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151–171. https://doi.org/10.1016/j.drup.2010.08.003 | spa |
dc.relation.references | Ramirez-Hernandez, A., Carrascal-Camacho, A. K., Varón-García, A., Brashears, M. M., & Sanchez-Plata, M. X. (2021). Genotypic characterization of antimicrobial resistant Salmonella spp. Strains from three poultry processing plants in colombia. Foods, 10(3), 1–17. https://doi.org/10.3390/foods10030491 | spa |
dc.relation.references | Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V., & Woodward, M. J. (2004). Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. Journal of Antimicrobial Chemotherapy, 53(2), 208–216. https://doi.org/10.1093/jac/dkh070 | spa |
dc.relation.references | Rebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J. A., Battisti, A., Franco, A., Alba, P., Perrin-Guyomard, A., Granier, S. A., de Frutos, C., Escobar, Malhotra-Kumar, S., Villa, L., … Hendriksen, R. S. (2018). Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance, 23(6). https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672 | spa |
dc.relation.references | Riesenfeld, C. S., Goodman, R. M., & Handelsman, J. (2004). Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environmental Microbiology, 6(9), 981–989. https://doi.org/10.1111/j.1462-2920.2004.00664.x | spa |
dc.relation.references | Rodríguez-Hernández, R., Bernal, J. F., Cifuentes, J. F., Fandiño, L. C., Herrera-Sánchez, M. P., Rondón-Barragán, I., & Garcia, N. V. (2021). Prevalence and molecular characterization of Salmonella isolated from broiler farms at the Tolima region—Colombia. Animals, 11(4). https://doi.org/10.3390/ani11040970 | spa |
dc.relation.references | Rodríguez-Rubio, L., Serna, C., Ares-Arroyo, M., Matamoros, B. R., Delgado-Blas, J. F., Montero, N., Bernabe-Balas, C., Wedel, E. F., Mendez, I. S., Muniesa, M., & Gonzalez-Zorn, B. (2020). Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. Journal of Antimicrobial Chemotherapy, 75(11), 3173–3180. https://doi.org/10.1093/jac/dkaa311 | spa |
dc.relation.references | Ruppé, E., Cherkaoui, A., Charretier, Y., Girard, M., Schicklin, S., Lazarevic, V., & Schrenzel, J. (2020). From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: a clinical perspective. Clinical Microbiology and Infection, 26(5), 643.e1-643.e7. https://doi.org/10.1016/j.cmi.2019.09.018 | spa |
dc.relation.references | Sandvang, D., Aarestrup, F. M., & Jensen, L. B. (1998). Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104 . FEMS Microbiology Letters, 160(1), 37–41. https://doi.org/10.1111/j.1574-6968.1998.tb12887.x | spa |
dc.relation.references | Shah, D. H., Paul, N. C., Sischo, W. C., Crespo, R., & Guard, J. (2017). Microbiology and food safety: Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Science, 96(3), 687–702. https://doi.org/10.3382/ps/pew342 | spa |
dc.relation.references | Shaji, S., Selvaraj, R. K., & Shanmugasundaram, R. (2023). Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. In Microorganisms (Vol. 11, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/microorganisms11112814 | spa |
dc.relation.references | Shanmugasamy, M., Velayutham, T., & Rajeswar, J. (2011). Inv a gene specific pcr for detection of Salmonella from broilers. Veterinary World, 4(12), 562–564. https://doi.org/10.5455/vetworld.2011.562-564 | spa |
dc.relation.references | Sommer, M. O. A., Church, G. M., & Dantas, G. (2010). The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence, 1(4), 299–303. https://doi.org/10.4161/viru.1.4.12010 | spa |
dc.relation.references | Sun, Y., Hu, X., Guo, D., Shi, C., Zhang, C., Peng, X., Yang, H., & Xia, X. (2019a). Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken. Microbial Drug Resistance, 25(5), 703–711. https://doi.org/10.1089/mdr.2018.0175 | spa |
dc.relation.references | Sun, Y., Hu, X., Guo, D., Shi, C., Zhang, C., Peng, X., Yang, H., & Xia, X. (2019b). Disinfectant resistance profiles and biofilm formation capacity of Escherichia coli isolated from retail chicken. Microbial Drug Resistance, 25(5), 703–711. https://doi.org/10.1089/mdr.2018.0175 | spa |
dc.relation.references | Tang, B., Elbediwi, M., Nambiar, R. B., Yang, H., Lin, J., & Yue, M. (2022). Genomic Characterization of Antimicrobial-Resistant Salmonella enterica in Duck, Chicken, and Pig Farms and Retail Markets in Eastern China. Microbiology Spectrum, 10(5). https://doi.org/10.1128/spectrum.01257-22 | spa |
dc.relation.references | Teklemariam, A. D., Al-Hindi, R. R., Albiheyri, R. S., Alharbi, M. G., Alghamdi, M. A., Filimban, A. A. R., Al Mutiri, A. S., Al-Alyani, A. M., Alseghayer, M. S., Almaneea, A. M., Albar, A. H., Khormi, M. A., & Bhunia, A. K. (2023a). Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. In Foods (Vol. 12, Issue 9). MDPI. https://doi.org/10.3390/foods12091756 | spa |
dc.relation.references | Teklu, D. S., Negeri, A. A., Legese, M. H., Bedada, T. L., Woldemariam, H. K., & Tullu, K. D. (2019). Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance and Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0488-4 | spa |
dc.relation.references | The United States Pharmacopeial Convention. (2007). Evidence Quality Evidence Type A Good evidence to support a recommendation for use B Moderate evidence to support a recommendation for use. | spa |
dc.relation.references | Tiedje, J. M., Wang, F., Manaia, C. M., Virta, M., Sheng, H., Ma, L., Zhang, T., & Topp, E. (2019). Antibiotic Resistance Genes in the Human-Impacted Environment: A One Health Perspective. Pedosphere, 29(3), 273–282. https://doi.org/10.1016/S1002-0160(18)60062-1 | spa |
dc.relation.references | Unlu, O., Aktas, Z., & Tugrul, H. M. (2018). Analysis of virulence factors and antimicrobial resistance in Salmonella using molecular techniques and identification of clonal relationships among the strains. Microbial Drug Resistance, 24(10), 1475–1482. https://doi.org/10.1089/mdr.2018.0042 | spa |
dc.relation.references | Usmael, B., Abraha, B., Alemu, S., Mummed, B., Hiko, A., & Abdurehman, A. (2022). Isolation, antimicrobial susceptibility patterns, and risk factors assessment of non-typhoidal Salmonella from apparently healthy and diarrheic dogs. BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-021-03135-x | spa |
dc.relation.references | Uyttendaele, M., Vanwildemeersch, K., & Debevere, J. (2003). Evaluation of real-time PCR vs automated ELISA and a conventional culture method using a semi-solid medium for detection of Salmonella . Letters in Applied Microbiology, 37(5), 386–391. https://doi.org/10.1046/j.1472-765X.2003.01415.x | spa |
dc.relation.references | Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt, D. J., & Olsen, J. E. (2000). Host adapted serotypes of Salmonella enterica. In Epidemiology and Infection (Vol. 125, Issue 2, pp. 229–255). https://doi.org/10.1017/S0950268899004379 | spa |
dc.relation.references | Van, T. T. H., Nguyen, H. N. K., Smooker, P. M., & Coloe, P. J. (2012). The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. In International Journal of Food Microbiology (Vol. 154, Issue 3, pp. 98–106). https://doi.org/10.1016/j.ijfoodmicro.2011.12.032 | spa |
dc.relation.references | Vargas-Alzate, C. A., Higuita-Gutiérrez, L. F., & Jiménez-Quiceno, J. N. (2019). Direct medical costs of urinary tract infections by gram-negative bacilli resistant to Beta-lactams in a tertiary care hospital, Medellín, Colombia. Biomedica, 39, 35–49. https://doi.org/10.7705/biomedica.v39i1.3981 | spa |
dc.relation.references | Velasquez, C. G., MacKlin, K. S., Kumar, S., Bailey, M., Ebner, P. E., Oliver, H. F., Martin-Gonzalez, F. S., & Singh, M. (2018). Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poultry Science, 97(6), 2144–2152. https://doi.org/10.3382/ps/pex449 | spa |
dc.relation.references | Venkat, H., Matthews, J., Lumadao, P., Caballero, B., Collins, J., Fowle, N., Kellis, M., Tewell, M., White, S., Hassan, R., Classon, A., Joung, Y., Komatsu, K., Weiss, J., Zusy, S., & Sunenshine, R. (2018). Salmonella enterica Serotype Javiana Infections Linked to a Seafood Restaurant in Maricopa County, Arizona, 2016. Journal of Food Protection, 81(8), 1283–1292. https://doi.org/10.4315/0362-028X.JFP-17-494 | spa |
dc.relation.references | Walker, R. A., Lindsay, E., Woodward, M. J., Ward, L. R., & Threlfall, E. J. (2001). Variation in Clonality and Antibiotic-Resistance Genes Among Multiresistant Salmonella enterica Serotype typhimurium Phage-Type U302 (MR U302) from Humans, Animals, and Foods. In MICROBIAL DRUG RESISTANCE (Vol. 7, Issue 1). Mary Ann Liebert, Inc. | spa |
dc.relation.references | Watkins, R. R., & Bonomo, R. A. (2020). Overview: The Ongoing Threat of Antimicrobial Resistance. In Infectious Disease Clinics of North America (Vol. 34, Issue 4, pp. 649–658). W.B. Saunders. https://doi.org/10.1016/j.idc.2020.04.002 | spa |
dc.relation.references | Weinstein, M. P. . (2018). Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute. | spa |
dc.relation.references | WHO Bacterial Priority Pathogens List. (2024). Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1 | spa |
dc.relation.references | Wibisono, F. M., Wibisono, F. J., Helmi Effendi, M., Plumeriastuti, H., Hidayatullah, A. R., Hartadi, E. B., & Sofiana, E. D. (2020). A Review of Salmonellosis on Poultry Farms: Public Health Importance. In Systematic Reviews in Pharmacy (Vol. 11, Issue 9). | spa |
dc.relation.references | Wilkens, S. (2015). Structure and mechanism of ABC transporters. F1000Prime Reports, 7. https://doi.org/10.12703/P7-14 | spa |
dc.relation.references | Wilson, A., Fox, E. M., Fegan, N., & Ípek Kurtböke, D. (2019). Comparative Genomics and Phenotypic Investigations into Antibiotic, Heavy Metal, and Disinfectant Susceptibilities of Salmonella enterica Strains Isolated in Australia. Frontiers in Microbiology, 10(JULY). https://doi.org/10.3389/fmicb.2019.01620 | spa |
dc.relation.references | Wilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. In Nature Reviews Microbiology (Vol. 12, Issue 1, pp. 35–48). https://doi.org/10.1038/nrmicro3155 | spa |
dc.relation.references | Woese, C. R. (1987). Bacterial Evolution. In MICROBIOLOGICAL REVIEWS (Vol. 51, Issue 2). https://journals.asm.org/journal/mr | spa |
dc.relation.references | Xu, Y., Zhou, X., Jiang, Z., Qi, Y., Ed-dra, A., & Yue, M. (2020). Epidemiological Investigation and Antimicrobial Resistance Profiles of Salmonella Isolated From Breeder Chicken Hatcheries in Henan, China. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00497 | spa |
dc.relation.references | Yamane, K., Wachino, J. I., Suzuki, S., & Arakawa, Y. (2008). Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrobial Agents and Chemotherapy, 52(4), 1564–1566. https://doi.org/10.1128/AAC.01137-07 | spa |
dc.relation.references | Yanestria, S. M., Rahmaniar, R. P., Wibisono, F. J., & Effendi, M. H. (2019). Detection of invA gene of Salmonella from milkfish (Chanos chanos) at Sidoarjo wet fish market, Indonesia, using polymerase chain reaction technique. Veterinary World, 12(1), 170–175. https://doi.org/10.14202/vetworld.2019.170-175 | spa |
dc.relation.references | Yin, Y., & Zhou, D. (2018). Organoid and enteroid modeling of Salmonella Infection. In Frontiers in Cellular and Infection Microbiology (Vol. 8, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fcimb.2018.00102 | spa |
dc.relation.references | Yu, F., Chen, Q., Yu, X., Pan, J., Li, Q., Yang, L., Chen, C., Zhuo, C., Li, X., Zhang, X., Huang, J., & Wang, L. (2011). High prevalence of plasmid-mediated quinolone resistance determinant aac(6′)-Ib-cr amongst Salmonella enterica serotype Typhimurium isolates from hospitalised paediatric patients with diarrhoea in China. International Journal of Antimicrobial Agents, 37(2), 152–155. https://doi.org/10.1016/j.ijantimicag.2010.10.021 | spa |
dc.relation.references | Zhang, A. N., Gaston, J. M., Dai, C. L., Zhao, S., Poyet, M., Groussin, M., Yin, X., Li, L. G., van Loosdrecht, M. C. M., Topp, E., Gillings, M. R., Hanage, W. P., Tiedje, J. M., Moniz, K., Alm, E. J., & Zhang, T. (2021). An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25096-3 | spa |
dc.relation.references | Zhang, C. Z., Ren, S. Q., Chang, M. X., Chen, P. X., Ding, H. Z., & Jiang, H. X. (2017). Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09151-y | spa |
dc.relation.references | Zhu, Y., Lai, H., Zou, L., Yin, S., Wang, C., Han, X., Xia, X., Hu, K., He, L., Zhou, K., Chen, S., Ao, X., & Liu, S. (2017). Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. International Journal of Food Microbiology, 259, 43–51. https://doi.org/10.1016/j.ijfoodmicro.2017.07.023 | spa |
dc.relation.references | Zishiri, O. T., Mkhize, N., & Mukaratirwa, S. (2016). Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from south Africa and Brazil. Onderstepoort Journal of Veterinary Research, 83(1). https://doi.org/10.4102/ojvr.v83i1.1067 | spa |
dc.relation.references | Zou, L., Meng, J., McDermott, P. F., Wang, F., Yang, Q., Cao, G., Hoffmann, M., & Zhao, S. (2014). Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. Journal of Antimicrobial Chemotherapy, 69(10), 2644–2649. https://doi.org/10.1093/jac/dku197 | spa |
dc.relation.references | Zurfuh, K., Poirel, L., Nordmann, P., Nüesch-Inderbinen, M., Hächler, H., & Stephan, R. (2016). Occurrence of the Plasmid-Borne mcr-1 Colistin Resistance Gene in Extended-Spectrum-Lactamase-Producing Enterobacteriaceae in River Water and Imported Vegetable Samples in Switzerland. In Antimicrobial Agents and Chemotherapy (Vol. 60, Issue 4, pp. 2594–2595). American Society for Microbiology. https://doi.org/10.1128/AAC.00066-16 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología | spa |
dc.subject.ddc | 590 - Animales | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.lemb | SALMONELOSIS EN ANIMALES | spa |
dc.subject.lemb | Salmonellosis in animals | eng |
dc.subject.lemb | ENFERMEDADES BACTERIANAS EN ANIMALES | spa |
dc.subject.lemb | Bacterial diseases in animals | eng |
dc.subject.lemb | BACTERIOLOGIA VETERINARIA | spa |
dc.subject.lemb | Veterinary bacteriology | eng |
dc.subject.lemb | INDUSTRIA AVICOLA | spa |
dc.subject.lemb | Poultry industry | eng |
dc.subject.lemb | CONTROL DE AVES DE CORRAL | spa |
dc.subject.lemb | Poultry inspection | eng |
dc.subject.proposal | Aves de corral | spa |
dc.subject.proposal | Resistencia antimicrobiana | spa |
dc.subject.proposal | Salmonelosis | spa |
dc.subject.proposal | Salud Pública | spa |
dc.subject.proposal | AMR | eng |
dc.subject.proposal | One Health | eng |
dc.subject.proposal | Poultry | eng |
dc.subject.proposal | Public health | eng |
dc.subject.proposal | Salmonellosis | eng |
dc.title | Caracterización fenotípica y genotípica de la resistencia antimicrobiana de aislamientos de Salmonella spp. provenientes de granjas avícolas | |
dc.title.translated | Phenotypic and genotypic characterization of antimicrobial resistance in Salmonella spp. isolates from poultry farms | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022359120.2025.pdf
- Tamaño:
- 2.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Salud y Producción Animal
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: