Mechanical characterization of the evolution and degeneration of skeletal muscle : an optical coherence tomography and computational simulation approaches

dc.contributor.advisorGarzon Alvarado, Diego Alexander
dc.contributor.advisorVaca González, Juan Jairo
dc.contributor.authorEscobar Huertas, Juan Felipe
dc.contributor.cvlacEscobar Huertas, Juan Felipe [0000079583#par]
dc.contributor.googlescholarEscobar Huertas, Juan Felipe [QncQh9IAAAAJ&hl=es]
dc.contributor.orcidEscobar Huertas, Juan Felipe [0000000299342523]
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2025-08-26T12:40:51Z
dc.date.available2025-08-26T12:40:51Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografías
dc.description.abstractA severe genetic pathology known as Duchenne muscular dystrophy (DMD) is typified by persistent inflammation, decreased muscle regeneration ability, and progressive muscle loss. With a focus on DMD, this thesis combines experimental and computational methods to gain a deeper understanding of muscle tissue behavior in both healthy and diseased settings. A review of Becker muscular dystrophy and DMD was carried out, emphasizing molecular dysfunctions and the potential of mathematical modeling in the creation of new treatments. To simulate muscle regeneration under degenerative stress, a finite element model was created, providing important information about how inflammation affects the muscle healing process. Optical Coherence Tomography (OCT), in particular, was implemented in this thesis as a non-destructive method for high-resolution morphological examination of muscle tissues. OCT ability to visualize muscle architecture and disease-induced alterations was validated against histology results when paired with various clearing agents. Additionally, the 3D strain distribution in both healthy and dystrophic muscles under mechanical stress was measured using Digital Volume Correlation (DVC). The results verify that DMD and control muscles differ significantly in their mechanical properties and structure. Overall, this research contributes to the field of muscle tissue engineering and regenerative medicine by advancing diagnostic methods and computational tools for evaluating soft tissue pathology and guiding therapeutic strategies.eng
dc.description.abstractUna patología genética conocida como distrofia muscular de Duchenne (DMD) se caracteriza por una inflamación persistente, una disminución en la capacidad de regeneración muscular y una pérdida progresiva del músculo. Con un enfoque en la DMD, esta tesis combina métodos experimentales y computacionales para obtener una comprensión más profunda del comportamiento del tejido muscular tanto en contextos sanos como patológicos. Se realizó una revisión sobre la distrofia muscular de Becker y la DMD, con énfasis en las disfunciones moleculares y el potencial del modelado matemático en el desarrollo de nuevos tratamientos. Para simular la regeneración muscular bajo estrés degenerativo, se creó un modelo de elementos finitos que proporciona información importante sobre cómo la inflamación afecta el proceso de regeneración muscular. En particular, la Tomografía de Coherencia Óptica (OCT) se implementó en esta tesis como un método no destructivo para el examen morfológico de alta resolución de tejidos musculares. La capacidad del OCT para visualizar la arquitectura muscular y las alteraciones inducidas por la enfermedad fue validada frente a resultados histológicos, junto con diversos agentes de aclaramiento. Además, se midió las deformaciones en 3D de músculos sanos y distróficos sometidos a esfuerzos mecánico mediante correlación volumétrica digital (DVC). Los resultados confirman que existen diferencias significativas entre los músculos con DMD y control en cuanto a sus propiedades mecánicas y estructura. ¿Esta investigación contribuye al campo de la ingeniería de tejidos musculares y la medicina regenerativa mediante el avance de métodos diagnósticos y herramientas computacionales para evaluar la patología de tejidos blandos y orientar estrategias terapéuticas (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ciencia y Tecnología de Materiales
dc.format.extentxvi, 153 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88463
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesA. Acosta Santamaría, V., García, M. F., Molimard, J., & Avril, S. (2020). Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography. Acta Biomaterialia, 102, 127–137. https://doi.org/10.1016/j.actbio.2019.11.049
dc.relation.referencesAartsma-Rus, A., Straub, V., Hemmings, R., Haas, M., Schlosser-Weber, G., Stoyanova-Beninska, V., Mercuri, E., Muntoni, F., Sepodes, B., Vroom, E., & Balabanov, P. (2017). Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Therapeutics, 27(5), 251–259. https://doi.org/10.1089/nat.2017.0682
dc.relation.referencesAcharya, U. R., Faust, O., Sree, S. V., Molinari, F., & Suri, J. S. (2012). ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Computer Methods and Programs in Biomedicine, 107(2), 233–241. https://doi.org/10.1016/j.cmpb.2011.10.001
dc.relation.referencesAcosta Santamaría, V. A., Flechas García, M., Molimard, J., & Avril, S. (2018). Three-Dimensional Full-Field Strain Measurements across a Whole Porcine Aorta Subjected to Tensile Loading Using Optical Coherence Tomography–Digital Volume Correlation. Frontiers in Mechanical Engineering, 4(March), 1–14. https://doi.org/10.3389/fmech.2018.00003
dc.relation.referencesAeffner, F., Faelan, C., Moore, S. A., Moody, A., & Black, J. C. (2018). Validation of a Muscle-Specific Tissue Image-Analysis Tool for Quantitative Assessment of Dystrophin Staining in Frozen Muscle Biopsies. Archives of Pathology and Laboratory Medicine, 143(2), 197–205. https://doi.org/10.5858/arpa.2017-0536-OA
dc.relation.referencesAlibhai, A. Y., Moult, E. M., Shahzad, R., Rebhun, C. B., Moreira-Neto, C., McGowan, M., Lee, D., Lee, B., Baumal, C. R., Witkin, A. J., Reichel, E., Duker, J. S., Fujimoto, J. G., & Waheed, N. K. (2018). Quantifying Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy. Ophthalmology Retina, 2(5), 418–427. https://doi.org/10.1016/j.oret.2017.09.011
dc.relation.referencesAllen, D. G., Whitehead, N. P., & Froehner, S. C. (2016). ABSENCE OF DYSTROPHIN DISRUPTS SKELETAL MUSCLE SIGNALING: ROLES OF Ca 2 , REACTIVE OXYGEN SPECIES, AND NITRIC OXIDE IN THE DEVELOPMENT OF MUSCULAR DYSTROPHY. Physiol Rev, 96, 253–305. https://doi.org/10.1152/physrev.00007.2015.-Dystrophin
dc.relation.referencesAmann, K. J., Renley, B. A., & Ervasti, J. M. (1998). A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. Journal of Biological Chemistry, 273(43), 28419–28423. https://doi.org/10.1074/jbc.273.43.28419
dc.relation.referencesAnderson, E. J., Neufer, P. D., Ethan, J., Neufer, P. D., & Ii, T. (2006). Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation. Am J Physiol Cell Physiol, 290, 844–851. https://doi.org/10.1152/ajpcell.00402.2005.
dc.relation.referencesAnna L. Emanuel, Rick I. Meijer, Erik van Poelgeest, Pien Spoor, Erik H. Serné, E. C. E. (2019). Contrast‐enhanced ultrasound for quantification of tissue perfusion in humans. Microcirculation, 27, 1–10. https://doi.org/10.1111/micc.12588
dc.relation.referencesAnoveros-Barrera, A., Bhullar, A. S., Stretch, C., Esfandiari, N., Dunichand-Hoedl, A. R., Martins, K. J. B., Bigam, D., Khadaroo, R. G., McMullen, T., Bathe, O. F., Damaraju, S., Skipworth, R. J., Putman, C. T., Baracos, V. E., & Mazurak, V. C. (2019). Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients. Journal of Cachexia, Sarcopenia and Muscle, 10(6), 1356–1377. https://doi.org/10.1002/jcsm.12466
dc.relation.referencesAnthony, K., Arechavala-Gomeza, V., Taylor, L. E., Vulin, A., Kaminoh, Y., Torelli, S., Feng, L., Janghra, N., Bonne, G., Beuvin, M., Barresi, R., Henderson, M., Laval, S., Lourbakos, A., Campion, G., Straub, V., Voit, T., Sewry, C. A., Morgan, J. E., … Muntoni, F. (2014). Dystrophin quantification: Biological and translational research implications. Neurology, 83(22), 2062–2069. https://doi.org/10.1212/WNL.0000000000001025
dc.relation.referencesAoki, Y., Yokota, T., Nagata, T., Nakamura, A., Tanihata, J., Saito, T., Duguez, S. M. R., Nagaraju, K., Hoffman, E. P., Partridge, T., & Takeda, S. (2012). Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13763–13768. https://doi.org/10.1073/pnas.1204638109
dc.relation.referencesArnold, L., Henry, A., Poron, F., Baba-Amer, Y., Van Rooijen, N., Plonquet, A., Gherardi, R. K., & Chazaud, B. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Experimental Medicine, 204(5), 1057–1069. https://doi.org/10.1084/jem.20070075
dc.relation.referencesAumann, S., Donner, S., Fischer, J., & Müller, F. (2019). Optical Coherence Tomography (OCT): Principle and Technical Realization. In J. Bille (Ed.), High Resolution Imaging in Microscopy and Ophthalmology (pp. 59–85). Springer International Publishing. https://doi.org/10.1007/978-3-030-16638-0_3
dc.relation.referencesBachrach, E., Li, S., Perez, A. L., Schienda, J., Liadaki, K., Volinski, J., Flint, A., Chamberlain, J., & Kunkel, L. M. (2004). Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3581–3586. https://doi.org/10.1073/pnas.0400373101
dc.relation.referencesBirnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., Clemens, P. R., Hadjiyannakis, S., Pandya, S., Street, N., Tomezsko, J., Wagner, K. R., Ward, L. M., & Weber, D. R. (2018). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. In The Lancet Neurology (Vol. 17, Issue 3, pp. 251–267). Lancet Publishing Group. https://doi.org/10.1016/S1474-4422(18)30024-3
dc.relation.referencesBiswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood, 107(5), 2112–2122. https://doi.org/10.1182/blood-2005-01-0428
dc.relation.referencesBlake, D. J., Tinsley, J. M., & Davies, K. E. (1996). Utrophin: A structural and functional comparison to dystrophin. In Brain Pathology (Vol. 6, Issue 1, pp. 37–47). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1750-3639.1996.tb00781.x
dc.relation.referencesBlake, D. J., Weir, A., Newey, S. E., & Davies, K. E. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiological Reviews, 82(2), 291–329. https://doi.org/10.1152/physrev.00028.2001
dc.relation.referencesBloom, E. T., Lee, A. H., & Elliott, D. M. (2021). Tendon Multiscale Structure, Mechanics, and Damage Are Affected by Osmolarity of Bath Solution. Annals of Biomedical Engineering, 49(3), 1058–1068. https://doi.org/10.1007/s10439-020-02649-z
dc.relation.referencesBogdanovich, S., Gardner, B. B., & McNally, E. M. (2017). Abnormal Muscle Pathology and Physiology. In J. L. Jefferies, B. C. Blaxall, J. Robbins, & J. A. Towbin (Eds.), Cardioskeletal Myopathies in Children and Young Adults (pp. 65–82). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800040-3.00004-2
dc.relation.referencesBongso, A., & Lee, E. H. (2005). Stem Cells : Their Definition, Classification and Sources. Stem Cells: From Bench To Bedside, 1–13. http://www.worldscibooks.com/lifesci/5729.html
dc.relation.referencesBonifasi-Lista, C., Lake, S. P., Small, M. S., & Weiss, J. A. (2005). Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. Journal of Orthopaedic Research, 23(1), 67–76. https://doi.org/10.1016/j.orthres.2004.06.002
dc.relation.referencesBorg, K., & Ensrud, E. (2020). Myopathies (J. K. S. T. D. R. Walter R. Frontera, Ed.). Elsevier,.
dc.relation.referencesBrooke, M. H., & Kaiser, K. K. (1970). Muscle Fiber Types: How Many and What Kind? Archives of Neurology, 23(4), 369–379. https://doi.org/10.1001/archneur.1970.00480280083010
dc.relation.referencesBrown, S. C., & Sewry, C. A. (2017). Basics of Skeletal Muscle Function and Normal Physiology. In J. L. Jefferies, B. C. Blaxall, J. Robbins, & J. A. Towbin (Eds.), Cardioskeletal Myopathies in Children and Young Adults (pp. 21–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800040-3.00002-9
dc.relation.referencesBuck, D., Smith, J. E., Chung, C. S., Ono, Y., Sorimachi, H., Labeit, S., & Granzier, H. L. (2014). Removal of immunoglobulin-like domains from titin’s spring segment alters titin splicing in mouse skeletal muscle and causes myopathy. Journal of General Physiology, 143(2), 215–230. https://doi.org/10.1085/jgp.201311129
dc.relation.referencesBudoff, M. J., Lee, H. S., Roy, S. K., & Shekar, C. (2023). Efficacy and Safety of Iodixanol in Computed Coronary Tomographic Angiography and Cardiac Catheterization. In Journal of Cardiovascular Development and Disease (Vol. 10, Issue 11, pp. 1–13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jcdd10110449
dc.relation.referencesBusse, M., Marciniszyn, J. P., Ferstl, S., Kimm, M. A., Pfeiffer, F., & Gulder, T. (2021a). 3D-Non-destructive Imaging through Heavy-Metal Eosin Salt Contrast Agents. Chemistry - A European Journal, 27(14), 4561–4566. https://doi.org/10.1002/chem.202005203
dc.relation.referencesBusse, M., Marciniszyn, J. P., Ferstl, S., Kimm, M. A., Pfeiffer, F., & Gulder, T. (2021b). 3D-Non-destructive Imaging through Heavy-Metal Eosin Salt Contrast Agents. Chemistry - A European Journal, 27(14), 4561–4566. https://doi.org/10.1002/chem.202005203
dc.relation.referencesC. Allyson Walker. (1999). BASIC SCIENCE REVIEW THE STRUCTURE AND FUNCTION OF THE CARDIAC MYOCYTE : A REVIEW OF FUNDAMENTAL CONCEPTS. The Journal of Thoracic and Cardiovascular Surgery, 375–382. https://doi.org/10.1016/S0022-5223(99)70233-3
dc.relation.referencesCaresio, C., Salvi, M., Molinari, F., Meiburger, K. M., & Minetto, M. A. (2017). Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement. Ultrasound in Medicine and Biology, 43(1), 195–205. https://doi.org/10.1016/j.ultrasmedbio.2016.08.032
dc.relation.referencesCarew, E. O., Garg, A., Barber, J. E., & Vesely, I. (2004). Stress Relaxation Preconditioning of Porcine Aortic Valves. In Annals of Biomedical Engineering (Vol. 32, Issue 4).
dc.relation.referencesCeniccola, G. D., Castro, M. G., Piovacari, S. M. F., Horie, L. M., Corrêa, F. G., Barrere, A. P. N., & Toledo, D. O. (2019). Current technologies in body composition assessment: advantages and disadvantages. Nutrition, 62, 25–31. https://doi.org/10.1016/j.nut.2018.11.028
dc.relation.referencesChazaud, B., Brigitte, M., Yacoub-Youssef, H., Arnold, L., Gherardi, R., Sonnet, C., Lafuste, P., & Chretien, F. (2009). Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exercise and Sport Sciences Reviews, 37(1), 18–22. https://doi.org/10.1097/JES.0b013e318190ebdb
dc.relation.referencesChen, S. E., Jin, B., & Li, Y. P. (2007). TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. American Journal of Physiology - Cell Physiology, 292(5), 1660–1671. https://doi.org/10.1152/ajpcell.00486.2006
dc.relation.referencesChen, W., & Kudryashev, M. (2020). Structure of RyR1 in native membranes. EMBO Reports, 21(5), 1–11. https://doi.org/10.15252/embr.201949891
dc.relation.referencesCohen, I. R., & Lambris, J. D. (2018). Advances in Experimental Medicine and Biology - Muscle Atrophy (J. Xiao, Ed.; Vol. 1088). Springer . http://www.springer.com/series/5584
dc.relation.referencesCornachione, A. S., Benedini-Elias, P. C. O., Polizello, J. C., Carvalho, L. C., & Mattiello-Sverzut, A. C. (2011). Characterization of fiber types in different muscles of the hindlimb in female weanling and adult wistar rats. Acta Histochemica et Cytochemica, 44(2), 43–50. https://doi.org/10.1267/ahc.10031
dc.relation.referencesCorrado, G., Lissoni, A., Beretta, S., Terenghi, L., Tadeo, G., Foglia-manzillo, G., & Tagliagambe, L. M. (2002). Prognostic Value of Electrocardiograms , Ventricular Late Potentials , Ventricular Arrhythmias , and Left Ventricular Duchenne Muscular Dystrophy. Am. J. Cardiol., 89(02), 838–841.
dc.relation.referencesCossu, G., & Sampaolesi, M. (2007). New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends in Molecular Medicine, 13(12), 520–526. https://doi.org/10.1016/j.molmed.2007.10.003
dc.relation.referencesCsapo, R., Gumpenberger, M., & Wessner, B. (2020). Skeletal Muscle Extracellular Matrix – What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. In Frontiers in Physiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fphys.2020.00253
dc.relation.referencesDall’Ara, E., & Tozzi, G. (2022). Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Frontiers in Bioengineering and Biotechnology, 10, 1–13. https://doi.org/10.3389/fbioe.2022.1010056
dc.relation.referencesDao Luong, M. N., Shimada, Y., Turkistani, A., Tagami, J., Sumi, Y., & Sadr, A. (2016). Fractography of interface after microtensile bond strength test using swept-source optical coherence tomography. Dental Materials, 32(7), 862–869. https://doi.org/10.1016/j.dental.2016.03.019
dc.relation.referencesDe Paepe, B., & De Bleecker, J. L. (2013). Cytokines and chemokines as regulators of skeletal muscle inflammation: Presenting the case of Duchenne muscular dystrophy. Mediators of Inflammation, 2013, 1–11. https://doi.org/10.1155/2013/540370
dc.relation.referencesDeisch, J. K. (2017). Muscle and Nerve Development in Health and Disease. In K. F. Swaiman, S. Ashwal, D. M. Ferriero, & N. F. Schor (Eds.), Swaiman’s Pediatric Neurology: Principles and Practice: Sixth Edition (pp. 1029–1037). Elsevier Inc. https://doi.org/10.1016/B978-0-323-37101-8.00135-1
dc.relation.referencesDell’Acqua, G., & Castiglione, F. (2009). Stability and phase transitions in a mathematical model of Duchenne muscular dystrophy. Journal of Theoretical Biology, 260(2), 283–289. https://doi.org/10.1016/j.jtbi.2009.05.037
dc.relation.referencesDelp, M., & Duan, C. (1996). Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. American Physiological Society, 1–10. www.physiology.org/journal/jappl
dc.relation.referencesDezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S. I., Ide, C., & Nabeshima, Y. I. (2005). Developmental biology: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309(5732), 314–317. https://doi.org/10.1126/science.1110364
dc.relation.referencesDieguez, L., Darwish, N., Mir, M., Martínez, E., Moreno, M., & Samitier, J. (2009). Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sensor Letters, 7(5), 851–855. https://doi.org/10.1166/sl.2009.1161
dc.relation.referencesDoenicke, A., Nebauer, A. E., Hoernecke, R., Mayer, M., & Roizen, M. F. (1992). Osmolalities of Propylene Glycol-Containing Drug Formulations for Parenteral Use. Should Propylene Glycol Be Used as a Solvent? International Anesthesia Research Society, 1–5. http://journals.lww.com/anesthesia-analgesia
dc.relation.referencesDowling, J. J., Weihl, C. C., & Spencer, M. J. (2021). Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nature Reviews Molecular Cell Biology, 22(11), 713–732. https://doi.org/10.1038/s41580-021-00389-z
dc.relation.referencesDuan, D., Goemans, N., Takeda, S., Mercuri, E., & Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7, 1–19. https://doi.org/10.1038/s41572-021-00248-3
dc.relation.referencesDubuisson, N., Versele, R., Planchon, C., Selvais, C. M., Noel, L., Abou-Samra, M., & Davis-López de Carrizosa, M. A. (2022). Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 23(24), 1–38. https://doi.org/10.3390/ijms232416080
dc.relation.referencesDumont, N. A., Bentzinger, C. F., Sincennes, M. C., & Rudnicki, M. A. (2015). Satellite cells and skeletal muscle regeneration. Comprehensive Physiology, 5(3), 1027–1059. https://doi.org/10.1002/cphy.c140068
dc.relation.referencesDumont, N., Bouchard, P., & Frenette, J. (2008). Neutrophil-induced skeletal muscle damage: A calculated and controlled response following hindlimb unloading and reloading. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 295(6), 1831–1839. https://doi.org/10.1152/ajpregu.90318.2008
dc.relation.referencesDuque, G. A., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5(OCT), 1–13. https://doi.org/10.3389/fimmu.2014.00491
dc.relation.referencesDzierlega, K., & Yokota, T. (2020). Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Therapy, 27(9), 407–416. https://doi.org/10.1038/s41434-020-0156-6
dc.relation.referencesEagle, M. (2002). Report on the Muscular Dystrophy Campaign workshop: Exercise in neuromuscular diseases Newcastle, January 2002. Neuromuscular Disorders, 12(10), 975–983. https://doi.org/10.1016/S0960-8966(02)00136-0
dc.relation.referencesEl Bojairami, I., & Driscoll, M. (2022). Correlating Skeletal Muscle Output Force and Intramuscular Pressure Via a Three-Dimensional Finite Element Muscle Model. Journal of Biomechanical Engineering, 144(4), 1–10. https://doi.org/10.1115/1.4052885
dc.relation.referencesErvasti, J. M., & Sonnemann, K. J. (2008). Biology of the Striated Muscle Dystrophin-Glycoprotein Complex. International Review of Cytology, 265(07), 191–225. https://doi.org/10.1016/S0074-7696(07)65005-0
dc.relation.referencesEscobar-Huertas, J. F., Vaca-González, J. J., Garzón-Alvarado, D. A., & Trabelsi, O. (2024). Effect of iodixanol and propylene glycol as clearing agents in extensor digitorum longus and soleus muscles: mechanical and morphological characterization using the optical coherence tomography technique. Biomater. Sci., 5295–5310. https://doi.org/10.1039/D4BM00207E
dc.relation.referencesEscobar-Huertas, J. F., Vaca-González, J. J., Guevara, J. M., Ramirez-Martinez, A. M., Trabelsi, O., & Garzón-Alvarado, D. A. (2024). Duchenne and Becker muscular dystrophy: Cellular mechanisms, image analysis, and computational models: A review. In Cytoskeleton (pp. 1–18). John Wiley and Sons Inc. https://doi.org/10.1002/cm.21826
dc.relation.referencesFerreira, D. M. S., Cheng, A. J., Agudelo, L. Z., Cervenka, I., Chaillou, T., Correia, J. C., Porsmyr-Palmertz, M., Izadi, M., Hansson, A., Martínez-Redondo, V., Valente-Silva, P., Pettersson-Klein, A. T., Estall, J. L., Robinson, M. M., Nair, K. S., Lanner, J. T., & Ruas, J. L. (2019). LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force. Skeletal Muscle, 9(1), 1–19. https://doi.org/10.1186/s13395-019-0214-1
dc.relation.referencesFilippin, L. I., Cuevas, M. J., Lima, E., Marroni, N. P., Gonzalez-Gallego, J., & Xavier, R. M. H. (2011). Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide - Biology and Chemistry, 24(1), 43–49. https://doi.org/10.1016/j.niox.2010.11.003
dc.relation.referencesFilosto, M., Tonin, P., Vattemi, G., Bertolasi, L., & Simonati, A. (2007). The role of muscle biopsy in investigating isolated muscle pain. NEUROLOGY, 68(3), 181–186. https://doi.org/10.1212/01.wnl.0000252252.29532.cc
dc.relation.referencesFinsterer, J. (2003). The Heart in Human Dystrophinopathies. Cardiology, 1–19. https://doi.org/10.1159/000068446
dc.relation.referencesFlanigan, K. M. (2014). Duchenne and Becker Muscular Dystrophies. Neurologic Clinics of NA, 32(3), 671–688. https://doi.org/10.1016/j.ncl.2014.05.002
dc.relation.referencesFlanigan, K. M., Campbell, K., Viollet, L., Wang, W., Gomez, A. M., Walker, C. M., & Mendell, J. R. (2013). Anti-dystrophin T cell responses in duchenne muscular dystrophy: Prevalence and a glucocorticoid treatment effect. Human Gene Therapy, 24(9), 797–806. https://doi.org/10.1089/hum.2013.092
dc.relation.referencesFlanigan, K. M., Dunn, D., Niederhausern, A. Von, Soltanzadeh, P., Gappmaier, E., Howard, M. T., Sampson, J., Mendell, J., King, W., Pestronk, A., Florence, J., Connolly, A., & Katherine, D. (2012). Mutational Spectrum of DMD Mutations in Dystrophinopathy Patients: Application of Modern Diagnostic Techniques to a Large Cohort. Hum Mutat., 30(12), 1657–1666. https://doi.org/10.1002/humu.21114.Mutational
dc.relation.referencesForcina, L., Cosentino, M., & Musarò, A. (2020). Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. In Cells (Vol. 9, Issue 5, pp. 1–28). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cells9051297
dc.relation.referencesFortin, M., Videman, T., Gibbons, L. E., & Battie, M. C. (2014). Paraspinal Muscle Morphology and Composition: A 15-yr Longitudinal Magnetic Resonance Imaging Study. MEDICINE & SCIENCE IN SPORTS & EXERCISE, 893–901. https://doi.org/10.1249/MSS.0000000000000179
dc.relation.referencesFowles, J. R., Banton, M. I., & Pottenger, L. H. (2013). A toxicological review of the propylene glycols. In Critical Reviews in Toxicology (Vol. 43, Issue 4, pp. 363–390). https://doi.org/10.3109/10408444.2013.792328
dc.relation.referencesFrenette, J., Cai, B., & Tidball, J. G. (2000). Complement activation promotes muscle inflammation during modified muscle use. American Journal of Pathology, 156(6), 2103–2110. https://doi.org/10.1016/S0002-9440(10)65081-X
dc.relation.referencesFrontera, W. R., & Ochala, J. (2015). Skeletal Muscle : A Brief Review of Structure and Function. Calcif Tissue Int, 183–195. https://doi.org/10.1007/s00223-014-9915-y
dc.relation.referencesFu, J., Pierron, F., & Ruiz, P. D. (2013). Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation. Journal of Biomedical Optics, 1–17. https://doi.org/10.1117/1.JBO
dc.relation.referencesGao, Q. Q., & McNally, E. M. (2015). The dystrophin complex: Structure, function, and implications for therapy. Comprehensive Physiology, 5(3), 1223–1239. https://doi.org/10.1002/cphy.c140048
dc.relation.referencesGarzón-Alvarado, D. A. (2012). Examples of the effect of growth and strain on turing pattern formation dynamics. International Journal of Bifurcation and Chaos, 22(2), 1–15. https://doi.org/10.1142/S0218127412500393
dc.relation.referencesGaunt, I. F., Carpanini, F. M. B., Grasso, P., & Lansdow, A. B. G. (1972). Long-term Toxicity of Propylene Glycol in Rats. Fd Cosmet. Toxicol, 10, 151–162.
dc.relation.referencesGenina, E. A., Bashkatov, A. N., Kozintseva, M. D., & Tuchin, V. V. (2016). OCT Study of Optical Clearing of Muscle Tissue in vitro with 40% Glucose Solution. Optics and Spectroscopy (English Translation of Optika i Spektroskopiya), 120(1), 20–27. https://doi.org/10.1134/S0030400X16010082
dc.relation.referencesGenina, E. A., Bashkatov, A. N., & Tuchin, V. V. (2010). Tissue optical immersion clearing. In Expert Review of Medical Devices (Vol. 7, Issue 6, pp. 825–842). https://doi.org/10.1586/erd.10.50
dc.relation.referencesGentili, C., & Cancedda, R. (2009). Cartilage and Bone Extracellular Matrix. Current Pharmaceutical Design, 15, 1334–1348. https://doi.org/10.2174/138161209787846739
dc.relation.referencesGiovarelli, M., Arnaboldi, F., Zecchini, S., Cornaghi, L. B., Nava, A., Sommariva, M., Clementi, E. G. I., & Gagliano, N. (2022). Characterisation of Progressive Skeletal Muscle Fibrosis in the Mdx Mouse Model of Duchenne Muscular Dystrophy: An In Vivo and In Vitro Study. International Journal of Molecular Sciences, 23(15), 1–17. https://doi.org/10.3390/ijms23158735
dc.relation.referencesGordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3(1), 23–35. https://doi.org/10.1038/nri978
dc.relation.referencesGramolini, A. O., Wu, J. U. N., & Jasmin, B. J. (2000). Regulation and Functional Significance of Utrophin Expression at the Mammalian Neuromuscular Synapse. MICROSCOPY RESEARCH AND TECHNIQUE, 100(May 1999), 90–100.
dc.relation.referencesGrasa, J., Ramírez, A., Osta, R., Muñoz, M. J., Soteras, F., & Calvo, B. (2011). A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomechanics and Modeling in Mechanobiology, 10(5), 779–787. https://doi.org/10.1007/s10237-010-0273-z
dc.relation.referencesGreenberg, S. A. (2012). Pathogenesis and therapy of inclusion body myositis. In Current Opinion in Neurology (Vol. 25, Issue 5, pp. 630–639). https://doi.org/10.1097/WCO.0b013e328357f211
dc.relation.referencesGrzelkowska-Kowalczyk, K. (2016). The Importance of Extracellular Matrix in Skeletal Muscle Development and Function. In Composition and Function of the Extracellular Matrix in the Human Body. InTech. https://doi.org/10.5772/62230
dc.relation.referencesGuo, X., Guo, Z., Wei, H., Yang, H., He, Y., Xie, S., Wu, G., Deng, X., Zhao, Q., & Li, L. (2011). In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Photochemistry and Photobiology, 87(3), 734–740. https://doi.org/10.1111/j.1751-1097.2011.00908.x
dc.relation.referencesGuth, L., & Samaha, F. J. (1969). Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Experimental Neurology, 25(1), 138–152. https://doi.org/10.1016/0014-4886(69)90077-6
dc.relation.referencesHakim, C. H., Grange, R. W., & Duan, D. (2011). The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2-to 20-mo-old mdx mice. Journal of Applied Physiology, 110(6), 1656–1663. https://doi.org/10.1152/japplphysiol.01425.2010
dc.relation.referencesHappi Mbakam, C., Lamothe, G., & Tremblay, J. P. (2022). Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 9, 1–19. https://doi.org/10.3389/fmed.2022.859930
dc.relation.referencesHegde, M. R., Chin, E. L. H., Mulle, J. G., Okou, D. T., Warren, S. T., & Zwick, M. E. (2008). Microarray-based mutation detection in the dystrophin gene. Human Mutation, 29(9), 1091–1099. https://doi.org/10.1002/humu.20831
dc.relation.referencesHelderman-van den Enden, A. T. J. M., Straathof, C. S. M., Aartsma-Rus, A., den Dunnen, J. T., Verbist, B. M., Bakker, E., Verschuuren, J. J. G. M., & Ginjaar, H. B. (2010). Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients. Neuromuscular Disorders, 20(4), 251–254. https://doi.org/10.1016/j.nmd.2010.01.013
dc.relation.referencesHelliwell, T. R., Nguyen thi, M., Morris, G. E., & Davies, K. E. (1992). The dystrophin-related protein, utrophin, is expressed on the sarcolemma of regenerating human skeletal muscle fibres in dystrophies and inflammatory myopathies. Neuromuscular Disorders, 2(3), 177–184. https://doi.org/10.1016/0960-8966(92)90004-P
dc.relation.referencesHernández, N., De Sanctis, J. B., Losada, M., Torres, S. H., Sosa, A., & Rivas, M. (2011). Estrés oxidativo en los músculos soleo y extensor digitorum longus (EDL) de ratas espontáneamente hipertensas. Invest Clin, 52(3), 239–251.
dc.relation.referencesHernández-Gascón, B., Grasa, J., Calvo, B., & Rodríguez, J. F. (2013). A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. Journal of Theoretical Biology, 335, 108–118. https://doi.org/10.1016/j.jtbi.2013.06.029
dc.relation.referencesHild, F., Roux, S., Bernard, D., Hauss, G., & Rebai, M. (2013). On the use of 3D images and 3D displacement measurements for the analysis of damage mechanisms in concrete-like materials. 1–13. https://www.researchgate.net/publication/281752065
dc.relation.referencesHimič, V., & Davies, K. E. (2021). Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. European Journal of Human Genetics, 29(9), 1369–1376. https://doi.org/10.1038/s41431-021-00811-2
dc.relation.referencesHolzapfel, G. A. . (2001). Nonlinear solid mechanics : a continuum approach for engineering. John Wiley & Sons.
dc.relation.referencesHoppeler, H. (1990). THE RANGE OF MITOCHONDRIAL ADAPTATION IN MUSCLE FIBERS. Walter de Gruyter & Co, 1–20. https://doi.org/10.1515/9783110884784-045
dc.relation.referencesHuard, Johnny; Li, Yong, MD; Fu, F. H. M. (2002). Muscle Injuries and Repair: Current Trends in Research. The Journal of Bone & Joint Surgery, 84. https://doi.org/10.2106/00004623-200205000-00022
dc.relation.referencesHuynh, A. M., Aubin, C. E., Mathieu, P. A., & Labelle, H. (2007). Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clinical Biomechanics, 22(4), 392–399. https://doi.org/10.1016/j.clinbiomech.2006.11.010
dc.relation.referencesIm, K., Mareninov, S., Diaz, M. F. P., & Yong, W. H. (2019). An introduction to performing immunofluorescence staining. In Methods in Molecular Biology (Vol. 1897, pp. 299–311). Humana Press Inc. https://doi.org/10.1007/978-1-4939-8935-5_26
dc.relation.referencesIsraelsen, N. M., Petersen, C. R., Barh, A., Jain, D., Jensen, M., Hannesschläger, G., Tidemand-Lichtenberg, P., Pedersen, C., Podoleanu, A., & Bang, O. (2019). Real-time high-resolution mid-infrared optical coherence tomography. Light: Science and Applications, 8(1). https://doi.org/10.1038/s41377-019-0122-5
dc.relation.referencesIyer, P. S., Mavoungou, L. O., Ronzoni, F., Zemla, J., Schmid-Siegert, E., Antonini, S., Neff, L. A., Dorchies, O. M., Jaconi, M., Lekka, M., Messina, G., & Mermod, N. (2018). Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Molecular Therapy, 26(4), 1093–1108. https://doi.org/10.1016/j.ymthe.2018.01.021
dc.relation.referencesJanghra, N., Morgan, J. E., Sewry, C. A., Wilson, F. X., Davies, K. E., Muntoni, F., & Tinsley, J. (2016). Correlation of utrophin levels with the dystrophin protein complex and muscle fibre regeneration in duchenne and becker muscular dystrophy muscle biopsies. PLoS ONE, 11(3), 1–18. https://doi.org/10.1371/journal.pone.0150818
dc.relation.referencesJani, A., Lochmiiller",’, H., Acsadi, G., Simoneaub, M., Huard, J., Garnierb, A., Karpati, G., & Massieb, B. (1997). Generation, validation, and large scale production of adenoviral recombinants with large size inserts such as a 6.3 kb human dystrophin cDNA. In Journal of Virological Methods ELSEVIER Journal of Virological Methods (Vol. 64).
dc.relation.referencesJAVAN, R., HORVATH, J. J., CASE, L. E., AUSTIN, S., CORDERI, J., DUBROVSKY, A., KISHNANI, 4 PRIYA S., & BASHIR, M. R. (2013). GENERATING COLOR-CODED ANATOMIC MUSCLE MAPS FOR CORRELATION OF QUANTITATIVE MAGNETIC RESONANCE IMAGING ANALYSIS WITH CLINICAL EXAMINATION IN NEUROMUSCULAR DISORDERS. Muscle Nerve, August, 293–295. https://doi.org/10.1002/mus.23780
dc.relation.referencesJeyakumar Sakthila, N. Smith Annette, E. Schleis Stephanie, C. Cattley Russell, Tillson D. Michael, & Henderson Ralph A. (2015). Effect of histologic processing on dimensions of skin. American Journal of Veterinary Research, 76, 939–945.
dc.relation.referencesJo, S. H., Youn, T. J., Koo, B. K., Park, J. S., Kang, H. J., Cho, Y. S., Chung, W. Y., Joo, G. W., Chae, I. H., Choi, D. J., Oh, B. H., Lee, M. M., Park, Y. B., & Kim, H. S. (2006). Renal Toxicity Evaluation and Comparison Between Visipaque (Iodixanol) and Hexabrix (Ioxaglate) in Patients With Renal Insufficiency Undergoing Coronary Angiography. The RECOVER Study: A Randomized Controlled Trial. Journal of the American College of Cardiology, 48(5), 924–930. https://doi.org/10.1016/j.jacc.2006.06.047
dc.relation.referencesJohansson, T., Meier, P., & Blickhan, R. (2000). A finite-element model for the mechanical analysis of skeletal muscles. Journal of Theoretical Biology, 206(1), 131–149. https://doi.org/10.1006/jtbi.2000.2109
dc.relation.referencesKami, K., & Senba, E. (2002). In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. Journal of Histochemistry and Cytochemistry, 50(12), 1579–1589. https://doi.org/10.1177/002215540205001202
dc.relation.referencesKammoun, M., Cassar-Malek, I., Meunier, B., & Picard, B. (2014). A simplified immunohistochemical classification of skeletal muscle fibres in mouse. European Journal of Histochemistry, 58(2), 163–168. https://doi.org/10.4081/ejh.2014.2254
dc.relation.referencesKarpati, G., Hilton-Jones, D., Bushby, K., & Griggs, R. C. (2010). Disorders of Voluntary Muscle (G. Karpati, D. Hilton-Jones, K. Bushby, & R. C. Griggs, Eds.). Cambridge University Press.
dc.relation.referencesKarpati George, Stirling Carpenter, Morris Glenn, Davies KAy, Claude guerin, & Holland Paul. (1993). Localization and quantification of the chromosome 6-encoded dystrophin-related protein in normal and pathological human muscle. Journal of Neuropathology and Experimental Neurology , 52, 119–128. http://jnen.oxfordjournals.org/
dc.relation.referencesKeating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10(6), 709–716. https://doi.org/10.1016/j.stem.2012.05.015
dc.relation.referencesKennedy, T. L., Moir, L., Hemming, S., Edwards, B., Squire, S., Davies, K., & Guiraud, S. (2017). Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle. Skeletal Muscle, 7(1), 22. https://doi.org/10.1186/s13395-017-0139-5
dc.relation.referencesKeyes, S. D., Gillard, F., Soper, N., Mavrogordato, M. N., Sinclair, I., & Roose, T. (2016). Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation. Journal of Biomechanics, 49(9), 1802–1811. https://doi.org/10.1016/j.jbiomech.2016.04.023
dc.relation.referencesKhuu, S., Fernandez, J. W., & Handsfield, G. G. (2021). A Coupled Mechanobiological Model of Muscle Regeneration In Cerebral Palsy. Frontiers in Bioengineering and Biotechnology, 9, 1–17. https://doi.org/10.3389/fbioe.2021.689714
dc.relation.referencesKojouharov, H. V., Chen-Charpentier, B. M., Solis, F. J., Biguetti, C., & Brotto, M. (2021). A simple model of immune and muscle cell crosstalk during muscle regeneration. Mathematical Biosciences, 333, 1–21. https://doi.org/10.1016/j.mbs.2021.108543
dc.relation.referencesKora, P., Ooi, C. P., Faust, O., Raghavendra, U., Gudigar, A., Chan, W. Y., Meenakshi, K., Swaraja, K., Plawiak, P., & Rajendra Acharya, U. (2022). Transfer learning techniques for medical image analysis: A review. In Biocybernetics and Biomedical Engineering (Vol. 42, Issue 1, pp. 79–107). Elsevier B.V. https://doi.org/10.1016/j.bbe.2021.11.004
dc.relation.referencesKornegay, J. N., Bogan, J. R., Bogan, D. J., Childers, M. K., Li, J., Nghiem, P., Detwiler, D. A., Larsen, C. A., Grange, R. W., Bhavaraju-Sanka, R. K., Tou, S., Keene, B. P., Howard, J. F., Wang, J., Fan, Z., Schatzberg, S. J., Styner, M. A., Flanigan, K. M., Xiao, X., & Hoffman, E. P. (2012). Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mammalian Genome, 23(1–2), 85–108. https://doi.org/10.1007/s00335-011-9382-y
dc.relation.referencesKratkiewicz, K., Pattyn, A., Alijabbari, N., & Mehrmohammadi, M. (2022). Ultrasound and Photoacoustic Imaging of Breast Cancer: Clinical Systems, Challenges, and Future Outlook. Journal of Clinical Medicine, 11(5), 1–19. https://doi.org/10.3390/jcm11051165
dc.relation.referencesKuthe, C. D., & Uddanwadiker, R. V. (2016). Investigation of effect of fiber orientation on mechanical behavior of skeletal muscle. Journal of Applied Biomaterials and Functional Materials, 14(2), e154–e162. https://doi.org/10.5301/jabfm.5000275
dc.relation.referencesLapierre-Landry, M., Gordon, A. Y., Penn, J. S., & Skala, M. C. (2017). In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-10050-5
dc.relation.referencesLarin, K. V., Ghosn, M. G., Bashkatov, A. N., Genina, E. A., Trunina, N. A., & Tuchin, V. V. (2012). Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. In IEEE Journal on Selected Topics in Quantum Electronics (Vol. 18, Issue 3, pp. 1244–1259). https://doi.org/10.1109/JSTQE.2011.2181991
dc.relation.referencesLe Fournis, C., Jeanneau, C., Giraud, T., El Karim, I., Lundy, F. T., & About, I. (2021). Fibroblasts Control Macrophage Differentiation during Pulp Inflammation. Journal of Endodontics, 47(9), 1427–1434. https://doi.org/10.1016/j.joen.2021.06.015
dc.relation.referencesLewis, R. A. (2004). Medical phase contrast x-ray imaging: Current status and future prospects. In Physics in Medicine and Biology (Vol. 49, Issue 16, pp. 3573–3583). https://doi.org/10.1088/0031-9155/49/16/005
dc.relation.referencesLi, C., & Samulski, R. J. (2020). Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, 21(4), 255–272. https://doi.org/10.1038/s41576-019-0205-4
dc.relation.referencesLi, D., & Wu, M. (2021). Pattern recognition receptors in health and diseases. In Signal Transduction and Targeted Therapy (Vol. 6, Issue 1, pp. 1–24). Springer Nature. https://doi.org/10.1038/s41392-021-00687-0
dc.relation.referencesLieber, R. L., & Ward, S. R. (2013). Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. J Physiol Cell Physiol, 305, 241–252. https://doi.org/10.1152/ajpcell.00173.2013.-Skeletal
dc.relation.referencesLim, K. R. Q., Echigoya, Y., Nagata, T., Kuraoka, M., Kobayashi, M., Aoki, Y., Partridge, T., Maruyama, R., Takeda, S., & Yokota, T. (2019). Efficacy of Multi-exon Skipping Treatment in Duchenne Muscular Dystrophy Dog Model Neonates. Molecular Therapy, 27(1), 76–86. https://doi.org/10.1016/j.ymthe.2018.10.011
dc.relation.referencesLin, H. T., Otsu, M., & Nakauchi, H. (2013). Stem cell therapy: An exercise in patience and prudence. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609), 1–15. https://doi.org/10.1098/rstb.2011.0334
dc.relation.referencesLiu, N., & Bassel-Duby, R. (2019). Molecular Basis of Muscle Disease. Muscle Gene Therapy, Second Edition, 13–39. https://doi.org/10.1007/978-3-030-03095-7_2
dc.relation.referencesLiu, Z., Yeung, K., & Liu, Z. (2008). The Preconditioning and Stress Relaxation of Skin Tissue. Journal of Biomedical & Pharmaceutical Engineering, 2, 22–28.
dc.relation.referencesLopez, M. A., Bontiff, S., Adeyeye, M., Shaibani, A. I., Alexander, M. S., Wynd, S., & Boriek, A. M. (2021). Mechanics of dystrophin deficient skeletal muscles in very young mice and effects of age. American Journal of Physiology - Cell Physiology, 321(2), C230–C246. https://doi.org/10.1152/ajpcell.00155.2019
dc.relation.referencesLovering, R. M., Porter, N. C., & Block, R. J. (2005). The muscular dystrophies: From genes to therapies. Physical Therapy, 85(12), 1372–1388. https://doi.org/10.1093/ptj/85.12.1372
dc.relation.referencesMadi, K., Tozzi, G., Zhang, Q. H., Tong, J., Cossey, A., Au, A., Hollis, D., & Hild, F. (2013). Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Medical Engineering and Physics, 35(9), 1298–1312. https://doi.org/10.1016/j.medengphy.2013.02.001
dc.relation.referencesMaeda, E., Ando, Y., Takeshita, K., & Matsumoto, T. (2022). Through the cleared aorta: three-dimensional characterization of mechanical behaviors of rat thoracic aorta under intraluminal pressurization using optical clearing method. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-12429-5
dc.relation.referencesMaeda, E., Kuroyanagi, K., & Matsumoto, T. (2021). Microscopic characterisation of local strain field in healing tissue in the central third defect of mouse patellar tendon at early-phase of healing. Journal of the Mechanical Behavior of Biomedical Materials, 123. https://doi.org/10.1016/j.jmbbm.2021.104702
dc.relation.referencesMaffioletti, S. M., Noviello, M., English, K., & Tedesco, F. S. (2014). Stem cell transplantation for muscular dystrophy: The challenge of immune response. BioMed Research International, 2014, 1–12. https://doi.org/10.1155/2014/964010
dc.relation.referencesMahdian, M., Salehi, H. S., Lurie, A. G., Yadav, S., & Tadinada, A. (2016). Tissue characterization using optical coherence tomography and cone beam computed tomography: A comparative pilot study. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 122(1), 98–103. https://doi.org/10.1016/j.oooo.2016.03.021
dc.relation.referencesMahdy, M. A. A. (2019). Skeletal muscle fibrosis: an overview. Cell and Tissue Research, 375(3), 575–588. https://doi.org/10.1007/s00441-018-2955-2
dc.relation.referencesMaillet, M., Kammoun, M., Avril, S., Ho Ba Tho, M.-C., & Trabelsi, O. (2023). Non-destructive Characterization of Skeletal Muscle Extracellular Matrix Morphology by Combining Optical Coherence Tomography (OCT) Imaging with Tissue Clearing. Annals of Biomedical Engineering, 1–14. https://doi.org/10.1007/s10439-023-03274-2
dc.relation.referencesMantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686. https://doi.org/10.1016/j.it.2004.09.015
dc.relation.referencesManzur, A. Y., Kinali, M., & Muntoni, F. (2008). Update on the management of Duchenne muscular dystrophy. Archives of Disease in Childhood, 93(11), 986–990. https://doi.org/10.1136/adc.2007.118141
dc.relation.referencesMarden, F. A., Connolly, A. M., Siegel, M. J., & Rubin, D. A. (2005). Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal Radiology, 34(3), 140–148. https://doi.org/10.1007/s00256-004-0825-3
dc.relation.referencesMareedu, S., Million, E. D., Duan, D., & Babu, G. J. (2021). Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. In Frontiers in Physiology (Vol. 12, pp. 1–19). Frontiers Media S.A. https://doi.org/10.3389/fphys.2021.647010
dc.relation.referencesMartin, K. S., Blemker, S. S., & Peirce, S. M. (2015). Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. Journal of Applied Physiology, 118(10), 1299–1309. https://doi.org/10.1152/japplphysiol.01150.2014
dc.relation.referencesMartin, K. S., Kegelman, C. D., Virgilio, K. M., Passipieri, J. A., Christ, G. J., Blemker, S. S., & Peirce, S. M. (2016). In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Annals of Biomedical Engineering, 45(3), 747–760. https://doi.org/10.1007/s10439-016-1707-2
dc.relation.referencesMartin, K. S., Virgilio, K. M., Peirce, S. M., & Blemker, S. S. (2016). Computational modeling of muscle regeneration and adaptation to advance muscle tissue regeneration strategies. Cells Tissues Organs, 202(3–4), 250–266. https://doi.org/10.1159/000443635
dc.relation.referencesMarzuca-Nassr, G. N., Vitzel, K. F., Mancilla-Solorza, E., & Márquez, J. L. (2018). Sarcomere Structure : The Importance of Desmin Protein in Muscle Atrophy. Int. J. Morphol, 36(2), 576–583. https://doi.org/10.4067/S0717-95022018000200576
dc.relation.referencesMatsumura, K., Shasby, D. M., & Campbell, K. P. (1993). Purification of dystrophin-related protein (utrophin) from lung and its identification in pulmonary artery endothelial cells. FEBS Letters, 326(1–3), 289–293. https://doi.org/10.1016/0014-5793(93)81810-M
dc.relation.referencesMedicines Agency, E. (2017). Propylene glycol used as an excipient. www.ema.europa.eu/contact
dc.relation.referencesMendell, J. R., & Clark, K. R. (2006). Challenges for gene therapy for muscular dystrophy. Current Neurology and Neuroscience Reports, 6(1), 47–56. https://doi.org/10.1007/s11910-996-0009-8
dc.relation.referencesMerkus, H. G. (2009). Particle size measurements : fundamentals, practice, quality. Springer.
dc.relation.referencesMinetti, G. C., Colussi, C., Adami, R., Serra, C., Mozzetta, C., Parente, V., Fortuni, S., Straino, S., Sampaolesi, M., Di Padova, M., Illi, B., Gallinari, P., Steinkühler, C., Capogrossi, M. C., Sartorelli, V., Bottinelli, R., Gaetano, C., & Puri, P. L. (2006). Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Medicine, 12(10), 1147–1150. https://doi.org/10.1038/nm1479
dc.relation.referencesMoens, P., Baatsen, P. H. W. W., & Mari~chal, G. (1993). Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. ]Ournal of Muscle Research and Cell Motility, 14, 446–451
dc.relation.referencesMukund, K., & Subramaniam, S. (2020). Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(1), 1–46. https://doi.org/10.1002/wsbm.1462
dc.relation.referencesMullard, A. (2023). FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nature Reviews Drug Discovery, 22(8), 610–610. https://doi.org/10.1038/d41573-023-00103-y
dc.relation.referencesMuñoz-Cánoves, P., Scheele, C., Pedersen, B. K., & Serrano, A. L. (2013). Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS Journal, 280(17), 4131–4148. https://doi.org/10.1111/febs.12338
dc.relation.referencesMuntoni, F., & Wells, D. (2007). Genetic treatments in muscular dystrophies. Current Opinion in Neurology, 20(5), 590–594. https://doi.org/10.1097/WCO.0b013e3282efc157
dc.relation.referencesNadifi, S., Bellayou, H., Hamzi, K., Rafai, M. A., Karkouri, M., Slassi, I., & Azeddoug, H. (2009). Duchenne and becker muscular dystrophy: Contribution of a molecular and immunohistochemical analysis in diagnosis in Morocco. Journal of Biomedicine and Biotechnology, 2009, 1–5. https://doi.org/10.1155/2009/325210
dc.relation.referencesNathan, C. (2006). Neutrophils and immunity: Challenges and opportunities. Nature Reviews Immunology, 6(3), 173–182. https://doi.org/10.1038/nri1785
dc.relation.referencesNebelung, S., Brill, N., Müller, F., Tingart, M., Pufe, T., Merhof, D., Schmitt, R., Jahr, H., & Truhn, D. (2016). Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 56, 106–119. https://doi.org/10.1016/j.jmbbm.2015.11.025
dc.relation.referencesNix, J. S., & Moore, S. A. (2020). What every neuropathologist needs to know: The muscle biopsy. In Journal of Neuropathology and Experimental Neurology (Vol. 79, Issue 7, pp. 719–733). Oxford University Press. https://doi.org/10.1093/jnen/nlaa046
dc.relation.referencesOkabe, Y., & Medzhitov, R. (2014). Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell, 157(4), 832–844. https://doi.org/10.1016/j.cell.2014.04.016
dc.relation.referencesOliveira, L., Carvalho, M. I., Nogueira, E., & Tuchin, V. V. (2013). Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose. Journal of Innovative Optical Health Sciences, 6(2). https://doi.org/10.1142/S1793545813500120
dc.relation.referencesOliveira, L., Carvalho, M. I., Nogueira, E., & Tuchin, V. V. (2016). Optical clearing mechanisms characterization in muscle. Journal of Innovative Optical Health Sciences, 9(5), 1–19. https://doi.org/10.1142/S1793545816500358
dc.relation.referencesOliveira, L., Lage, A., Clemente, M. P., & Tuchin, V. V. (2009). Optical clearing of muscle with propylene glycol. Saratov Fall Meeting 2009: International School for Junior Scientists and Students on Optics, Laser Physics, and Biophotonics, 7547, 75470E. https://doi.org/10.1117/12.853540
dc.relation.referencesOliveira, L. M., Carvalho, M. I., Nogueira, E. M., & Tuchin, V. V. (2015). Errata: Diffusion characteristics of ethylene glycol in skeletal muscle. Journal of Biomedical Optics, 20(5), 059801. https://doi.org/10.1117/1.jbo.20.5.059801
dc.relation.referencesOliveira, L. M., Carvalho, M. I., Nogueira, E. M., & Tuchin, V. V. (2018). Skeletal muscle dispersion (400-1000 nm) and kinetics at optical clearing. Journal of Biophotonics, 11, 1–12. https://doi.org/10.1002/jbio.201700094
dc.relation.referencesOrhan Hakki Karatas, & Ebubekir Toy. (2014). Three-dimensional imaging techniques: A literature review. European Journal of Dentistry, 8(1), 9. https://doi.org/10.4103/1305-7456.126269
dc.relation.referencesOury, M. P., Dumont, R., Jurie, C., Hocquette, J. F., & Picard, B. (2010). Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle. BMC Biochemistry, 11(1), 1–13. https://doi.org/10.1186/1471-2091-11-12
dc.relation.referencesPayne, C. M., Stern, L. Z., Curless, R. G., & Hannapel, L. K. (1975). Ultrastructural Fiber Typing in Normal and Diseased Human Muscle. Journal Of the Neurological Sciences, 25, 99–108.
dc.relation.referencesPedemonte, M., Sandri, C., Schiaffino, S., & Minetti, C. (1999). Early Decrease of IIx Myosin Heavy Chain Transcripts in Duchenne Muscular Dystrophy. http://www.idealibrary.com
dc.relation.referencesPertl, C., Eblenkamp, M., Pertl, A., Pfeifer, S., Wintermantel, E., Lochmüller, H., Walter, M. C., Krause, S., & Thirion, C. (2013). A new web-based method for automated analysis of muscle histology. BMC Musculoskeletal Disorders, 14. https://doi.org/10.1186/1471-2474-14-26
dc.relation.referencesPessemesse, L., Schlernitzauer, A., Sar, C., Levin, J., Grandemange, S., Seyer, P., Favier, B., Kaminski, S., Cabello, G., Cabello, C. W., & Grande, S. (2012). Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity. FASEB Journal, 26(2), 748–756. https://doi.org/10.1096/fj.11-195933ï
dc.relation.referencesPeterson, R. A., & Cavanaugh, J. E. (2020). Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. Journal of Applied Statistics, 47(13–15), 2312–2327. https://doi.org/10.1080/02664763.2019.1630372
dc.relation.referencesPlotnikov, S., Juneja, V., Isaacson, A. B., Mohler, W. A., & Campagnola, P. J. (2006). Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophysical Journal, 90(1), 328–339. https://doi.org/10.1529/biophysj.105.066944
dc.relation.referencesPOOLE, D. C., SEXTON, W. L., FARKAS, G. A., POWERS, S. K., & REID, M. B. (1997). Diaphragm structure and function in health and disease. Medicine & Science in Sports & Exercise, 29(6). https://journals.lww.com/acsm-msse/Fulltext/1997/06000/Diaphragm_structure_and_function_in_health_and.3.aspx
dc.relation.referencesPradnya, D., Nalini, A., Nagarathna, R., Sendhilkumar, R., James, T., Raju, T., & Sathyaprabha, T. (2021). Effect of yoga and physiotherapy on pulmonary functions in children with duchenne muscular dystrophy – A comparative study. International Journal of Yoga, 14(2), 133. https://doi.org/10.4103/ijoy.ijoy_49_20
dc.relation.referencesProskurin, S. G., & Meglinski, I. V. (2007). Optical coherence tomography imaging depth enhancement by superficial skin optical clearing. Laser Physics Letters, 4(11), 824–826. https://doi.org/10.1002/lapl.200710056
dc.relation.referencesPurslow, P. P. (2020). The Structure and Role of Intramuscular Connective Tissue in Muscle Function. Frontiers in Physiology, 11, 1–15. https://doi.org/10.3389/fphys.2020.00495
dc.relation.referencesQaisar, R., & Larsson, L. (2014). What determines myonuclear domain size? Indian Journal of Physiology and Pharmacology, 58(1), 1–12.
dc.relation.referencesReyes-Fernandez, P. C., Periou, B., Decrouy, X., Relaix, F., & Authier, F. J. (2019). Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle. Skeletal Muscle, 9(1), 1–15. https://doi.org/10.1186/s13395-019-0200-7
dc.relation.referencesReyes-Juárez, J. L., & Zarain-Herzberg, Á. (2006). Función del retículo sarcoplásmico y su papel en las enfermedades cardíacas. Archivos de Cardiologia de Mexico, 76(SUPPL. 4), 18–32.
dc.relation.referencesRicotti, V., Ridout, D. A., Scott, E., Quinlivan, R., Robb, S. A., Manzur, A. Y., Muntoni, F., & On Behalf of the NorthStar Clinical Network. (2013). Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. Journal of Neurology, Neurosurgery and Psychiatry, 84(6), 698–705. https://doi.org/10.1136/jnnp-2012-303902
dc.relation.referencesRobinson-Hamm, J. N., & Gersbach, C. A. (2016). Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Human Genetics, 135(9), 1029–1040. https://doi.org/10.1007/s00439-016-1725-z
dc.relation.referencesRodrigues, M., Echigoya, Y., Maruyama, R., Lim, K. R. Q., Fukada, S. I., & Yokota, T. (2016). Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Scientific Reports, 6, 1–9. https://doi.org/10.1038/srep38371
dc.relation.referencesRodriguez, J., Pierre, N., Naslain, D., Bontemps, F., Ferreira, D., Priem, F., Deldicque, L., & Francaux, M. (2017). Urolithin B, a newly identified regulator of skeletal muscle mass. Journal of Cachexia, Sarcopenia and Muscle, 8(4), 583–597. https://doi.org/10.1002/jcsm.12190
dc.relation.referencesRueda, A., de Alba-Aguayo, D. R., & Valdivia, H. H. (2014). Receptor de rianodina, fuga de calcio y arritmias. Archivos de Cardiología de México, 84(3), 191–201. https://doi.org/10.1016/j.acmx.2013.12.008
dc.relation.referencesRuffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R. G., Rosenthal, N., & Nerlov, C. (2009). A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17475–17480. https://doi.org/10.1073/pnas.0908641106
dc.relation.referencesRuiz-Bolaños, J. I., Kojouharov, H. V., & Solis, F. J. (2024). Theoretical and numerical study of a skeletal muscle regeneration model with inflammatory response. International Journal of Computer Mathematics, 101(6), 636–652. https://doi.org/10.1080/00207160.2024.2362786
dc.relation.referencesSag, D., Carling, D., Stout, R. D., & Suttles, J. (2008). Adenosine 5′-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. The Journal of Immunology, 181(12), 8633–8641. https://doi.org/10.4049/jimmunol.181.12.8633
dc.relation.referencesSahani, R., Wallace, C. H., Jones, B. K., & Blemker, S. S. (2022). Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne muscular dystrophy. Journal of Applied Physiology (Bethesda, Md. : 1985), 132(3), 653–672. https://doi.org/10.1152/japplphysiol.00248.2021
dc.relation.referencesSandonà, D., & Betto, R. (2009). Sarcoglycanopathies: Molecular pathogenesis and therapeutic prospects. In Expert Reviews in Molecular Medicine (Vol. 11, pp. 1–27). https://doi.org/10.1017/S1462399409001203
dc.relation.referencesSchiaffino, S., & Reggiani, C. (2011). FIBER TYPES IN MAMMALIAN SKELETAL MUSCLES. Physiol Rev, 1447–1531. https://doi.org/10.1152/physrev.00031.2010
dc.relation.referencesScreen, H. R. C., Shelton, J. C., Chhaya, V. H., Kayser, M. V., Bader, D. L., & Lee, D. A. (2005). The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Annals of Biomedical Engineering, 33(8), 1090–1099. https://doi.org/10.1007/s10439-005-5777-9
dc.relation.referencesSher, I., Moverman, D., Ketter-Katz, H., Moisseiev, E., & Rotenstreich, Y. (2020). In vivo retinal imaging in translational regenerative research. Annals of Translational Medicine, 8(17), 1096–1096. https://doi.org/10.21037/atm-20-4355
dc.relation.referencesShimamura, Y., Murayama, R., Kurokawa, H., Miyazaki, M., Mihata, Y., & Kmaguchi, S. (2011). Influence of tooth-surface hydration conditions on optical coherence-tomography imaging. Journal of Dentistry, 39(8), 572–577. https://doi.org/10.1016/j.jdent.2011.06.004
dc.relation.referencesSicherer, S. T., Venkatarama, R. S., & Grasman, J. M. (2020). Recent trends in injury models to study skeletal muscle regeneration and repair. In Bioengineering (Vol. 7, Issue 3, pp. 1–11). MDPI AG. https://doi.org/10.3390/bioengineering7030076
dc.relation.referencesSienkiewicz, D., Kulak, W., Okurowska-zawada, B., & Paszko-patej, G. (2015). Duchenne muscular dystrophy: current cell therapies. Therapeutic Advances in Neurological Disorders, 8, 166–177. https://doi.org/10.1177/1756285615586123
dc.relation.referencesSkuk, D., Goulet, M., & Tremblay, J. P. (2006). Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplantation, 15(7), 659–663. https://doi.org/10.3727/000000006783981648
dc.relation.referencesSoblechero-Martín, P., López-Martínez, A., de la Puente-Ovejero, L., Vallejo-Illarramendi, A., & Arechavala-Gomeza, V. (2021). Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathology and Applied Neurobiology, 47(6), 711–723. https://doi.org/10.1111/nan.12735
dc.relation.referencesStalhand, J., Klarbring, A., & Holzapfel, G. A. (2011). A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. Journal of Theoretical Biology, 268, 120–130. https://doi.org/10.1016/j.jtbi.2010.10.008
dc.relation.referencesStarosta, A., & Konieczny, P. (2021). Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. In Cellular and Molecular Life Sciences (Vol. 78, Issue 11, pp. 4867–4891). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00018-021-03821-x
dc.relation.referencesStedman, H. H. (1991). The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy (Vol. 352, pp. 536–539). Nature.
dc.relation.referencesStefanati, M., Villa, C., Torrente, Y., & Rodriguez Matas, J. F. (2020). A mathematical model of healthy and dystrophic skeletal muscle biomechanics. Journal of the Mechanics and Physics of Solids, 134, 1–16. https://doi.org/10.1016/j.jmps.2019.103747
dc.relation.referencesStephenson, E. R., & Kojouharov, H. V. (2018). A mathematical model of skeletal muscle regeneration. Mathematical Methods in the Applied Sciences, 41(18), 8589–8602. https://doi.org/10.1002/mma.4908
dc.relation.referencesStožer, A., Vodopivc, P., & Bombek, L. K. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological Research, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371
dc.relation.referencesSudheendran, N., Mohamed, M., Ghosn, M. G., Tuchin, V. V., & Larin, K. V. (2010). Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography. Journal of Innovative Optical Health Sciences, 3(3), 169–176. https://doi.org/10.1142/S1793545810001039
dc.relation.referencesSwaan, A., Mannaerts, C. K., Muller, B. G., van Kollenburg, R. A. A., Lucas, M., Savci-Heijink, C. D., van Leeuwen, T. G., de Reijke, T. M., & de Bruin, D. M. (2019). The First In Vivo Needle-Based Optical Coherence Tomography in Human Prostate: A Safety and Feasibility Study. Lasers in Surgery and Medicine, 51(5), 390–398. https://doi.org/10.1002/lsm.23093
dc.relation.referencesSwelling, O. I., Salinas, S. D., Clark, M. M., & Amini, R. (2019). Mechanical response changes in porcine tricuspid valve anterior leaflet under Osmotic-Induced Swelling. Bioengineering, 6(3), 1–8. https://doi.org/10.3390/bioengineering6030070
dc.relation.referencesTaglietti, V., Kefi, K., Mirciloglu, B., Bastu, S., Masson, J. D., Bronisz-Budzyńska, I., Gouni, V., Ferri, C., Jorge, A., Gentil, C., Pietri-Rouxel, F., Malfatti, E., Lafuste, P., Tiret, L., & Relaix, F. (2024). Progressive cardiomyopathy with intercalated disc disorganization in a rat model of Becker dystrophy. EMBO Reports, 4898–4920. https://doi.org/10.1038/s44319-024-00249-9
dc.relation.referencesTakaza, M., Moerman, K. M., Gindre, J., Lyons, G., & Simms, C. K. (2013). The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. Journal of the Mechanical Behavior of Biomedical Materials, 17, 209–220. https://doi.org/10.1016/j.jmbbm.2012.09.001
dc.relation.referencesTalbot, J., & Maves, L. (2016). Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. In Wiley Interdisciplinary Reviews: Developmental Biology (Vol. 5, Issue 4, pp. 518–534). John Wiley and Sons Inc. https://doi.org/10.1002/wdev.230
dc.relation.referencesTalman, E. A., Boughner, D. R., The, P., & Robarts, J. P. (2001). Effect of Altered Hydration on the Internal Shear Properties of Porcine Aortic Valve Cusps. The Society of Thoracic Surgeons, 375–378.
dc.relation.referencesTavana, S., Clark, J. N., Prior, J., Baxan, N., Masouros, S. D., Newell, N., & Hansen, U. (2020). Quantifying deformations and strains in human intervertebral discs using Digital Volume Correlation combined with MRI (DVC-MRI). Journal of Biomechanics, 102, 1–7. https://doi.org/10.1016/j.jbiomech.2020.109604
dc.relation.referencesThangarajh, M., Hendriksen, J., Mcdermott, M. P., & Martens, W. (2019). Relationships between DMD mutations and neurodevelopment in dystrophinopathy. Neurology, 93, 1597–1604. https://doi.org/10.1212/WNL.0000000000008363
dc.relation.referencesTidball, J. G., & Villalta, S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 298(5). https://doi.org/10.1152/ajpregu.00735.2009
dc.relation.referencesTinsley, J., Deconinck, N., Fisher, R., Kahn, D., Phelps, S., Gillis, J. M., & Davies, K. (1998). Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nature Medicine, 4(12), 1441–1444. https://doi.org/10.1038/4033
dc.relation.referencesTopin, N., Matecki, S., Le Bris, S., Rivier, F., Echenne, B., Prefaut, C., & Ramonatxo, M. (2002). Dose-dependent effect of individualized respiratory muscle training in children with Duchenne muscular dystrophy. Neuromuscular Disorders, 12(6), 576–583. https://doi.org/10.1016/S0960-8966(02)00005-6
dc.relation.referencesTouznik, A., Lee, J. J. A., & Yokota, T. (2014). New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opinion on Biological Therapy, 14(6), 809–819. https://doi.org/10.1517/14712598.2014.896335
dc.relation.referencesTsioumpekou, M., Krijgsman, D., Leusen, J. H. W., & Olofsen, P. A. (2023). The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells, 12(15), 2–24. https://doi.org/10.3390/cells12151981
dc.relation.referencesTulangekar, A., & Sztal, T. E. (2021). Inflammation in duchenne muscular dystrophy–exploring the role of neutrophils in muscle damage and regeneration. Biomedicines, 9(10), 1–11. https://doi.org/10.3390/biomedicines9101366
dc.relation.referencesTurner, R. (2016). Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1705). https://doi.org/10.1098/rstb.2015.0349
dc.relation.referencesUdan, R. S., Piazza, V. G., Hsu, C. W., Hadjantonakis, A. K., & Dickinson, M. E. (2014). Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge), 141(22), 4406–4414. https://doi.org/10.1242/dev.111021
dc.relation.referencesUjfalusi, Z., Telek, E., Nyitrai, M., Bogner, P., Rostás, T., Hild, G., Trif, L., & Hild, G. (2022). The effect of Iodixanol on the thermodynamic properties of blood components. Thermochimica Acta, 710, 1–7. https://doi.org/10.1016/j.tca.2022.179165
dc.relation.referencesUstione, A., & Piston, D. W. (2011). A simple introduction to multiphoton microscopy. Journal of Microscopy, 243(3), 221–226. https://doi.org/10.1111/j.1365-2818.2011.03532.x
dc.relation.referencesVan Loocke, M., Lyons, C. G., & Simms, C. K. (2008). Viscoelastic properties of passive skeletal muscle in compression: Stress-relaxation behaviour and constitutive modelling. Journal of Biomechanics, 41(7), 1555–1566. https://doi.org/10.1016/j.jbiomech.2008.02.007
dc.relation.referencesVaraka, M., Vardaki, M. Z., Gaitanis, G., Bassukas, I. D., & Kourkoumelis, N. (2022). The Effect of Different Optical Clearing Agents on the Attenuation Coefficient and Epidermal Thickness of Human Skin Assessed by Optical Coherence Tomography. Applied Sciences (Switzerland), 12(16), 1–9. https://doi.org/10.3390/app12168277
dc.relation.referencesVerdera, H. C., Kuranda, K., & Mingozzi, F. (2020). AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular Therapy, 28(3), 723–746. https://doi.org/10.1016/j.ymthe.2019.12.010
dc.relation.referencesVerhaart, I. E. C., & Aartsma-Rus, A. (2019). Therapeutic developments for Duchenne muscular dystrophy. Nature Reviews Neurology, 15(7), 373–386. https://doi.org/10.1038/s41582-019-0203-3
dc.relation.referencesVillota-Narvaez, Y., Garzon-Alvarado, D. A., & Ramirez-Martinez, A. M. (2021). A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation. BioSystems, 202(January), 104355. https://doi.org/10.1016/j.biosystems.2021.104355
dc.relation.referencesVirgilio, K. M., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2015). Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus, 5(2), 1–10. https://doi.org/10.1098/rsfs.2014.0080
dc.relation.referencesVirgilio, K. M., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2018). Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J Appl Physiol, 8(12), 58–61. https://doi.org/10.1152/japplphysiol.00379.2018
dc.relation.referencesWang, R. K. (2002). Tissue Clearing as a Tool to Enhance Imaging Capability for Optical Coherence Tomography. http://proceedings.spiedigitallibrary.org/
dc.relation.referencesWang, Y., Hahn, J., & Zhang, Y. (2018). Mechanical Properties of Arterial Elastin with Water Loss. Journal of Biomechanical Engineering, 140(4), 1–8. https://doi.org/10.1115/1.4038887
dc.relation.referencesWang, Z., & Tang, Z. (2016). Composition and Function of Extracellular Matrix in Development of Skeletal Muscle. In Composition and Function of the Extracellular Matrix in the Human Body (pp. 25–43). InTech. https://doi.org/10.5772/62645
dc.relation.referencesWaterman, C. M., Boothe, T., Hilbert, L., Heide, M., Berninger, L., Huttner, W. B., Zaburdaev, V., Vastenhouw, N. L., Myers, E. W., Drechsel, D. N., & Rink, J. C. (2017). A tunable refractive index matching medium for live imaging cells, tissues and model organisms. Elife. https://doi.org/10.7554/eLife.27240.001
dc.relation.referencesWebster, C., Silberstein, L., Hays, A. P., & Blau’, H. M. (1988). Fast Muscle Fibers Are Preferentially Affected in Duchenne Muscular Dystrophy. In Cell (Vol. 52).
dc.relation.referencesWehling-Henricks, M., Jordan, M. C., Gotoh, T., Grody, W. W., Roos, K. P., & Tidball, J. G. (2010). Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS ONE, 5(5). https://doi.org/10.1371/journal.pone.0010763
dc.relation.referencesWells, P. B., Yeh, A. T., & Humphrey, J. D. (2006). Influence of glycerol on the mechanical reversibility and thermal damage susceptibility of collagenous tissues. IEEE Transactions on Biomedical Engineering, 53(4), 747–753. https://doi.org/10.1109/TBME.2006.870232
dc.relation.referencesWestman, A. M., Peirce, S. M., Christ, G. J., & Blemker, S. S. (2021). Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Computational Biology, 17(5), 1–29. https://doi.org/10.1371/journal.pcbi.1008937
dc.relation.referencesWheatley, B. B. (2020). Investigating Passive Muscle Mechanics With Biaxial Stretch. Frontiers in Physiology, 11, 1–15. https://doi.org/10.3389/fphys.2020.01021
dc.relation.referencesWheatley, B. B., Odegard, G. M., Kaufman, K. R., & Donahue, T. L. H. (2016). How does tissue preparation affect skeletal muscle transverse isotropy? Journal of Biomechanics, 49(13), 3056–3060. https://doi.org/10.1016/j.jbiomech.2016.06.034
dc.relation.referencesWilloughby, A., Andreassen, P. R., & Toland, A. E. (2019). Genetic testing to guide risk-stratified screens for breast cancer. Journal of Personalized Medicine, 9(1), 1–21. https://doi.org/10.3390/jpm9010016
dc.relation.referencesWilson, K., Faelan, C., Patterson-Kane, J. C., Rudmann, D. G., Moore, S. A., Frank, D., Charleston, J., Tinsley, J., Young, G. D., & Milici, A. J. (2017). Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical End Points, and Biomarker Quantification. Toxicologic Pathology, 45(7), 961–976. https://doi.org/10.1177/0192623317734823
dc.relation.referencesWitcher, P. C., Sun, C., & Millay, D. P. (2023). Expression of Myomaker and Myomerger in myofibers causes muscle pathology. Skeletal Muscle, 13(1), 1–15. https://doi.org/10.1186/s13395-023-00317-z
dc.relation.referencesWolfe, R. R. (2018). The underappreciated role of muscle in health and disease 1 Ϫ 3. Am J Clin Nutr, February, 475–482. https://doi.org/10.1093/ajcn/84.3.475
dc.relation.referencesXia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen-apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998–2007. https://doi.org/10.1039/c3tb21595d
dc.relation.referencesYang, W., & Hu, P. (2018). Skeletal muscle regeneration is modulated by inflammation. Journal of Orthopaedic Translation, 13, 25–32. https://doi.org/10.1016/j.jot.2018.01.002
dc.relation.referencesYeh, A. T., & Hirshburg, J. (2006). Molecular interactions of exogenous chemical agents with collagen—implications for tissue optical clearing. Journal of Biomedical Optics, 11(1), 014003. https://doi.org/10.1117/1.2166381
dc.relation.referencesYuasa, K., Nakamura, A., Hijikata, T., & Takeda, S. (2008). Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle. BMC Musculoskeletal Disorders, 9, 1–12. https://doi.org/10.1186/1471-2474-9-1
dc.relation.referencesZhang, Z., Ibrahim, M., Fu, Y., Wu, X., Ren, F., & Chen, L. (2018). Application of laser scanning confocal microscopy in the soft tissue exquisite structure for 3D scan. International Journal of Burns and Trauma, 8(2), 17–25. http://www.ncbi.nlm.nih.gov/pubmed/29755838%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5943615
dc.relation.referencesZhao, H., & Zhang, L. Q. (2011). Automatic tracking of muscle fascicles in ultrasound images using localized radon transform. IEEE Transactions on Biomedical Engineering, 58(7), 2094–2101. https://doi.org/10.1109/TBME.2011.2144593
dc.relation.referencesZhao, J., Kodippili, K., Yue, Y., Hakim, C. H., Wasala, L., Pan, X., Zhang, K., Yang, N. N., Duan, D., & Lai, Y. (2016). Dystrophin contains multiple independent membrane-binding domains. Human Molecular Genetics, 25(17), 3647–3653. https://doi.org/10.1093/hmg/ddw210
dc.relation.referencesZheng, W., Zhou, L., & Chai, Q. (2022). Fully Automatic Analysis of Muscle B-Mode Ultrasound Images Based on the Deep Residual Shrinkage U-Net. Electronics, 11, 1–19. https://doi.org/10.3390/electronics11071093
dc.relation.referencesZhi, Z., Han, Z., Luo, Q., & Zhu, D. (2009). IMPROVE OPTICAL CLEARING OF SKIN IN VITRO WITH PROPYLENE GLYCOL AS A PENETRATION ENHANCER. Journal of Innovative Optical Health Sciences, 2(3), 269–278. www.worldscientific.com
dc.relation.referencesZhou, G. Q., Chan, P., & Zheng, Y. P. (2015). Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics, 57(C), 72–83. https://doi.org/10.1016/j.ultras.2014.10.020
dc.relation.referencesZipfel, P. F., & Reuter, M. (2009). Complement Activation Products C3a and C4a as Endogenous Antimicrobial Peptides. International Journal of Peptide Research and Therapeutics, 15(2), 87–95. https://doi.org/10.1007/s10989-009-9180-5
dc.relation.referencesZöllner, A. M., Abilez, O. J., Böl, M., & Kuhl, E. (2012). Stretching Skeletal Muscle: Chronic Muscle Lengthening through Sarcomerogenesis. PLoS ONE, 7(10), 1–10. https://doi.org/10.1371/journal.pone.0045661
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.decsDistrofia Muscular de Duchennespa
dc.subject.decsMuscular Dystrophy, Duchenneeng
dc.subject.decsEnfermedad del Almacenamiento de Glucógeno Tipo VIIspa
dc.subject.decsGlycogen Storage Disease Type VIIeng
dc.subject.decsTrastornos Musculares Atróficosspa
dc.subject.decsMuscular Disorders, Atrophiceng
dc.subject.decsDiagnóstico por Imagenspa
dc.subject.decsDiagnostic Imagingeng
dc.subject.decsTécnicas y Procedimientos Diagnósticosspa
dc.subject.decsDiagnostic Techniques and Procedureseng
dc.subject.decsRepresentación de Aprendizaje Automáticospa
dc.subject.decsRepresentation Machine Learningeng
dc.subject.proposalDuchenne muscular dystrophyeng
dc.subject.proposalOptical coherence tomographyeng
dc.subject.proposalDigital volume correlationeng
dc.subject.proposalMechanical characterizationeng
dc.subject.proposalComputational modelseng
dc.subject.proposalClearing agentseng
dc.subject.proposalDistrofia muscular de Duchennespa
dc.subject.proposalTomografía de coherencia ópticaspa
dc.subject.proposalCorrelación volumétrica digitalspa
dc.subject.proposalCaracterización mecánicaspa
dc.subject.proposalModelo computacionaspa
dc.subject.proposalAgentes aclarantesspa
dc.titleMechanical characterization of the evolution and degeneration of skeletal muscle : an optical coherence tomography and computational simulation approacheseng
dc.title.translatedCaracterización mecánica de la evolución y degeneración del músculo esquelético: mediante tomografía de coherencia óptica y simulación computacionalspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS DOCTORADO JFEH.pdf
Tamaño:
7.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: