Mechanical characterization of the evolution and degeneration of skeletal muscle : an optical coherence tomography and computational simulation approaches
dc.contributor.advisor | Garzon Alvarado, Diego Alexander | |
dc.contributor.advisor | Vaca González, Juan Jairo | |
dc.contributor.author | Escobar Huertas, Juan Felipe | |
dc.contributor.cvlac | Escobar Huertas, Juan Felipe [0000079583#par] | |
dc.contributor.googlescholar | Escobar Huertas, Juan Felipe [QncQh9IAAAAJ&hl=es] | |
dc.contributor.orcid | Escobar Huertas, Juan Felipe [0000000299342523] | |
dc.contributor.researchgroup | Gnum Grupo de Modelado y Métodos Numericos en Ingeniería | spa |
dc.date.accessioned | 2025-08-26T12:40:51Z | |
dc.date.available | 2025-08-26T12:40:51Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | |
dc.description.abstract | A severe genetic pathology known as Duchenne muscular dystrophy (DMD) is typified by persistent inflammation, decreased muscle regeneration ability, and progressive muscle loss. With a focus on DMD, this thesis combines experimental and computational methods to gain a deeper understanding of muscle tissue behavior in both healthy and diseased settings. A review of Becker muscular dystrophy and DMD was carried out, emphasizing molecular dysfunctions and the potential of mathematical modeling in the creation of new treatments. To simulate muscle regeneration under degenerative stress, a finite element model was created, providing important information about how inflammation affects the muscle healing process. Optical Coherence Tomography (OCT), in particular, was implemented in this thesis as a non-destructive method for high-resolution morphological examination of muscle tissues. OCT ability to visualize muscle architecture and disease-induced alterations was validated against histology results when paired with various clearing agents. Additionally, the 3D strain distribution in both healthy and dystrophic muscles under mechanical stress was measured using Digital Volume Correlation (DVC). The results verify that DMD and control muscles differ significantly in their mechanical properties and structure. Overall, this research contributes to the field of muscle tissue engineering and regenerative medicine by advancing diagnostic methods and computational tools for evaluating soft tissue pathology and guiding therapeutic strategies. | eng |
dc.description.abstract | Una patología genética conocida como distrofia muscular de Duchenne (DMD) se caracteriza por una inflamación persistente, una disminución en la capacidad de regeneración muscular y una pérdida progresiva del músculo. Con un enfoque en la DMD, esta tesis combina métodos experimentales y computacionales para obtener una comprensión más profunda del comportamiento del tejido muscular tanto en contextos sanos como patológicos. Se realizó una revisión sobre la distrofia muscular de Becker y la DMD, con énfasis en las disfunciones moleculares y el potencial del modelado matemático en el desarrollo de nuevos tratamientos. Para simular la regeneración muscular bajo estrés degenerativo, se creó un modelo de elementos finitos que proporciona información importante sobre cómo la inflamación afecta el proceso de regeneración muscular. En particular, la Tomografía de Coherencia Óptica (OCT) se implementó en esta tesis como un método no destructivo para el examen morfológico de alta resolución de tejidos musculares. La capacidad del OCT para visualizar la arquitectura muscular y las alteraciones inducidas por la enfermedad fue validada frente a resultados histológicos, junto con diversos agentes de aclaramiento. Además, se midió las deformaciones en 3D de músculos sanos y distróficos sometidos a esfuerzos mecánico mediante correlación volumétrica digital (DVC). Los resultados confirman que existen diferencias significativas entre los músculos con DMD y control en cuanto a sus propiedades mecánicas y estructura. ¿Esta investigación contribuye al campo de la ingeniería de tejidos musculares y la medicina regenerativa mediante el avance de métodos diagnósticos y herramientas computacionales para evaluar la patología de tejidos blandos y orientar estrategias terapéuticas (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería - Ciencia y Tecnología de Materiales | |
dc.format.extent | xvi, 153 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88463 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | A. Acosta Santamaría, V., García, M. F., Molimard, J., & Avril, S. (2020). Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography. Acta Biomaterialia, 102, 127–137. https://doi.org/10.1016/j.actbio.2019.11.049 | |
dc.relation.references | Aartsma-Rus, A., Straub, V., Hemmings, R., Haas, M., Schlosser-Weber, G., Stoyanova-Beninska, V., Mercuri, E., Muntoni, F., Sepodes, B., Vroom, E., & Balabanov, P. (2017). Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Therapeutics, 27(5), 251–259. https://doi.org/10.1089/nat.2017.0682 | |
dc.relation.references | Acharya, U. R., Faust, O., Sree, S. V., Molinari, F., & Suri, J. S. (2012). ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Computer Methods and Programs in Biomedicine, 107(2), 233–241. https://doi.org/10.1016/j.cmpb.2011.10.001 | |
dc.relation.references | Acosta Santamaría, V. A., Flechas García, M., Molimard, J., & Avril, S. (2018). Three-Dimensional Full-Field Strain Measurements across a Whole Porcine Aorta Subjected to Tensile Loading Using Optical Coherence Tomography–Digital Volume Correlation. Frontiers in Mechanical Engineering, 4(March), 1–14. https://doi.org/10.3389/fmech.2018.00003 | |
dc.relation.references | Aeffner, F., Faelan, C., Moore, S. A., Moody, A., & Black, J. C. (2018). Validation of a Muscle-Specific Tissue Image-Analysis Tool for Quantitative Assessment of Dystrophin Staining in Frozen Muscle Biopsies. Archives of Pathology and Laboratory Medicine, 143(2), 197–205. https://doi.org/10.5858/arpa.2017-0536-OA | |
dc.relation.references | Alibhai, A. Y., Moult, E. M., Shahzad, R., Rebhun, C. B., Moreira-Neto, C., McGowan, M., Lee, D., Lee, B., Baumal, C. R., Witkin, A. J., Reichel, E., Duker, J. S., Fujimoto, J. G., & Waheed, N. K. (2018). Quantifying Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy. Ophthalmology Retina, 2(5), 418–427. https://doi.org/10.1016/j.oret.2017.09.011 | |
dc.relation.references | Allen, D. G., Whitehead, N. P., & Froehner, S. C. (2016). ABSENCE OF DYSTROPHIN DISRUPTS SKELETAL MUSCLE SIGNALING: ROLES OF Ca 2 , REACTIVE OXYGEN SPECIES, AND NITRIC OXIDE IN THE DEVELOPMENT OF MUSCULAR DYSTROPHY. Physiol Rev, 96, 253–305. https://doi.org/10.1152/physrev.00007.2015.-Dystrophin | |
dc.relation.references | Amann, K. J., Renley, B. A., & Ervasti, J. M. (1998). A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. Journal of Biological Chemistry, 273(43), 28419–28423. https://doi.org/10.1074/jbc.273.43.28419 | |
dc.relation.references | Anderson, E. J., Neufer, P. D., Ethan, J., Neufer, P. D., & Ii, T. (2006). Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation. Am J Physiol Cell Physiol, 290, 844–851. https://doi.org/10.1152/ajpcell.00402.2005. | |
dc.relation.references | Anna L. Emanuel, Rick I. Meijer, Erik van Poelgeest, Pien Spoor, Erik H. Serné, E. C. E. (2019). Contrast‐enhanced ultrasound for quantification of tissue perfusion in humans. Microcirculation, 27, 1–10. https://doi.org/10.1111/micc.12588 | |
dc.relation.references | Anoveros-Barrera, A., Bhullar, A. S., Stretch, C., Esfandiari, N., Dunichand-Hoedl, A. R., Martins, K. J. B., Bigam, D., Khadaroo, R. G., McMullen, T., Bathe, O. F., Damaraju, S., Skipworth, R. J., Putman, C. T., Baracos, V. E., & Mazurak, V. C. (2019). Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients. Journal of Cachexia, Sarcopenia and Muscle, 10(6), 1356–1377. https://doi.org/10.1002/jcsm.12466 | |
dc.relation.references | Anthony, K., Arechavala-Gomeza, V., Taylor, L. E., Vulin, A., Kaminoh, Y., Torelli, S., Feng, L., Janghra, N., Bonne, G., Beuvin, M., Barresi, R., Henderson, M., Laval, S., Lourbakos, A., Campion, G., Straub, V., Voit, T., Sewry, C. A., Morgan, J. E., … Muntoni, F. (2014). Dystrophin quantification: Biological and translational research implications. Neurology, 83(22), 2062–2069. https://doi.org/10.1212/WNL.0000000000001025 | |
dc.relation.references | Aoki, Y., Yokota, T., Nagata, T., Nakamura, A., Tanihata, J., Saito, T., Duguez, S. M. R., Nagaraju, K., Hoffman, E. P., Partridge, T., & Takeda, S. (2012). Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13763–13768. https://doi.org/10.1073/pnas.1204638109 | |
dc.relation.references | Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., Van Rooijen, N., Plonquet, A., Gherardi, R. K., & Chazaud, B. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Experimental Medicine, 204(5), 1057–1069. https://doi.org/10.1084/jem.20070075 | |
dc.relation.references | Aumann, S., Donner, S., Fischer, J., & Müller, F. (2019). Optical Coherence Tomography (OCT): Principle and Technical Realization. In J. Bille (Ed.), High Resolution Imaging in Microscopy and Ophthalmology (pp. 59–85). Springer International Publishing. https://doi.org/10.1007/978-3-030-16638-0_3 | |
dc.relation.references | Bachrach, E., Li, S., Perez, A. L., Schienda, J., Liadaki, K., Volinski, J., Flint, A., Chamberlain, J., & Kunkel, L. M. (2004). Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3581–3586. https://doi.org/10.1073/pnas.0400373101 | |
dc.relation.references | Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., Clemens, P. R., Hadjiyannakis, S., Pandya, S., Street, N., Tomezsko, J., Wagner, K. R., Ward, L. M., & Weber, D. R. (2018). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. In The Lancet Neurology (Vol. 17, Issue 3, pp. 251–267). Lancet Publishing Group. https://doi.org/10.1016/S1474-4422(18)30024-3 | |
dc.relation.references | Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood, 107(5), 2112–2122. https://doi.org/10.1182/blood-2005-01-0428 | |
dc.relation.references | Blake, D. J., Tinsley, J. M., & Davies, K. E. (1996). Utrophin: A structural and functional comparison to dystrophin. In Brain Pathology (Vol. 6, Issue 1, pp. 37–47). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1750-3639.1996.tb00781.x | |
dc.relation.references | Blake, D. J., Weir, A., Newey, S. E., & Davies, K. E. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiological Reviews, 82(2), 291–329. https://doi.org/10.1152/physrev.00028.2001 | |
dc.relation.references | Bloom, E. T., Lee, A. H., & Elliott, D. M. (2021). Tendon Multiscale Structure, Mechanics, and Damage Are Affected by Osmolarity of Bath Solution. Annals of Biomedical Engineering, 49(3), 1058–1068. https://doi.org/10.1007/s10439-020-02649-z | |
dc.relation.references | Bogdanovich, S., Gardner, B. B., & McNally, E. M. (2017). Abnormal Muscle Pathology and Physiology. In J. L. Jefferies, B. C. Blaxall, J. Robbins, & J. A. Towbin (Eds.), Cardioskeletal Myopathies in Children and Young Adults (pp. 65–82). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800040-3.00004-2 | |
dc.relation.references | Bongso, A., & Lee, E. H. (2005). Stem Cells : Their Definition, Classification and Sources. Stem Cells: From Bench To Bedside, 1–13. http://www.worldscibooks.com/lifesci/5729.html | |
dc.relation.references | Bonifasi-Lista, C., Lake, S. P., Small, M. S., & Weiss, J. A. (2005). Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. Journal of Orthopaedic Research, 23(1), 67–76. https://doi.org/10.1016/j.orthres.2004.06.002 | |
dc.relation.references | Borg, K., & Ensrud, E. (2020). Myopathies (J. K. S. T. D. R. Walter R. Frontera, Ed.). Elsevier,. | |
dc.relation.references | Brooke, M. H., & Kaiser, K. K. (1970). Muscle Fiber Types: How Many and What Kind? Archives of Neurology, 23(4), 369–379. https://doi.org/10.1001/archneur.1970.00480280083010 | |
dc.relation.references | Brown, S. C., & Sewry, C. A. (2017). Basics of Skeletal Muscle Function and Normal Physiology. In J. L. Jefferies, B. C. Blaxall, J. Robbins, & J. A. Towbin (Eds.), Cardioskeletal Myopathies in Children and Young Adults (pp. 21–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800040-3.00002-9 | |
dc.relation.references | Buck, D., Smith, J. E., Chung, C. S., Ono, Y., Sorimachi, H., Labeit, S., & Granzier, H. L. (2014). Removal of immunoglobulin-like domains from titin’s spring segment alters titin splicing in mouse skeletal muscle and causes myopathy. Journal of General Physiology, 143(2), 215–230. https://doi.org/10.1085/jgp.201311129 | |
dc.relation.references | Budoff, M. J., Lee, H. S., Roy, S. K., & Shekar, C. (2023). Efficacy and Safety of Iodixanol in Computed Coronary Tomographic Angiography and Cardiac Catheterization. In Journal of Cardiovascular Development and Disease (Vol. 10, Issue 11, pp. 1–13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jcdd10110449 | |
dc.relation.references | Busse, M., Marciniszyn, J. P., Ferstl, S., Kimm, M. A., Pfeiffer, F., & Gulder, T. (2021a). 3D-Non-destructive Imaging through Heavy-Metal Eosin Salt Contrast Agents. Chemistry - A European Journal, 27(14), 4561–4566. https://doi.org/10.1002/chem.202005203 | |
dc.relation.references | Busse, M., Marciniszyn, J. P., Ferstl, S., Kimm, M. A., Pfeiffer, F., & Gulder, T. (2021b). 3D-Non-destructive Imaging through Heavy-Metal Eosin Salt Contrast Agents. Chemistry - A European Journal, 27(14), 4561–4566. https://doi.org/10.1002/chem.202005203 | |
dc.relation.references | C. Allyson Walker. (1999). BASIC SCIENCE REVIEW THE STRUCTURE AND FUNCTION OF THE CARDIAC MYOCYTE : A REVIEW OF FUNDAMENTAL CONCEPTS. The Journal of Thoracic and Cardiovascular Surgery, 375–382. https://doi.org/10.1016/S0022-5223(99)70233-3 | |
dc.relation.references | Caresio, C., Salvi, M., Molinari, F., Meiburger, K. M., & Minetto, M. A. (2017). Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement. Ultrasound in Medicine and Biology, 43(1), 195–205. https://doi.org/10.1016/j.ultrasmedbio.2016.08.032 | |
dc.relation.references | Carew, E. O., Garg, A., Barber, J. E., & Vesely, I. (2004). Stress Relaxation Preconditioning of Porcine Aortic Valves. In Annals of Biomedical Engineering (Vol. 32, Issue 4). | |
dc.relation.references | Ceniccola, G. D., Castro, M. G., Piovacari, S. M. F., Horie, L. M., Corrêa, F. G., Barrere, A. P. N., & Toledo, D. O. (2019). Current technologies in body composition assessment: advantages and disadvantages. Nutrition, 62, 25–31. https://doi.org/10.1016/j.nut.2018.11.028 | |
dc.relation.references | Chazaud, B., Brigitte, M., Yacoub-Youssef, H., Arnold, L., Gherardi, R., Sonnet, C., Lafuste, P., & Chretien, F. (2009). Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exercise and Sport Sciences Reviews, 37(1), 18–22. https://doi.org/10.1097/JES.0b013e318190ebdb | |
dc.relation.references | Chen, S. E., Jin, B., & Li, Y. P. (2007). TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. American Journal of Physiology - Cell Physiology, 292(5), 1660–1671. https://doi.org/10.1152/ajpcell.00486.2006 | |
dc.relation.references | Chen, W., & Kudryashev, M. (2020). Structure of RyR1 in native membranes. EMBO Reports, 21(5), 1–11. https://doi.org/10.15252/embr.201949891 | |
dc.relation.references | Cohen, I. R., & Lambris, J. D. (2018). Advances in Experimental Medicine and Biology - Muscle Atrophy (J. Xiao, Ed.; Vol. 1088). Springer . http://www.springer.com/series/5584 | |
dc.relation.references | Cornachione, A. S., Benedini-Elias, P. C. O., Polizello, J. C., Carvalho, L. C., & Mattiello-Sverzut, A. C. (2011). Characterization of fiber types in different muscles of the hindlimb in female weanling and adult wistar rats. Acta Histochemica et Cytochemica, 44(2), 43–50. https://doi.org/10.1267/ahc.10031 | |
dc.relation.references | Corrado, G., Lissoni, A., Beretta, S., Terenghi, L., Tadeo, G., Foglia-manzillo, G., & Tagliagambe, L. M. (2002). Prognostic Value of Electrocardiograms , Ventricular Late Potentials , Ventricular Arrhythmias , and Left Ventricular Duchenne Muscular Dystrophy. Am. J. Cardiol., 89(02), 838–841. | |
dc.relation.references | Cossu, G., & Sampaolesi, M. (2007). New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends in Molecular Medicine, 13(12), 520–526. https://doi.org/10.1016/j.molmed.2007.10.003 | |
dc.relation.references | Csapo, R., Gumpenberger, M., & Wessner, B. (2020). Skeletal Muscle Extracellular Matrix – What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. In Frontiers in Physiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fphys.2020.00253 | |
dc.relation.references | Dall’Ara, E., & Tozzi, G. (2022). Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Frontiers in Bioengineering and Biotechnology, 10, 1–13. https://doi.org/10.3389/fbioe.2022.1010056 | |
dc.relation.references | Dao Luong, M. N., Shimada, Y., Turkistani, A., Tagami, J., Sumi, Y., & Sadr, A. (2016). Fractography of interface after microtensile bond strength test using swept-source optical coherence tomography. Dental Materials, 32(7), 862–869. https://doi.org/10.1016/j.dental.2016.03.019 | |
dc.relation.references | De Paepe, B., & De Bleecker, J. L. (2013). Cytokines and chemokines as regulators of skeletal muscle inflammation: Presenting the case of Duchenne muscular dystrophy. Mediators of Inflammation, 2013, 1–11. https://doi.org/10.1155/2013/540370 | |
dc.relation.references | Deisch, J. K. (2017). Muscle and Nerve Development in Health and Disease. In K. F. Swaiman, S. Ashwal, D. M. Ferriero, & N. F. Schor (Eds.), Swaiman’s Pediatric Neurology: Principles and Practice: Sixth Edition (pp. 1029–1037). Elsevier Inc. https://doi.org/10.1016/B978-0-323-37101-8.00135-1 | |
dc.relation.references | Dell’Acqua, G., & Castiglione, F. (2009). Stability and phase transitions in a mathematical model of Duchenne muscular dystrophy. Journal of Theoretical Biology, 260(2), 283–289. https://doi.org/10.1016/j.jtbi.2009.05.037 | |
dc.relation.references | Delp, M., & Duan, C. (1996). Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. American Physiological Society, 1–10. www.physiology.org/journal/jappl | |
dc.relation.references | Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S. I., Ide, C., & Nabeshima, Y. I. (2005). Developmental biology: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309(5732), 314–317. https://doi.org/10.1126/science.1110364 | |
dc.relation.references | Dieguez, L., Darwish, N., Mir, M., Martínez, E., Moreno, M., & Samitier, J. (2009). Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sensor Letters, 7(5), 851–855. https://doi.org/10.1166/sl.2009.1161 | |
dc.relation.references | Doenicke, A., Nebauer, A. E., Hoernecke, R., Mayer, M., & Roizen, M. F. (1992). Osmolalities of Propylene Glycol-Containing Drug Formulations for Parenteral Use. Should Propylene Glycol Be Used as a Solvent? International Anesthesia Research Society, 1–5. http://journals.lww.com/anesthesia-analgesia | |
dc.relation.references | Dowling, J. J., Weihl, C. C., & Spencer, M. J. (2021). Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nature Reviews Molecular Cell Biology, 22(11), 713–732. https://doi.org/10.1038/s41580-021-00389-z | |
dc.relation.references | Duan, D., Goemans, N., Takeda, S., Mercuri, E., & Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7, 1–19. https://doi.org/10.1038/s41572-021-00248-3 | |
dc.relation.references | Dubuisson, N., Versele, R., Planchon, C., Selvais, C. M., Noel, L., Abou-Samra, M., & Davis-López de Carrizosa, M. A. (2022). Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 23(24), 1–38. https://doi.org/10.3390/ijms232416080 | |
dc.relation.references | Dumont, N. A., Bentzinger, C. F., Sincennes, M. C., & Rudnicki, M. A. (2015). Satellite cells and skeletal muscle regeneration. Comprehensive Physiology, 5(3), 1027–1059. https://doi.org/10.1002/cphy.c140068 | |
dc.relation.references | Dumont, N., Bouchard, P., & Frenette, J. (2008). Neutrophil-induced skeletal muscle damage: A calculated and controlled response following hindlimb unloading and reloading. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 295(6), 1831–1839. https://doi.org/10.1152/ajpregu.90318.2008 | |
dc.relation.references | Duque, G. A., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5(OCT), 1–13. https://doi.org/10.3389/fimmu.2014.00491 | |
dc.relation.references | Dzierlega, K., & Yokota, T. (2020). Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Therapy, 27(9), 407–416. https://doi.org/10.1038/s41434-020-0156-6 | |
dc.relation.references | Eagle, M. (2002). Report on the Muscular Dystrophy Campaign workshop: Exercise in neuromuscular diseases Newcastle, January 2002. Neuromuscular Disorders, 12(10), 975–983. https://doi.org/10.1016/S0960-8966(02)00136-0 | |
dc.relation.references | El Bojairami, I., & Driscoll, M. (2022). Correlating Skeletal Muscle Output Force and Intramuscular Pressure Via a Three-Dimensional Finite Element Muscle Model. Journal of Biomechanical Engineering, 144(4), 1–10. https://doi.org/10.1115/1.4052885 | |
dc.relation.references | Ervasti, J. M., & Sonnemann, K. J. (2008). Biology of the Striated Muscle Dystrophin-Glycoprotein Complex. International Review of Cytology, 265(07), 191–225. https://doi.org/10.1016/S0074-7696(07)65005-0 | |
dc.relation.references | Escobar-Huertas, J. F., Vaca-González, J. J., Garzón-Alvarado, D. A., & Trabelsi, O. (2024). Effect of iodixanol and propylene glycol as clearing agents in extensor digitorum longus and soleus muscles: mechanical and morphological characterization using the optical coherence tomography technique. Biomater. Sci., 5295–5310. https://doi.org/10.1039/D4BM00207E | |
dc.relation.references | Escobar-Huertas, J. F., Vaca-González, J. J., Guevara, J. M., Ramirez-Martinez, A. M., Trabelsi, O., & Garzón-Alvarado, D. A. (2024). Duchenne and Becker muscular dystrophy: Cellular mechanisms, image analysis, and computational models: A review. In Cytoskeleton (pp. 1–18). John Wiley and Sons Inc. https://doi.org/10.1002/cm.21826 | |
dc.relation.references | Ferreira, D. M. S., Cheng, A. J., Agudelo, L. Z., Cervenka, I., Chaillou, T., Correia, J. C., Porsmyr-Palmertz, M., Izadi, M., Hansson, A., Martínez-Redondo, V., Valente-Silva, P., Pettersson-Klein, A. T., Estall, J. L., Robinson, M. M., Nair, K. S., Lanner, J. T., & Ruas, J. L. (2019). LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force. Skeletal Muscle, 9(1), 1–19. https://doi.org/10.1186/s13395-019-0214-1 | |
dc.relation.references | Filippin, L. I., Cuevas, M. J., Lima, E., Marroni, N. P., Gonzalez-Gallego, J., & Xavier, R. M. H. (2011). Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide - Biology and Chemistry, 24(1), 43–49. https://doi.org/10.1016/j.niox.2010.11.003 | |
dc.relation.references | Filosto, M., Tonin, P., Vattemi, G., Bertolasi, L., & Simonati, A. (2007). The role of muscle biopsy in investigating isolated muscle pain. NEUROLOGY, 68(3), 181–186. https://doi.org/10.1212/01.wnl.0000252252.29532.cc | |
dc.relation.references | Finsterer, J. (2003). The Heart in Human Dystrophinopathies. Cardiology, 1–19. https://doi.org/10.1159/000068446 | |
dc.relation.references | Flanigan, K. M. (2014). Duchenne and Becker Muscular Dystrophies. Neurologic Clinics of NA, 32(3), 671–688. https://doi.org/10.1016/j.ncl.2014.05.002 | |
dc.relation.references | Flanigan, K. M., Campbell, K., Viollet, L., Wang, W., Gomez, A. M., Walker, C. M., & Mendell, J. R. (2013). Anti-dystrophin T cell responses in duchenne muscular dystrophy: Prevalence and a glucocorticoid treatment effect. Human Gene Therapy, 24(9), 797–806. https://doi.org/10.1089/hum.2013.092 | |
dc.relation.references | Flanigan, K. M., Dunn, D., Niederhausern, A. Von, Soltanzadeh, P., Gappmaier, E., Howard, M. T., Sampson, J., Mendell, J., King, W., Pestronk, A., Florence, J., Connolly, A., & Katherine, D. (2012). Mutational Spectrum of DMD Mutations in Dystrophinopathy Patients: Application of Modern Diagnostic Techniques to a Large Cohort. Hum Mutat., 30(12), 1657–1666. https://doi.org/10.1002/humu.21114.Mutational | |
dc.relation.references | Forcina, L., Cosentino, M., & Musarò, A. (2020). Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. In Cells (Vol. 9, Issue 5, pp. 1–28). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cells9051297 | |
dc.relation.references | Fortin, M., Videman, T., Gibbons, L. E., & Battie, M. C. (2014). Paraspinal Muscle Morphology and Composition: A 15-yr Longitudinal Magnetic Resonance Imaging Study. MEDICINE & SCIENCE IN SPORTS & EXERCISE, 893–901. https://doi.org/10.1249/MSS.0000000000000179 | |
dc.relation.references | Fowles, J. R., Banton, M. I., & Pottenger, L. H. (2013). A toxicological review of the propylene glycols. In Critical Reviews in Toxicology (Vol. 43, Issue 4, pp. 363–390). https://doi.org/10.3109/10408444.2013.792328 | |
dc.relation.references | Frenette, J., Cai, B., & Tidball, J. G. (2000). Complement activation promotes muscle inflammation during modified muscle use. American Journal of Pathology, 156(6), 2103–2110. https://doi.org/10.1016/S0002-9440(10)65081-X | |
dc.relation.references | Frontera, W. R., & Ochala, J. (2015). Skeletal Muscle : A Brief Review of Structure and Function. Calcif Tissue Int, 183–195. https://doi.org/10.1007/s00223-014-9915-y | |
dc.relation.references | Fu, J., Pierron, F., & Ruiz, P. D. (2013). Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation. Journal of Biomedical Optics, 1–17. https://doi.org/10.1117/1.JBO | |
dc.relation.references | Gao, Q. Q., & McNally, E. M. (2015). The dystrophin complex: Structure, function, and implications for therapy. Comprehensive Physiology, 5(3), 1223–1239. https://doi.org/10.1002/cphy.c140048 | |
dc.relation.references | Garzón-Alvarado, D. A. (2012). Examples of the effect of growth and strain on turing pattern formation dynamics. International Journal of Bifurcation and Chaos, 22(2), 1–15. https://doi.org/10.1142/S0218127412500393 | |
dc.relation.references | Gaunt, I. F., Carpanini, F. M. B., Grasso, P., & Lansdow, A. B. G. (1972). Long-term Toxicity of Propylene Glycol in Rats. Fd Cosmet. Toxicol, 10, 151–162. | |
dc.relation.references | Genina, E. A., Bashkatov, A. N., Kozintseva, M. D., & Tuchin, V. V. (2016). OCT Study of Optical Clearing of Muscle Tissue in vitro with 40% Glucose Solution. Optics and Spectroscopy (English Translation of Optika i Spektroskopiya), 120(1), 20–27. https://doi.org/10.1134/S0030400X16010082 | |
dc.relation.references | Genina, E. A., Bashkatov, A. N., & Tuchin, V. V. (2010). Tissue optical immersion clearing. In Expert Review of Medical Devices (Vol. 7, Issue 6, pp. 825–842). https://doi.org/10.1586/erd.10.50 | |
dc.relation.references | Gentili, C., & Cancedda, R. (2009). Cartilage and Bone Extracellular Matrix. Current Pharmaceutical Design, 15, 1334–1348. https://doi.org/10.2174/138161209787846739 | |
dc.relation.references | Giovarelli, M., Arnaboldi, F., Zecchini, S., Cornaghi, L. B., Nava, A., Sommariva, M., Clementi, E. G. I., & Gagliano, N. (2022). Characterisation of Progressive Skeletal Muscle Fibrosis in the Mdx Mouse Model of Duchenne Muscular Dystrophy: An In Vivo and In Vitro Study. International Journal of Molecular Sciences, 23(15), 1–17. https://doi.org/10.3390/ijms23158735 | |
dc.relation.references | Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3(1), 23–35. https://doi.org/10.1038/nri978 | |
dc.relation.references | Gramolini, A. O., Wu, J. U. N., & Jasmin, B. J. (2000). Regulation and Functional Significance of Utrophin Expression at the Mammalian Neuromuscular Synapse. MICROSCOPY RESEARCH AND TECHNIQUE, 100(May 1999), 90–100. | |
dc.relation.references | Grasa, J., Ramírez, A., Osta, R., Muñoz, M. J., Soteras, F., & Calvo, B. (2011). A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomechanics and Modeling in Mechanobiology, 10(5), 779–787. https://doi.org/10.1007/s10237-010-0273-z | |
dc.relation.references | Greenberg, S. A. (2012). Pathogenesis and therapy of inclusion body myositis. In Current Opinion in Neurology (Vol. 25, Issue 5, pp. 630–639). https://doi.org/10.1097/WCO.0b013e328357f211 | |
dc.relation.references | Grzelkowska-Kowalczyk, K. (2016). The Importance of Extracellular Matrix in Skeletal Muscle Development and Function. In Composition and Function of the Extracellular Matrix in the Human Body. InTech. https://doi.org/10.5772/62230 | |
dc.relation.references | Guo, X., Guo, Z., Wei, H., Yang, H., He, Y., Xie, S., Wu, G., Deng, X., Zhao, Q., & Li, L. (2011). In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Photochemistry and Photobiology, 87(3), 734–740. https://doi.org/10.1111/j.1751-1097.2011.00908.x | |
dc.relation.references | Guth, L., & Samaha, F. J. (1969). Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Experimental Neurology, 25(1), 138–152. https://doi.org/10.1016/0014-4886(69)90077-6 | |
dc.relation.references | Hakim, C. H., Grange, R. W., & Duan, D. (2011). The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2-to 20-mo-old mdx mice. Journal of Applied Physiology, 110(6), 1656–1663. https://doi.org/10.1152/japplphysiol.01425.2010 | |
dc.relation.references | Happi Mbakam, C., Lamothe, G., & Tremblay, J. P. (2022). Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 9, 1–19. https://doi.org/10.3389/fmed.2022.859930 | |
dc.relation.references | Hegde, M. R., Chin, E. L. H., Mulle, J. G., Okou, D. T., Warren, S. T., & Zwick, M. E. (2008). Microarray-based mutation detection in the dystrophin gene. Human Mutation, 29(9), 1091–1099. https://doi.org/10.1002/humu.20831 | |
dc.relation.references | Helderman-van den Enden, A. T. J. M., Straathof, C. S. M., Aartsma-Rus, A., den Dunnen, J. T., Verbist, B. M., Bakker, E., Verschuuren, J. J. G. M., & Ginjaar, H. B. (2010). Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients. Neuromuscular Disorders, 20(4), 251–254. https://doi.org/10.1016/j.nmd.2010.01.013 | |
dc.relation.references | Helliwell, T. R., Nguyen thi, M., Morris, G. E., & Davies, K. E. (1992). The dystrophin-related protein, utrophin, is expressed on the sarcolemma of regenerating human skeletal muscle fibres in dystrophies and inflammatory myopathies. Neuromuscular Disorders, 2(3), 177–184. https://doi.org/10.1016/0960-8966(92)90004-P | |
dc.relation.references | Hernández, N., De Sanctis, J. B., Losada, M., Torres, S. H., Sosa, A., & Rivas, M. (2011). Estrés oxidativo en los músculos soleo y extensor digitorum longus (EDL) de ratas espontáneamente hipertensas. Invest Clin, 52(3), 239–251. | |
dc.relation.references | Hernández-Gascón, B., Grasa, J., Calvo, B., & Rodríguez, J. F. (2013). A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. Journal of Theoretical Biology, 335, 108–118. https://doi.org/10.1016/j.jtbi.2013.06.029 | |
dc.relation.references | Hild, F., Roux, S., Bernard, D., Hauss, G., & Rebai, M. (2013). On the use of 3D images and 3D displacement measurements for the analysis of damage mechanisms in concrete-like materials. 1–13. https://www.researchgate.net/publication/281752065 | |
dc.relation.references | Himič, V., & Davies, K. E. (2021). Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. European Journal of Human Genetics, 29(9), 1369–1376. https://doi.org/10.1038/s41431-021-00811-2 | |
dc.relation.references | Holzapfel, G. A. . (2001). Nonlinear solid mechanics : a continuum approach for engineering. John Wiley & Sons. | |
dc.relation.references | Hoppeler, H. (1990). THE RANGE OF MITOCHONDRIAL ADAPTATION IN MUSCLE FIBERS. Walter de Gruyter & Co, 1–20. https://doi.org/10.1515/9783110884784-045 | |
dc.relation.references | Huard, Johnny; Li, Yong, MD; Fu, F. H. M. (2002). Muscle Injuries and Repair: Current Trends in Research. The Journal of Bone & Joint Surgery, 84. https://doi.org/10.2106/00004623-200205000-00022 | |
dc.relation.references | Huynh, A. M., Aubin, C. E., Mathieu, P. A., & Labelle, H. (2007). Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clinical Biomechanics, 22(4), 392–399. https://doi.org/10.1016/j.clinbiomech.2006.11.010 | |
dc.relation.references | Im, K., Mareninov, S., Diaz, M. F. P., & Yong, W. H. (2019). An introduction to performing immunofluorescence staining. In Methods in Molecular Biology (Vol. 1897, pp. 299–311). Humana Press Inc. https://doi.org/10.1007/978-1-4939-8935-5_26 | |
dc.relation.references | Israelsen, N. M., Petersen, C. R., Barh, A., Jain, D., Jensen, M., Hannesschläger, G., Tidemand-Lichtenberg, P., Pedersen, C., Podoleanu, A., & Bang, O. (2019). Real-time high-resolution mid-infrared optical coherence tomography. Light: Science and Applications, 8(1). https://doi.org/10.1038/s41377-019-0122-5 | |
dc.relation.references | Iyer, P. S., Mavoungou, L. O., Ronzoni, F., Zemla, J., Schmid-Siegert, E., Antonini, S., Neff, L. A., Dorchies, O. M., Jaconi, M., Lekka, M., Messina, G., & Mermod, N. (2018). Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Molecular Therapy, 26(4), 1093–1108. https://doi.org/10.1016/j.ymthe.2018.01.021 | |
dc.relation.references | Janghra, N., Morgan, J. E., Sewry, C. A., Wilson, F. X., Davies, K. E., Muntoni, F., & Tinsley, J. (2016). Correlation of utrophin levels with the dystrophin protein complex and muscle fibre regeneration in duchenne and becker muscular dystrophy muscle biopsies. PLoS ONE, 11(3), 1–18. https://doi.org/10.1371/journal.pone.0150818 | |
dc.relation.references | Jani, A., Lochmiiller",’, H., Acsadi, G., Simoneaub, M., Huard, J., Garnierb, A., Karpati, G., & Massieb, B. (1997). Generation, validation, and large scale production of adenoviral recombinants with large size inserts such as a 6.3 kb human dystrophin cDNA. In Journal of Virological Methods ELSEVIER Journal of Virological Methods (Vol. 64). | |
dc.relation.references | JAVAN, R., HORVATH, J. J., CASE, L. E., AUSTIN, S., CORDERI, J., DUBROVSKY, A., KISHNANI, 4 PRIYA S., & BASHIR, M. R. (2013). GENERATING COLOR-CODED ANATOMIC MUSCLE MAPS FOR CORRELATION OF QUANTITATIVE MAGNETIC RESONANCE IMAGING ANALYSIS WITH CLINICAL EXAMINATION IN NEUROMUSCULAR DISORDERS. Muscle Nerve, August, 293–295. https://doi.org/10.1002/mus.23780 | |
dc.relation.references | Jeyakumar Sakthila, N. Smith Annette, E. Schleis Stephanie, C. Cattley Russell, Tillson D. Michael, & Henderson Ralph A. (2015). Effect of histologic processing on dimensions of skin. American Journal of Veterinary Research, 76, 939–945. | |
dc.relation.references | Jo, S. H., Youn, T. J., Koo, B. K., Park, J. S., Kang, H. J., Cho, Y. S., Chung, W. Y., Joo, G. W., Chae, I. H., Choi, D. J., Oh, B. H., Lee, M. M., Park, Y. B., & Kim, H. S. (2006). Renal Toxicity Evaluation and Comparison Between Visipaque (Iodixanol) and Hexabrix (Ioxaglate) in Patients With Renal Insufficiency Undergoing Coronary Angiography. The RECOVER Study: A Randomized Controlled Trial. Journal of the American College of Cardiology, 48(5), 924–930. https://doi.org/10.1016/j.jacc.2006.06.047 | |
dc.relation.references | Johansson, T., Meier, P., & Blickhan, R. (2000). A finite-element model for the mechanical analysis of skeletal muscles. Journal of Theoretical Biology, 206(1), 131–149. https://doi.org/10.1006/jtbi.2000.2109 | |
dc.relation.references | Kami, K., & Senba, E. (2002). In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles. Journal of Histochemistry and Cytochemistry, 50(12), 1579–1589. https://doi.org/10.1177/002215540205001202 | |
dc.relation.references | Kammoun, M., Cassar-Malek, I., Meunier, B., & Picard, B. (2014). A simplified immunohistochemical classification of skeletal muscle fibres in mouse. European Journal of Histochemistry, 58(2), 163–168. https://doi.org/10.4081/ejh.2014.2254 | |
dc.relation.references | Karpati, G., Hilton-Jones, D., Bushby, K., & Griggs, R. C. (2010). Disorders of Voluntary Muscle (G. Karpati, D. Hilton-Jones, K. Bushby, & R. C. Griggs, Eds.). Cambridge University Press. | |
dc.relation.references | Karpati George, Stirling Carpenter, Morris Glenn, Davies KAy, Claude guerin, & Holland Paul. (1993). Localization and quantification of the chromosome 6-encoded dystrophin-related protein in normal and pathological human muscle. Journal of Neuropathology and Experimental Neurology , 52, 119–128. http://jnen.oxfordjournals.org/ | |
dc.relation.references | Keating, A. (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell, 10(6), 709–716. https://doi.org/10.1016/j.stem.2012.05.015 | |
dc.relation.references | Kennedy, T. L., Moir, L., Hemming, S., Edwards, B., Squire, S., Davies, K., & Guiraud, S. (2017). Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle. Skeletal Muscle, 7(1), 22. https://doi.org/10.1186/s13395-017-0139-5 | |
dc.relation.references | Keyes, S. D., Gillard, F., Soper, N., Mavrogordato, M. N., Sinclair, I., & Roose, T. (2016). Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation. Journal of Biomechanics, 49(9), 1802–1811. https://doi.org/10.1016/j.jbiomech.2016.04.023 | |
dc.relation.references | Khuu, S., Fernandez, J. W., & Handsfield, G. G. (2021). A Coupled Mechanobiological Model of Muscle Regeneration In Cerebral Palsy. Frontiers in Bioengineering and Biotechnology, 9, 1–17. https://doi.org/10.3389/fbioe.2021.689714 | |
dc.relation.references | Kojouharov, H. V., Chen-Charpentier, B. M., Solis, F. J., Biguetti, C., & Brotto, M. (2021). A simple model of immune and muscle cell crosstalk during muscle regeneration. Mathematical Biosciences, 333, 1–21. https://doi.org/10.1016/j.mbs.2021.108543 | |
dc.relation.references | Kora, P., Ooi, C. P., Faust, O., Raghavendra, U., Gudigar, A., Chan, W. Y., Meenakshi, K., Swaraja, K., Plawiak, P., & Rajendra Acharya, U. (2022). Transfer learning techniques for medical image analysis: A review. In Biocybernetics and Biomedical Engineering (Vol. 42, Issue 1, pp. 79–107). Elsevier B.V. https://doi.org/10.1016/j.bbe.2021.11.004 | |
dc.relation.references | Kornegay, J. N., Bogan, J. R., Bogan, D. J., Childers, M. K., Li, J., Nghiem, P., Detwiler, D. A., Larsen, C. A., Grange, R. W., Bhavaraju-Sanka, R. K., Tou, S., Keene, B. P., Howard, J. F., Wang, J., Fan, Z., Schatzberg, S. J., Styner, M. A., Flanigan, K. M., Xiao, X., & Hoffman, E. P. (2012). Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mammalian Genome, 23(1–2), 85–108. https://doi.org/10.1007/s00335-011-9382-y | |
dc.relation.references | Kratkiewicz, K., Pattyn, A., Alijabbari, N., & Mehrmohammadi, M. (2022). Ultrasound and Photoacoustic Imaging of Breast Cancer: Clinical Systems, Challenges, and Future Outlook. Journal of Clinical Medicine, 11(5), 1–19. https://doi.org/10.3390/jcm11051165 | |
dc.relation.references | Kuthe, C. D., & Uddanwadiker, R. V. (2016). Investigation of effect of fiber orientation on mechanical behavior of skeletal muscle. Journal of Applied Biomaterials and Functional Materials, 14(2), e154–e162. https://doi.org/10.5301/jabfm.5000275 | |
dc.relation.references | Lapierre-Landry, M., Gordon, A. Y., Penn, J. S., & Skala, M. C. (2017). In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-10050-5 | |
dc.relation.references | Larin, K. V., Ghosn, M. G., Bashkatov, A. N., Genina, E. A., Trunina, N. A., & Tuchin, V. V. (2012). Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. In IEEE Journal on Selected Topics in Quantum Electronics (Vol. 18, Issue 3, pp. 1244–1259). https://doi.org/10.1109/JSTQE.2011.2181991 | |
dc.relation.references | Le Fournis, C., Jeanneau, C., Giraud, T., El Karim, I., Lundy, F. T., & About, I. (2021). Fibroblasts Control Macrophage Differentiation during Pulp Inflammation. Journal of Endodontics, 47(9), 1427–1434. https://doi.org/10.1016/j.joen.2021.06.015 | |
dc.relation.references | Lewis, R. A. (2004). Medical phase contrast x-ray imaging: Current status and future prospects. In Physics in Medicine and Biology (Vol. 49, Issue 16, pp. 3573–3583). https://doi.org/10.1088/0031-9155/49/16/005 | |
dc.relation.references | Li, C., & Samulski, R. J. (2020). Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, 21(4), 255–272. https://doi.org/10.1038/s41576-019-0205-4 | |
dc.relation.references | Li, D., & Wu, M. (2021). Pattern recognition receptors in health and diseases. In Signal Transduction and Targeted Therapy (Vol. 6, Issue 1, pp. 1–24). Springer Nature. https://doi.org/10.1038/s41392-021-00687-0 | |
dc.relation.references | Lieber, R. L., & Ward, S. R. (2013). Cellular Mechanisms of Tissue Fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. J Physiol Cell Physiol, 305, 241–252. https://doi.org/10.1152/ajpcell.00173.2013.-Skeletal | |
dc.relation.references | Lim, K. R. Q., Echigoya, Y., Nagata, T., Kuraoka, M., Kobayashi, M., Aoki, Y., Partridge, T., Maruyama, R., Takeda, S., & Yokota, T. (2019). Efficacy of Multi-exon Skipping Treatment in Duchenne Muscular Dystrophy Dog Model Neonates. Molecular Therapy, 27(1), 76–86. https://doi.org/10.1016/j.ymthe.2018.10.011 | |
dc.relation.references | Lin, H. T., Otsu, M., & Nakauchi, H. (2013). Stem cell therapy: An exercise in patience and prudence. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609), 1–15. https://doi.org/10.1098/rstb.2011.0334 | |
dc.relation.references | Liu, N., & Bassel-Duby, R. (2019). Molecular Basis of Muscle Disease. Muscle Gene Therapy, Second Edition, 13–39. https://doi.org/10.1007/978-3-030-03095-7_2 | |
dc.relation.references | Liu, Z., Yeung, K., & Liu, Z. (2008). The Preconditioning and Stress Relaxation of Skin Tissue. Journal of Biomedical & Pharmaceutical Engineering, 2, 22–28. | |
dc.relation.references | Lopez, M. A., Bontiff, S., Adeyeye, M., Shaibani, A. I., Alexander, M. S., Wynd, S., & Boriek, A. M. (2021). Mechanics of dystrophin deficient skeletal muscles in very young mice and effects of age. American Journal of Physiology - Cell Physiology, 321(2), C230–C246. https://doi.org/10.1152/ajpcell.00155.2019 | |
dc.relation.references | Lovering, R. M., Porter, N. C., & Block, R. J. (2005). The muscular dystrophies: From genes to therapies. Physical Therapy, 85(12), 1372–1388. https://doi.org/10.1093/ptj/85.12.1372 | |
dc.relation.references | Madi, K., Tozzi, G., Zhang, Q. H., Tong, J., Cossey, A., Au, A., Hollis, D., & Hild, F. (2013). Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Medical Engineering and Physics, 35(9), 1298–1312. https://doi.org/10.1016/j.medengphy.2013.02.001 | |
dc.relation.references | Maeda, E., Ando, Y., Takeshita, K., & Matsumoto, T. (2022). Through the cleared aorta: three-dimensional characterization of mechanical behaviors of rat thoracic aorta under intraluminal pressurization using optical clearing method. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-12429-5 | |
dc.relation.references | Maeda, E., Kuroyanagi, K., & Matsumoto, T. (2021). Microscopic characterisation of local strain field in healing tissue in the central third defect of mouse patellar tendon at early-phase of healing. Journal of the Mechanical Behavior of Biomedical Materials, 123. https://doi.org/10.1016/j.jmbbm.2021.104702 | |
dc.relation.references | Maffioletti, S. M., Noviello, M., English, K., & Tedesco, F. S. (2014). Stem cell transplantation for muscular dystrophy: The challenge of immune response. BioMed Research International, 2014, 1–12. https://doi.org/10.1155/2014/964010 | |
dc.relation.references | Mahdian, M., Salehi, H. S., Lurie, A. G., Yadav, S., & Tadinada, A. (2016). Tissue characterization using optical coherence tomography and cone beam computed tomography: A comparative pilot study. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 122(1), 98–103. https://doi.org/10.1016/j.oooo.2016.03.021 | |
dc.relation.references | Mahdy, M. A. A. (2019). Skeletal muscle fibrosis: an overview. Cell and Tissue Research, 375(3), 575–588. https://doi.org/10.1007/s00441-018-2955-2 | |
dc.relation.references | Maillet, M., Kammoun, M., Avril, S., Ho Ba Tho, M.-C., & Trabelsi, O. (2023). Non-destructive Characterization of Skeletal Muscle Extracellular Matrix Morphology by Combining Optical Coherence Tomography (OCT) Imaging with Tissue Clearing. Annals of Biomedical Engineering, 1–14. https://doi.org/10.1007/s10439-023-03274-2 | |
dc.relation.references | Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686. https://doi.org/10.1016/j.it.2004.09.015 | |
dc.relation.references | Manzur, A. Y., Kinali, M., & Muntoni, F. (2008). Update on the management of Duchenne muscular dystrophy. Archives of Disease in Childhood, 93(11), 986–990. https://doi.org/10.1136/adc.2007.118141 | |
dc.relation.references | Marden, F. A., Connolly, A. M., Siegel, M. J., & Rubin, D. A. (2005). Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal Radiology, 34(3), 140–148. https://doi.org/10.1007/s00256-004-0825-3 | |
dc.relation.references | Mareedu, S., Million, E. D., Duan, D., & Babu, G. J. (2021). Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. In Frontiers in Physiology (Vol. 12, pp. 1–19). Frontiers Media S.A. https://doi.org/10.3389/fphys.2021.647010 | |
dc.relation.references | Martin, K. S., Blemker, S. S., & Peirce, S. M. (2015). Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. Journal of Applied Physiology, 118(10), 1299–1309. https://doi.org/10.1152/japplphysiol.01150.2014 | |
dc.relation.references | Martin, K. S., Kegelman, C. D., Virgilio, K. M., Passipieri, J. A., Christ, G. J., Blemker, S. S., & Peirce, S. M. (2016). In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Annals of Biomedical Engineering, 45(3), 747–760. https://doi.org/10.1007/s10439-016-1707-2 | |
dc.relation.references | Martin, K. S., Virgilio, K. M., Peirce, S. M., & Blemker, S. S. (2016). Computational modeling of muscle regeneration and adaptation to advance muscle tissue regeneration strategies. Cells Tissues Organs, 202(3–4), 250–266. https://doi.org/10.1159/000443635 | |
dc.relation.references | Marzuca-Nassr, G. N., Vitzel, K. F., Mancilla-Solorza, E., & Márquez, J. L. (2018). Sarcomere Structure : The Importance of Desmin Protein in Muscle Atrophy. Int. J. Morphol, 36(2), 576–583. https://doi.org/10.4067/S0717-95022018000200576 | |
dc.relation.references | Matsumura, K., Shasby, D. M., & Campbell, K. P. (1993). Purification of dystrophin-related protein (utrophin) from lung and its identification in pulmonary artery endothelial cells. FEBS Letters, 326(1–3), 289–293. https://doi.org/10.1016/0014-5793(93)81810-M | |
dc.relation.references | Medicines Agency, E. (2017). Propylene glycol used as an excipient. www.ema.europa.eu/contact | |
dc.relation.references | Mendell, J. R., & Clark, K. R. (2006). Challenges for gene therapy for muscular dystrophy. Current Neurology and Neuroscience Reports, 6(1), 47–56. https://doi.org/10.1007/s11910-996-0009-8 | |
dc.relation.references | Merkus, H. G. (2009). Particle size measurements : fundamentals, practice, quality. Springer. | |
dc.relation.references | Minetti, G. C., Colussi, C., Adami, R., Serra, C., Mozzetta, C., Parente, V., Fortuni, S., Straino, S., Sampaolesi, M., Di Padova, M., Illi, B., Gallinari, P., Steinkühler, C., Capogrossi, M. C., Sartorelli, V., Bottinelli, R., Gaetano, C., & Puri, P. L. (2006). Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Medicine, 12(10), 1147–1150. https://doi.org/10.1038/nm1479 | |
dc.relation.references | Moens, P., Baatsen, P. H. W. W., & Mari~chal, G. (1993). Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. ]Ournal of Muscle Research and Cell Motility, 14, 446–451 | |
dc.relation.references | Mukund, K., & Subramaniam, S. (2020). Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(1), 1–46. https://doi.org/10.1002/wsbm.1462 | |
dc.relation.references | Mullard, A. (2023). FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nature Reviews Drug Discovery, 22(8), 610–610. https://doi.org/10.1038/d41573-023-00103-y | |
dc.relation.references | Muñoz-Cánoves, P., Scheele, C., Pedersen, B. K., & Serrano, A. L. (2013). Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS Journal, 280(17), 4131–4148. https://doi.org/10.1111/febs.12338 | |
dc.relation.references | Muntoni, F., & Wells, D. (2007). Genetic treatments in muscular dystrophies. Current Opinion in Neurology, 20(5), 590–594. https://doi.org/10.1097/WCO.0b013e3282efc157 | |
dc.relation.references | Nadifi, S., Bellayou, H., Hamzi, K., Rafai, M. A., Karkouri, M., Slassi, I., & Azeddoug, H. (2009). Duchenne and becker muscular dystrophy: Contribution of a molecular and immunohistochemical analysis in diagnosis in Morocco. Journal of Biomedicine and Biotechnology, 2009, 1–5. https://doi.org/10.1155/2009/325210 | |
dc.relation.references | Nathan, C. (2006). Neutrophils and immunity: Challenges and opportunities. Nature Reviews Immunology, 6(3), 173–182. https://doi.org/10.1038/nri1785 | |
dc.relation.references | Nebelung, S., Brill, N., Müller, F., Tingart, M., Pufe, T., Merhof, D., Schmitt, R., Jahr, H., & Truhn, D. (2016). Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 56, 106–119. https://doi.org/10.1016/j.jmbbm.2015.11.025 | |
dc.relation.references | Nix, J. S., & Moore, S. A. (2020). What every neuropathologist needs to know: The muscle biopsy. In Journal of Neuropathology and Experimental Neurology (Vol. 79, Issue 7, pp. 719–733). Oxford University Press. https://doi.org/10.1093/jnen/nlaa046 | |
dc.relation.references | Okabe, Y., & Medzhitov, R. (2014). Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell, 157(4), 832–844. https://doi.org/10.1016/j.cell.2014.04.016 | |
dc.relation.references | Oliveira, L., Carvalho, M. I., Nogueira, E., & Tuchin, V. V. (2013). Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose. Journal of Innovative Optical Health Sciences, 6(2). https://doi.org/10.1142/S1793545813500120 | |
dc.relation.references | Oliveira, L., Carvalho, M. I., Nogueira, E., & Tuchin, V. V. (2016). Optical clearing mechanisms characterization in muscle. Journal of Innovative Optical Health Sciences, 9(5), 1–19. https://doi.org/10.1142/S1793545816500358 | |
dc.relation.references | Oliveira, L., Lage, A., Clemente, M. P., & Tuchin, V. V. (2009). Optical clearing of muscle with propylene glycol. Saratov Fall Meeting 2009: International School for Junior Scientists and Students on Optics, Laser Physics, and Biophotonics, 7547, 75470E. https://doi.org/10.1117/12.853540 | |
dc.relation.references | Oliveira, L. M., Carvalho, M. I., Nogueira, E. M., & Tuchin, V. V. (2015). Errata: Diffusion characteristics of ethylene glycol in skeletal muscle. Journal of Biomedical Optics, 20(5), 059801. https://doi.org/10.1117/1.jbo.20.5.059801 | |
dc.relation.references | Oliveira, L. M., Carvalho, M. I., Nogueira, E. M., & Tuchin, V. V. (2018). Skeletal muscle dispersion (400-1000 nm) and kinetics at optical clearing. Journal of Biophotonics, 11, 1–12. https://doi.org/10.1002/jbio.201700094 | |
dc.relation.references | Orhan Hakki Karatas, & Ebubekir Toy. (2014). Three-dimensional imaging techniques: A literature review. European Journal of Dentistry, 8(1), 9. https://doi.org/10.4103/1305-7456.126269 | |
dc.relation.references | Oury, M. P., Dumont, R., Jurie, C., Hocquette, J. F., & Picard, B. (2010). Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle. BMC Biochemistry, 11(1), 1–13. https://doi.org/10.1186/1471-2091-11-12 | |
dc.relation.references | Payne, C. M., Stern, L. Z., Curless, R. G., & Hannapel, L. K. (1975). Ultrastructural Fiber Typing in Normal and Diseased Human Muscle. Journal Of the Neurological Sciences, 25, 99–108. | |
dc.relation.references | Pedemonte, M., Sandri, C., Schiaffino, S., & Minetti, C. (1999). Early Decrease of IIx Myosin Heavy Chain Transcripts in Duchenne Muscular Dystrophy. http://www.idealibrary.com | |
dc.relation.references | Pertl, C., Eblenkamp, M., Pertl, A., Pfeifer, S., Wintermantel, E., Lochmüller, H., Walter, M. C., Krause, S., & Thirion, C. (2013). A new web-based method for automated analysis of muscle histology. BMC Musculoskeletal Disorders, 14. https://doi.org/10.1186/1471-2474-14-26 | |
dc.relation.references | Pessemesse, L., Schlernitzauer, A., Sar, C., Levin, J., Grandemange, S., Seyer, P., Favier, B., Kaminski, S., Cabello, G., Cabello, C. W., & Grande, S. (2012). Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity. FASEB Journal, 26(2), 748–756. https://doi.org/10.1096/fj.11-195933ï | |
dc.relation.references | Peterson, R. A., & Cavanaugh, J. E. (2020). Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. Journal of Applied Statistics, 47(13–15), 2312–2327. https://doi.org/10.1080/02664763.2019.1630372 | |
dc.relation.references | Plotnikov, S., Juneja, V., Isaacson, A. B., Mohler, W. A., & Campagnola, P. J. (2006). Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophysical Journal, 90(1), 328–339. https://doi.org/10.1529/biophysj.105.066944 | |
dc.relation.references | POOLE, D. C., SEXTON, W. L., FARKAS, G. A., POWERS, S. K., & REID, M. B. (1997). Diaphragm structure and function in health and disease. Medicine & Science in Sports & Exercise, 29(6). https://journals.lww.com/acsm-msse/Fulltext/1997/06000/Diaphragm_structure_and_function_in_health_and.3.aspx | |
dc.relation.references | Pradnya, D., Nalini, A., Nagarathna, R., Sendhilkumar, R., James, T., Raju, T., & Sathyaprabha, T. (2021). Effect of yoga and physiotherapy on pulmonary functions in children with duchenne muscular dystrophy – A comparative study. International Journal of Yoga, 14(2), 133. https://doi.org/10.4103/ijoy.ijoy_49_20 | |
dc.relation.references | Proskurin, S. G., & Meglinski, I. V. (2007). Optical coherence tomography imaging depth enhancement by superficial skin optical clearing. Laser Physics Letters, 4(11), 824–826. https://doi.org/10.1002/lapl.200710056 | |
dc.relation.references | Purslow, P. P. (2020). The Structure and Role of Intramuscular Connective Tissue in Muscle Function. Frontiers in Physiology, 11, 1–15. https://doi.org/10.3389/fphys.2020.00495 | |
dc.relation.references | Qaisar, R., & Larsson, L. (2014). What determines myonuclear domain size? Indian Journal of Physiology and Pharmacology, 58(1), 1–12. | |
dc.relation.references | Reyes-Fernandez, P. C., Periou, B., Decrouy, X., Relaix, F., & Authier, F. J. (2019). Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle. Skeletal Muscle, 9(1), 1–15. https://doi.org/10.1186/s13395-019-0200-7 | |
dc.relation.references | Reyes-Juárez, J. L., & Zarain-Herzberg, Á. (2006). Función del retículo sarcoplásmico y su papel en las enfermedades cardíacas. Archivos de Cardiologia de Mexico, 76(SUPPL. 4), 18–32. | |
dc.relation.references | Ricotti, V., Ridout, D. A., Scott, E., Quinlivan, R., Robb, S. A., Manzur, A. Y., Muntoni, F., & On Behalf of the NorthStar Clinical Network. (2013). Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. Journal of Neurology, Neurosurgery and Psychiatry, 84(6), 698–705. https://doi.org/10.1136/jnnp-2012-303902 | |
dc.relation.references | Robinson-Hamm, J. N., & Gersbach, C. A. (2016). Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Human Genetics, 135(9), 1029–1040. https://doi.org/10.1007/s00439-016-1725-z | |
dc.relation.references | Rodrigues, M., Echigoya, Y., Maruyama, R., Lim, K. R. Q., Fukada, S. I., & Yokota, T. (2016). Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Scientific Reports, 6, 1–9. https://doi.org/10.1038/srep38371 | |
dc.relation.references | Rodriguez, J., Pierre, N., Naslain, D., Bontemps, F., Ferreira, D., Priem, F., Deldicque, L., & Francaux, M. (2017). Urolithin B, a newly identified regulator of skeletal muscle mass. Journal of Cachexia, Sarcopenia and Muscle, 8(4), 583–597. https://doi.org/10.1002/jcsm.12190 | |
dc.relation.references | Rueda, A., de Alba-Aguayo, D. R., & Valdivia, H. H. (2014). Receptor de rianodina, fuga de calcio y arritmias. Archivos de Cardiología de México, 84(3), 191–201. https://doi.org/10.1016/j.acmx.2013.12.008 | |
dc.relation.references | Ruffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R. G., Rosenthal, N., & Nerlov, C. (2009). A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17475–17480. https://doi.org/10.1073/pnas.0908641106 | |
dc.relation.references | Ruiz-Bolaños, J. I., Kojouharov, H. V., & Solis, F. J. (2024). Theoretical and numerical study of a skeletal muscle regeneration model with inflammatory response. International Journal of Computer Mathematics, 101(6), 636–652. https://doi.org/10.1080/00207160.2024.2362786 | |
dc.relation.references | Sag, D., Carling, D., Stout, R. D., & Suttles, J. (2008). Adenosine 5′-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. The Journal of Immunology, 181(12), 8633–8641. https://doi.org/10.4049/jimmunol.181.12.8633 | |
dc.relation.references | Sahani, R., Wallace, C. H., Jones, B. K., & Blemker, S. S. (2022). Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne muscular dystrophy. Journal of Applied Physiology (Bethesda, Md. : 1985), 132(3), 653–672. https://doi.org/10.1152/japplphysiol.00248.2021 | |
dc.relation.references | Sandonà, D., & Betto, R. (2009). Sarcoglycanopathies: Molecular pathogenesis and therapeutic prospects. In Expert Reviews in Molecular Medicine (Vol. 11, pp. 1–27). https://doi.org/10.1017/S1462399409001203 | |
dc.relation.references | Schiaffino, S., & Reggiani, C. (2011). FIBER TYPES IN MAMMALIAN SKELETAL MUSCLES. Physiol Rev, 1447–1531. https://doi.org/10.1152/physrev.00031.2010 | |
dc.relation.references | Screen, H. R. C., Shelton, J. C., Chhaya, V. H., Kayser, M. V., Bader, D. L., & Lee, D. A. (2005). The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Annals of Biomedical Engineering, 33(8), 1090–1099. https://doi.org/10.1007/s10439-005-5777-9 | |
dc.relation.references | Sher, I., Moverman, D., Ketter-Katz, H., Moisseiev, E., & Rotenstreich, Y. (2020). In vivo retinal imaging in translational regenerative research. Annals of Translational Medicine, 8(17), 1096–1096. https://doi.org/10.21037/atm-20-4355 | |
dc.relation.references | Shimamura, Y., Murayama, R., Kurokawa, H., Miyazaki, M., Mihata, Y., & Kmaguchi, S. (2011). Influence of tooth-surface hydration conditions on optical coherence-tomography imaging. Journal of Dentistry, 39(8), 572–577. https://doi.org/10.1016/j.jdent.2011.06.004 | |
dc.relation.references | Sicherer, S. T., Venkatarama, R. S., & Grasman, J. M. (2020). Recent trends in injury models to study skeletal muscle regeneration and repair. In Bioengineering (Vol. 7, Issue 3, pp. 1–11). MDPI AG. https://doi.org/10.3390/bioengineering7030076 | |
dc.relation.references | Sienkiewicz, D., Kulak, W., Okurowska-zawada, B., & Paszko-patej, G. (2015). Duchenne muscular dystrophy: current cell therapies. Therapeutic Advances in Neurological Disorders, 8, 166–177. https://doi.org/10.1177/1756285615586123 | |
dc.relation.references | Skuk, D., Goulet, M., & Tremblay, J. P. (2006). Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplantation, 15(7), 659–663. https://doi.org/10.3727/000000006783981648 | |
dc.relation.references | Soblechero-Martín, P., López-Martínez, A., de la Puente-Ovejero, L., Vallejo-Illarramendi, A., & Arechavala-Gomeza, V. (2021). Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathology and Applied Neurobiology, 47(6), 711–723. https://doi.org/10.1111/nan.12735 | |
dc.relation.references | Stalhand, J., Klarbring, A., & Holzapfel, G. A. (2011). A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. Journal of Theoretical Biology, 268, 120–130. https://doi.org/10.1016/j.jtbi.2010.10.008 | |
dc.relation.references | Starosta, A., & Konieczny, P. (2021). Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. In Cellular and Molecular Life Sciences (Vol. 78, Issue 11, pp. 4867–4891). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00018-021-03821-x | |
dc.relation.references | Stedman, H. H. (1991). The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy (Vol. 352, pp. 536–539). Nature. | |
dc.relation.references | Stefanati, M., Villa, C., Torrente, Y., & Rodriguez Matas, J. F. (2020). A mathematical model of healthy and dystrophic skeletal muscle biomechanics. Journal of the Mechanics and Physics of Solids, 134, 1–16. https://doi.org/10.1016/j.jmps.2019.103747 | |
dc.relation.references | Stephenson, E. R., & Kojouharov, H. V. (2018). A mathematical model of skeletal muscle regeneration. Mathematical Methods in the Applied Sciences, 41(18), 8589–8602. https://doi.org/10.1002/mma.4908 | |
dc.relation.references | Stožer, A., Vodopivc, P., & Bombek, L. K. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological Research, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371 | |
dc.relation.references | Sudheendran, N., Mohamed, M., Ghosn, M. G., Tuchin, V. V., & Larin, K. V. (2010). Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography. Journal of Innovative Optical Health Sciences, 3(3), 169–176. https://doi.org/10.1142/S1793545810001039 | |
dc.relation.references | Swaan, A., Mannaerts, C. K., Muller, B. G., van Kollenburg, R. A. A., Lucas, M., Savci-Heijink, C. D., van Leeuwen, T. G., de Reijke, T. M., & de Bruin, D. M. (2019). The First In Vivo Needle-Based Optical Coherence Tomography in Human Prostate: A Safety and Feasibility Study. Lasers in Surgery and Medicine, 51(5), 390–398. https://doi.org/10.1002/lsm.23093 | |
dc.relation.references | Swelling, O. I., Salinas, S. D., Clark, M. M., & Amini, R. (2019). Mechanical response changes in porcine tricuspid valve anterior leaflet under Osmotic-Induced Swelling. Bioengineering, 6(3), 1–8. https://doi.org/10.3390/bioengineering6030070 | |
dc.relation.references | Taglietti, V., Kefi, K., Mirciloglu, B., Bastu, S., Masson, J. D., Bronisz-Budzyńska, I., Gouni, V., Ferri, C., Jorge, A., Gentil, C., Pietri-Rouxel, F., Malfatti, E., Lafuste, P., Tiret, L., & Relaix, F. (2024). Progressive cardiomyopathy with intercalated disc disorganization in a rat model of Becker dystrophy. EMBO Reports, 4898–4920. https://doi.org/10.1038/s44319-024-00249-9 | |
dc.relation.references | Takaza, M., Moerman, K. M., Gindre, J., Lyons, G., & Simms, C. K. (2013). The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. Journal of the Mechanical Behavior of Biomedical Materials, 17, 209–220. https://doi.org/10.1016/j.jmbbm.2012.09.001 | |
dc.relation.references | Talbot, J., & Maves, L. (2016). Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. In Wiley Interdisciplinary Reviews: Developmental Biology (Vol. 5, Issue 4, pp. 518–534). John Wiley and Sons Inc. https://doi.org/10.1002/wdev.230 | |
dc.relation.references | Talman, E. A., Boughner, D. R., The, P., & Robarts, J. P. (2001). Effect of Altered Hydration on the Internal Shear Properties of Porcine Aortic Valve Cusps. The Society of Thoracic Surgeons, 375–378. | |
dc.relation.references | Tavana, S., Clark, J. N., Prior, J., Baxan, N., Masouros, S. D., Newell, N., & Hansen, U. (2020). Quantifying deformations and strains in human intervertebral discs using Digital Volume Correlation combined with MRI (DVC-MRI). Journal of Biomechanics, 102, 1–7. https://doi.org/10.1016/j.jbiomech.2020.109604 | |
dc.relation.references | Thangarajh, M., Hendriksen, J., Mcdermott, M. P., & Martens, W. (2019). Relationships between DMD mutations and neurodevelopment in dystrophinopathy. Neurology, 93, 1597–1604. https://doi.org/10.1212/WNL.0000000000008363 | |
dc.relation.references | Tidball, J. G., & Villalta, S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 298(5). https://doi.org/10.1152/ajpregu.00735.2009 | |
dc.relation.references | Tinsley, J., Deconinck, N., Fisher, R., Kahn, D., Phelps, S., Gillis, J. M., & Davies, K. (1998). Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nature Medicine, 4(12), 1441–1444. https://doi.org/10.1038/4033 | |
dc.relation.references | Topin, N., Matecki, S., Le Bris, S., Rivier, F., Echenne, B., Prefaut, C., & Ramonatxo, M. (2002). Dose-dependent effect of individualized respiratory muscle training in children with Duchenne muscular dystrophy. Neuromuscular Disorders, 12(6), 576–583. https://doi.org/10.1016/S0960-8966(02)00005-6 | |
dc.relation.references | Touznik, A., Lee, J. J. A., & Yokota, T. (2014). New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opinion on Biological Therapy, 14(6), 809–819. https://doi.org/10.1517/14712598.2014.896335 | |
dc.relation.references | Tsioumpekou, M., Krijgsman, D., Leusen, J. H. W., & Olofsen, P. A. (2023). The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells, 12(15), 2–24. https://doi.org/10.3390/cells12151981 | |
dc.relation.references | Tulangekar, A., & Sztal, T. E. (2021). Inflammation in duchenne muscular dystrophy–exploring the role of neutrophils in muscle damage and regeneration. Biomedicines, 9(10), 1–11. https://doi.org/10.3390/biomedicines9101366 | |
dc.relation.references | Turner, R. (2016). Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1705). https://doi.org/10.1098/rstb.2015.0349 | |
dc.relation.references | Udan, R. S., Piazza, V. G., Hsu, C. W., Hadjantonakis, A. K., & Dickinson, M. E. (2014). Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge), 141(22), 4406–4414. https://doi.org/10.1242/dev.111021 | |
dc.relation.references | Ujfalusi, Z., Telek, E., Nyitrai, M., Bogner, P., Rostás, T., Hild, G., Trif, L., & Hild, G. (2022). The effect of Iodixanol on the thermodynamic properties of blood components. Thermochimica Acta, 710, 1–7. https://doi.org/10.1016/j.tca.2022.179165 | |
dc.relation.references | Ustione, A., & Piston, D. W. (2011). A simple introduction to multiphoton microscopy. Journal of Microscopy, 243(3), 221–226. https://doi.org/10.1111/j.1365-2818.2011.03532.x | |
dc.relation.references | Van Loocke, M., Lyons, C. G., & Simms, C. K. (2008). Viscoelastic properties of passive skeletal muscle in compression: Stress-relaxation behaviour and constitutive modelling. Journal of Biomechanics, 41(7), 1555–1566. https://doi.org/10.1016/j.jbiomech.2008.02.007 | |
dc.relation.references | Varaka, M., Vardaki, M. Z., Gaitanis, G., Bassukas, I. D., & Kourkoumelis, N. (2022). The Effect of Different Optical Clearing Agents on the Attenuation Coefficient and Epidermal Thickness of Human Skin Assessed by Optical Coherence Tomography. Applied Sciences (Switzerland), 12(16), 1–9. https://doi.org/10.3390/app12168277 | |
dc.relation.references | Verdera, H. C., Kuranda, K., & Mingozzi, F. (2020). AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular Therapy, 28(3), 723–746. https://doi.org/10.1016/j.ymthe.2019.12.010 | |
dc.relation.references | Verhaart, I. E. C., & Aartsma-Rus, A. (2019). Therapeutic developments for Duchenne muscular dystrophy. Nature Reviews Neurology, 15(7), 373–386. https://doi.org/10.1038/s41582-019-0203-3 | |
dc.relation.references | Villota-Narvaez, Y., Garzon-Alvarado, D. A., & Ramirez-Martinez, A. M. (2021). A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation. BioSystems, 202(January), 104355. https://doi.org/10.1016/j.biosystems.2021.104355 | |
dc.relation.references | Virgilio, K. M., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2015). Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus, 5(2), 1–10. https://doi.org/10.1098/rsfs.2014.0080 | |
dc.relation.references | Virgilio, K. M., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2018). Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J Appl Physiol, 8(12), 58–61. https://doi.org/10.1152/japplphysiol.00379.2018 | |
dc.relation.references | Wang, R. K. (2002). Tissue Clearing as a Tool to Enhance Imaging Capability for Optical Coherence Tomography. http://proceedings.spiedigitallibrary.org/ | |
dc.relation.references | Wang, Y., Hahn, J., & Zhang, Y. (2018). Mechanical Properties of Arterial Elastin with Water Loss. Journal of Biomechanical Engineering, 140(4), 1–8. https://doi.org/10.1115/1.4038887 | |
dc.relation.references | Wang, Z., & Tang, Z. (2016). Composition and Function of Extracellular Matrix in Development of Skeletal Muscle. In Composition and Function of the Extracellular Matrix in the Human Body (pp. 25–43). InTech. https://doi.org/10.5772/62645 | |
dc.relation.references | Waterman, C. M., Boothe, T., Hilbert, L., Heide, M., Berninger, L., Huttner, W. B., Zaburdaev, V., Vastenhouw, N. L., Myers, E. W., Drechsel, D. N., & Rink, J. C. (2017). A tunable refractive index matching medium for live imaging cells, tissues and model organisms. Elife. https://doi.org/10.7554/eLife.27240.001 | |
dc.relation.references | Webster, C., Silberstein, L., Hays, A. P., & Blau’, H. M. (1988). Fast Muscle Fibers Are Preferentially Affected in Duchenne Muscular Dystrophy. In Cell (Vol. 52). | |
dc.relation.references | Wehling-Henricks, M., Jordan, M. C., Gotoh, T., Grody, W. W., Roos, K. P., & Tidball, J. G. (2010). Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS ONE, 5(5). https://doi.org/10.1371/journal.pone.0010763 | |
dc.relation.references | Wells, P. B., Yeh, A. T., & Humphrey, J. D. (2006). Influence of glycerol on the mechanical reversibility and thermal damage susceptibility of collagenous tissues. IEEE Transactions on Biomedical Engineering, 53(4), 747–753. https://doi.org/10.1109/TBME.2006.870232 | |
dc.relation.references | Westman, A. M., Peirce, S. M., Christ, G. J., & Blemker, S. S. (2021). Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Computational Biology, 17(5), 1–29. https://doi.org/10.1371/journal.pcbi.1008937 | |
dc.relation.references | Wheatley, B. B. (2020). Investigating Passive Muscle Mechanics With Biaxial Stretch. Frontiers in Physiology, 11, 1–15. https://doi.org/10.3389/fphys.2020.01021 | |
dc.relation.references | Wheatley, B. B., Odegard, G. M., Kaufman, K. R., & Donahue, T. L. H. (2016). How does tissue preparation affect skeletal muscle transverse isotropy? Journal of Biomechanics, 49(13), 3056–3060. https://doi.org/10.1016/j.jbiomech.2016.06.034 | |
dc.relation.references | Willoughby, A., Andreassen, P. R., & Toland, A. E. (2019). Genetic testing to guide risk-stratified screens for breast cancer. Journal of Personalized Medicine, 9(1), 1–21. https://doi.org/10.3390/jpm9010016 | |
dc.relation.references | Wilson, K., Faelan, C., Patterson-Kane, J. C., Rudmann, D. G., Moore, S. A., Frank, D., Charleston, J., Tinsley, J., Young, G. D., & Milici, A. J. (2017). Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical End Points, and Biomarker Quantification. Toxicologic Pathology, 45(7), 961–976. https://doi.org/10.1177/0192623317734823 | |
dc.relation.references | Witcher, P. C., Sun, C., & Millay, D. P. (2023). Expression of Myomaker and Myomerger in myofibers causes muscle pathology. Skeletal Muscle, 13(1), 1–15. https://doi.org/10.1186/s13395-023-00317-z | |
dc.relation.references | Wolfe, R. R. (2018). The underappreciated role of muscle in health and disease 1 Ϫ 3. Am J Clin Nutr, February, 475–482. https://doi.org/10.1093/ajcn/84.3.475 | |
dc.relation.references | Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen-apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998–2007. https://doi.org/10.1039/c3tb21595d | |
dc.relation.references | Yang, W., & Hu, P. (2018). Skeletal muscle regeneration is modulated by inflammation. Journal of Orthopaedic Translation, 13, 25–32. https://doi.org/10.1016/j.jot.2018.01.002 | |
dc.relation.references | Yeh, A. T., & Hirshburg, J. (2006). Molecular interactions of exogenous chemical agents with collagen—implications for tissue optical clearing. Journal of Biomedical Optics, 11(1), 014003. https://doi.org/10.1117/1.2166381 | |
dc.relation.references | Yuasa, K., Nakamura, A., Hijikata, T., & Takeda, S. (2008). Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle. BMC Musculoskeletal Disorders, 9, 1–12. https://doi.org/10.1186/1471-2474-9-1 | |
dc.relation.references | Zhang, Z., Ibrahim, M., Fu, Y., Wu, X., Ren, F., & Chen, L. (2018). Application of laser scanning confocal microscopy in the soft tissue exquisite structure for 3D scan. International Journal of Burns and Trauma, 8(2), 17–25. http://www.ncbi.nlm.nih.gov/pubmed/29755838%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5943615 | |
dc.relation.references | Zhao, H., & Zhang, L. Q. (2011). Automatic tracking of muscle fascicles in ultrasound images using localized radon transform. IEEE Transactions on Biomedical Engineering, 58(7), 2094–2101. https://doi.org/10.1109/TBME.2011.2144593 | |
dc.relation.references | Zhao, J., Kodippili, K., Yue, Y., Hakim, C. H., Wasala, L., Pan, X., Zhang, K., Yang, N. N., Duan, D., & Lai, Y. (2016). Dystrophin contains multiple independent membrane-binding domains. Human Molecular Genetics, 25(17), 3647–3653. https://doi.org/10.1093/hmg/ddw210 | |
dc.relation.references | Zheng, W., Zhou, L., & Chai, Q. (2022). Fully Automatic Analysis of Muscle B-Mode Ultrasound Images Based on the Deep Residual Shrinkage U-Net. Electronics, 11, 1–19. https://doi.org/10.3390/electronics11071093 | |
dc.relation.references | Zhi, Z., Han, Z., Luo, Q., & Zhu, D. (2009). IMPROVE OPTICAL CLEARING OF SKIN IN VITRO WITH PROPYLENE GLYCOL AS A PENETRATION ENHANCER. Journal of Innovative Optical Health Sciences, 2(3), 269–278. www.worldscientific.com | |
dc.relation.references | Zhou, G. Q., Chan, P., & Zheng, Y. P. (2015). Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics, 57(C), 72–83. https://doi.org/10.1016/j.ultras.2014.10.020 | |
dc.relation.references | Zipfel, P. F., & Reuter, M. (2009). Complement Activation Products C3a and C4a as Endogenous Antimicrobial Peptides. International Journal of Peptide Research and Therapeutics, 15(2), 87–95. https://doi.org/10.1007/s10989-009-9180-5 | |
dc.relation.references | Zöllner, A. M., Abilez, O. J., Böl, M., & Kuhl, E. (2012). Stretching Skeletal Muscle: Chronic Muscle Lengthening through Sarcomerogenesis. PLoS ONE, 7(10), 1–10. https://doi.org/10.1371/journal.pone.0045661 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.decs | Distrofia Muscular de Duchenne | spa |
dc.subject.decs | Muscular Dystrophy, Duchenne | eng |
dc.subject.decs | Enfermedad del Almacenamiento de Glucógeno Tipo VII | spa |
dc.subject.decs | Glycogen Storage Disease Type VII | eng |
dc.subject.decs | Trastornos Musculares Atróficos | spa |
dc.subject.decs | Muscular Disorders, Atrophic | eng |
dc.subject.decs | Diagnóstico por Imagen | spa |
dc.subject.decs | Diagnostic Imaging | eng |
dc.subject.decs | Técnicas y Procedimientos Diagnósticos | spa |
dc.subject.decs | Diagnostic Techniques and Procedures | eng |
dc.subject.decs | Representación de Aprendizaje Automático | spa |
dc.subject.decs | Representation Machine Learning | eng |
dc.subject.proposal | Duchenne muscular dystrophy | eng |
dc.subject.proposal | Optical coherence tomography | eng |
dc.subject.proposal | Digital volume correlation | eng |
dc.subject.proposal | Mechanical characterization | eng |
dc.subject.proposal | Computational models | eng |
dc.subject.proposal | Clearing agents | eng |
dc.subject.proposal | Distrofia muscular de Duchenne | spa |
dc.subject.proposal | Tomografía de coherencia óptica | spa |
dc.subject.proposal | Correlación volumétrica digital | spa |
dc.subject.proposal | Caracterización mecánica | spa |
dc.subject.proposal | Modelo computaciona | spa |
dc.subject.proposal | Agentes aclarantes | spa |
dc.title | Mechanical characterization of the evolution and degeneration of skeletal muscle : an optical coherence tomography and computational simulation approaches | eng |
dc.title.translated | Caracterización mecánica de la evolución y degeneración del músculo esquelético: mediante tomografía de coherencia óptica y simulación computacional | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TESIS DOCTORADO JFEH.pdf
- Tamaño:
- 7.86 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: