Existence of positive solutions for a Semipositone fractional p-Laplacian problem

dc.contributor.advisorLopera Arias, Emer de Jesus
dc.contributor.authorLópez Morales, Camila
dc.date.accessioned2023-04-26T03:58:33Z
dc.date.available2023-04-26T03:58:33Z
dc.date.issued2023
dc.description.abstractIn this thesis we will make a brief study of Fractional Sobolev spaces. We will give two equivalent de nitions of these spaces using interpolation spaces and the Fourier transform in the case p = 2. Finally, we prove the existence of at least one positive solution for the nonlocal semipositone problem. (Texto tomado de la fuente)eng
dc.description.abstractEn esta tesis haremos un breve estudio de los espacios Fraccionarios de Sobolev. Daremos dos de finiciones equivalentes de estos espacios usando espacios de interpolación y la transformada de Fourier en el caso p = 2. Finalmente, probaremos la existencia de al menos una solución positiva para el problema semipositón no localspa
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.format.extent69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83784
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesAdams, Robert A.; Fournier, John J. F. Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Am- sterdam, 2003. xiv+305 pp. ISBN: 0-12-044143-8spa
dc.relation.referencesAlves, Claudianor O.; de Holanda, Angelo R. F.; Santos, Jefferson A. Exis- tence of positive solutions for a class of semipositone quasilinear problems through Orlicz-Sobolev space. Proc. Amer. Math. Soc. 147 (2019), no. 1, 285–299spa
dc.relation.referencesAronszajn, N. (1955). Boundary values of functions with finite Dirichlet integral. Techn. Report of Univ. of Kansas, 14, 77-94spa
dc.relation.referencesBadiale, Marino; Serra, Enrico. Semilinear elliptic equations for beginners. Existence results via the variational approach. Universitext. Springer, Lon- don, 2011. x+199 pp. ISBN: 978-0-85729-226-1spa
dc.relation.referencesBarb, Simona. Topics in geometric analysis with applications to partial dif- ferential equations. Thesis (Ph.D.)–University of Missouri - Columbia. Pro- Quest LLC, Ann Arbor, MI, 2009. 238 pp. ISBN: 978-1124-67385-1spa
dc.relation.referencesBiler, Piotr; Karch, Grzegorz; Woyczy ́nski, Wojbor A. Critical nonlinearity exponent and self-similar asymptotics for L ́evy conservation laws. Ann. Inst. H. Poincar ́e C Anal. Non Lin ́eaire 18 (2001), no. 5, 613–637spa
dc.relation.referencesBrezis, Haim. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. xiv+599 pp. ISBN: 978- 0-387-70913-0spa
dc.relation.referencesBrown, K. J.; Shivaji, R. Simple proofs of some results in perturbed bi- furcation theory. Proc. Roy. Soc. Edinburgh Sect. A 93 (1982/83), no. 1-2, 71–82spa
dc.relation.referencesCaldwell, Scott; Castro, Alfonso; Shivaji, Ratnasingham; Unsurangsie, Sumalee. Positive solutions for classes of multiparameter elliptic semiposi- tone problems. Electron. J. Differential Equations 2007, No. 96, 10 ppspa
dc.relation.referencesCastillo, Ren ́e Erl ́ın; Trousselot, Eduard. Reverse generalized H ̈older and Minkowski type inequalities and their applications. Bol. Mat. 17 (2010), no. 2, 137–142spa
dc.relation.referencesCastro, Alfonso; de Figueredo, Djairo G.; Lopera, Emer. Existence of pos- itive solutions for a semipositone p-Laplacian problem. Proc. Roy. Soc. Ed- inburgh Sect. A 146 (2016), no. 3, 475–482.spa
dc.relation.referencesDacorogna, Bernard. Introduction to the calculus of variations. Third edi- tion. Imperial College Press, London, 2015. x+311 pp. ISBN: 978-1-78326- 551-0spa
dc.relation.referencesDhanya, R.; Tiwari, Sweta. A multiparameter fractional Laplace problem with semipositone nonlinearity. Commun. Pure Appl. Anal. 20 (2021), no. 12, 4043–4061spa
dc.relation.referencesDi Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521–573spa
dc.relation.referencesDel Pezzo, Leandro M.; Quaas, Alexander. A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian. J. Differential Equations 263 (2017), no. 1, 765–778spa
dc.relation.referencesDemengel, Fran ̧coise; Demengel, Gilbert. Functional spaces for the theory of elliptic partial differential equations. Translated from the 2007 French original by Reinie Ern ́e. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012. xviii+465 pp. ISBN: 978-1-4471-2806-9; 978-2-7598-0698-0spa
dc.relation.referencesDriver, B. K. (2003). Analysis tools with applications. Lecture notesspa
dc.relation.referencesDuvaut, G.; Lions, J.-L. Inequalities in mechanics and physics. Trans- lated from the French by C. W. John. Grundlehren der Mathematischen Wissenschaften, 219. Springer-Verlag, Berlin-New York, 1976. xvi+397 pp. ISBN: 3-540-07327-2spa
dc.relation.referencesEdmunds, D. E.; Evans, W. D. Fractional Sobolev spaces and inequali- ties. Cambridge Tracts in Mathematics, 230. Cambridge University Press, Cambridge, 2023. ix+157 pp. ISBN: 978-1-009-25463-2spa
dc.relation.referencesEvans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp. ISBN: 978-0-8218-4974-3spa
dc.relation.referencesFefferman, C.; de la Llave, R. Relativistic stability of matter. I. Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 119–213spa
dc.relation.referencesFiscella, Alessio; Servadei, Raffaella; Valdinoci, Enrico. Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 235–253spa
dc.relation.referencesGagliardo, Emilio. Propriet`a di alcune classi di funzioni in pi`u variabili. (Italian) Ricerche Mat. 7 (1958), 102–137spa
dc.relation.referencesIannizzotto, Antonio; Mosconi, Sunra; Squassina, Marco. Global H ̈older regularity for the fractional p-Laplacian. Rev. Mat. Iberoam. 32 (2016), no. 4, 1353–1392spa
dc.relation.referencesIannizzotto, Iannizzotto, Antonio; Mosconi, Sunra J. N.; Squassina, Marco. Fine boundary regularity for the degenerate fractional p-Laplacian. J. Funct. Anal. 279 (2020), no. 8, 108659, 54 ppspa
dc.relation.referencesones, Frank. Lebesgue integration on Euclidean space. Jones and Bartlett Publishers, Boston, MA, 1993. xvi+588 pp. ISBN: 0-86720-203-3spa
dc.relation.referencesLunardi, Alessandra. Interpolation theory. Third edition [of MR2523200]. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 16. Edizioni della Normale, Pisa, 2018. xiv+199 pp. ISBN: 978-88-7642-639-1; 978-88-7642-638-4spa
dc.relation.referencesMosconi, Sunra; Perera, Kanishka; Squassina, Marco; Yang, Yang. The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 105, 25 ppspa
dc.relation.referencesMunkres, James R. Analysis on manifolds. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1991. xiv+366 pp. ISBN: 0-201-51035-9spa
dc.relation.referencesRestrepo Montoya, D. E. (2018). On the fractional Laplacian and nonlocal operators. Escuela de Matem ́aticasspa
dc.relation.referencesRudin, Walter. Reelle und komplexe Analysis. (German) [[Real and com- plex analysis]] Translated from the third English (1987) edition by Uwe Krieg. R. Oldenbourg Verlag, Munich, 1999. xiv+499 pp. ISBN: 3-486-24789- 1spa
dc.relation.referencesSlobodeckij, L. N. (1958). Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations, Leningrad. Gos. Ped. Inst. Ucep. Zap, 197, 54-112spa
dc.relation.referencesTankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRCspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.proposalTeorema de Paso de Montañaspa
dc.subject.proposalProblema Semipositónspa
dc.subject.proposalSoluciones positivasspa
dc.subject.proposalp-Laplaciano fraccionariospa
dc.subject.proposalPrincipios de comparaciónspa
dc.subject.proposalMountain pass theoremeng
dc.subject.proposalSemipositone problemeng
dc.subject.proposalPositive solutionseng
dc.subject.proposalFractional p-Laplacianeng
dc.subject.proposalComparison principleseng
dc.subject.unescoMatemáticasspa
dc.subject.unescoMathematicseng
dc.subject.unescoMatemáticas aplicadasspa
dc.subject.unescoTeoremas matemáticosspa
dc.subject.unescoEcuaciones diferenciales no linealesspa
dc.titleExistence of positive solutions for a Semipositone fractional p-Laplacian problemeng
dc.title.translatedExistencia de soluciones positivas para un problema Semipositón con p-Laplaciano fraccionariospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053858662.2023.pdf
Tamaño:
527.8 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: