Obtención de péptidos derivados de toxinas de origen animal con actividad biológica mediante un sistema recombinante y síntesis química
| dc.contributor.advisor | Vega Castro, Nohora Angélica | spa |
| dc.contributor.advisor | Rubiano Castellanos, Claudia Consuelo | spa |
| dc.contributor.author | Ruíz-Moya, Miguel Ángel | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Proteinas Grip | spa |
| dc.date.accessioned | 2025-03-18T17:29:41Z | |
| dc.date.available | 2025-03-18T17:29:41Z | |
| dc.date.issued | 2024 | |
| dc.description | ilustraciones, diagramas, fotografías a color, tablas | spa |
| dc.description.abstract | La toxina BmK AGAP, proveniente del escorpión Buthus martensii Karsch, modula la función de diversos canales iónicos celulares, exhibiendo actividad antitumoral en distintas líneas celulares derivadas de tumores. Se ha identificado que los canales TRPC6 funcionales están sobreexpresados en diversos tipos de cáncer, lo que los convierte en posibles marcadores de malignidad. En este trabajo, mediante docking molecular utilizando AutoDock Vina, se estudió la interacción de la toxina BmK AGAP con el canal TRPC6. A partir de estos resultados, se diseñaron ocho péptidos, seleccionándose los cinco con mejor interacción (mayor energía de unión) con el canal. Tres de estos péptidos (MR-B1, MR-B2 y MR-B3) se obtuvieron mediante síntesis química en fase sólida, mientras que los dos restantes (Bmk17 y Bmk20) se seleccionaron para producción mediante expresión recombinante en E. coli. Posteriormente, se evaluó la citotoxicidad de los péptidos en diferentes líneas tumorales, y se llevó a cabo un análisis preliminar de apoptosis mediante la evaluación de la expresión de algunos genes. Por otro lado, en el Grupo de Investigación de Proteínas (GRIP) se ha estudiado el efecto neuroprotector in vitro de péptidos derivados de la toxina Conantoquina G, entre los que destacan EAR20 (activador positivo del receptor N-metil D-aspartato (rNMDA)) y EAR19 (actividad antagonista potente y selectiva). Debido a que es necesario validar estos efectos in vitro en el microambiente que rodea al tejido neuronal en modelos humano, se requiere disponer de una fuente continua de estos péptidos, por lo que se evaluó su obtención mediante expresión recombinante en E. coli (Texto tomado de la fuente). | spa |
| dc.description.abstract | The toxin BmK AGAP, derived from the scorpion Buthus martensii Karsch, modulates the activity of various cellular ion channels. It exhibits analgesic properties and antitumor activity in several tumor-derived cell lines. Functional TRPC6 channels have been identified as overexpressed in multiple types of cancer, making them potential malignancy markers or therapeutic targets. This study evaluated molecular docking using AutoDock Vina to investigate the interaction between the BmK AGAP toxin and the TRPC6 channel. Based on these analyses, eight peptides were selected, and the five showing the best interaction (highest binding energy) with the channel were selected. Three of these peptides (MR-B1, MR-B2, and MR-B3) were obtained via solid-phase chemical synthesis, while the other two (Bmk17 and Bmk20) used a recombinant expression system in E. coli. Subsequently, the effect of peptides was studied on various tumor cell lines, and a preliminary analysis of apoptosis was carried out by assessing the expression of selected genes. Previous studies conducted by the Protein Research Group (GRIP) evaluated the in vitro neuroprotective effect of peptides derived from the Conantokin G toxin. Among these, EAR20 acted as a positive modulator of the N-methyl-D-aspartate receptor (rNMDA), while EAR19 exhibited potent and selective antagonist activity. Although the effects of these peptides have been demonstrated in vitro models, it remains essential to consider the microenvironment surrounding neuronal tissue in human models. Therefore, to maintain a continuous supply of these peptides, this study evaluated their production through recombinant expression in E. coli. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magister en Ciencias Química | spa |
| dc.description.methods | Los péptidos fueron diseñados en el laboratorio de bioinformática del Grupo de Investigación en Proteínas (BioinfoGRIP) de la Universidad Nacional de Colombia, a partir de modificaciones en la secuencia completa del péptido BmK AGAP (Li et al., 2019), conocido por su interacción comprobada con canales de calcio, sodio y potasio. El diseño y la evaluación in silico de la interacción de este ligando con el dominio extracelular del canal de calcio TRPC6 se llevaron a cabo utilizando los programas AutoDock Vina® y Discovery Studio®, con el fin de determinar su potencial interacción con el receptor. | spa |
| dc.description.researcharea | Producción de péptidos derivados de toxinas animales | spa |
| dc.format.extent | 153 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87686 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
| dc.relation.references | Abbasi MM, Khiavi MM, A Monfaredan, H Hamishehkar, K Seidi, R Jahanban-Esfahlan. DOX-MTX-NPs Augment p53 mRNA Expression in OSCC Model in Rat: Effects of IV and Oral Routes [Internet]. Vol. 15, Asian Pacific Journal of Cancer Prevention. Asian Pacific Organization for Cancer Prevention; 2014. p. 8377–82. | spa |
| dc.relation.references | Aborehab NM, Elnagar MR, Waly NE. Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line. J Biochem Mol Toxicol. 2021;35(2):e22638 | spa |
| dc.relation.references | Agouridas V., Diemer V. & O. Melnyk, Strategies and open questions in solid-phase protein chemical synthesis. Current Opinion in Chemical Biology, 58, 1–9, 2020, doi: 10.1016/j.cbpa.2020.02.007 | spa |
| dc.relation.references | Ahmadi S., Knerr J. M., L. Argemi, K. C. Bordon, M. B. Pucca, F. A Cerni and A. Laustsen, “Scorpion Venom: Detriments and Benefits.,” Biomedicines, vol. 8, no. 5, May 2020, doi: 10.3390/biomedicines8050118. | spa |
| dc.relation.references | Alkhalaf M, El-Mowafy AM. Overexpression of wild-type p53 gene renders MCF-7 breast cancer cells more sensitive to the antiproliferative effect of progesterone. J Endocrinol. 2003 Oct;179(1):55–62. | spa |
| dc.relation.references | Al-Musaimi O., de la Torre B. G. & F Albericio, Greening Fmoc/tBu solid-phase peptide synthesis. Green Chemistry, 22(4), 996–1018, 2020, doi: 10.1039/C9GC03982A | spa |
| dc.relation.references | Alshanski I., Bentolila M., A. Gitlin-Domagalska, D. Zamir, S. Zorsky, S. Joubran S, Enhancing the Efficiency of the Solid Phase Peptide Synthesis (SPPS) Process by High Shear Mixing. Org Process Res Dev. 2018 Sep 21;22(9):1318–22. | spa |
| dc.relation.references | Andersen J., Markussen K., Jakobsen E., Schousboe A., Waagepetersen H., Rosenberg P. & Aldana B., Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 196, 108719, 2021, doi:10.1016/j.neuropharm.2021.108719 Androutsou ME., Nteli A., A. Gkika, M. | spa |
| dc.relation.references | Androutsou ME., Nteli A., A. Gkika, M. Avloniti, A. Dagkonaki, L. Probert, Characterization of Asparagine Deamidation in Immunodominant Myelin Oligodendrocyte Glycoprotein Peptide Potential Immunotherapy for the Treatment of Multiple Sclerosis. Int J Mol Sci. 2020 Oct 13;21(20). | spa |
| dc.relation.references | Apostolopoulos V., Bojarska J., T.-T. Chai, S. Elnagdy, K. Kaczmarek, J. Matsoukas, R. New, K. Parang, O. P. Lopez, H. Parhiz, C. O. Perera, M. Pickholz, M. Remko, M. Saviano, M. Skwarczynski, Y. Tang, W. M. Wolf, T. Yoshiya, J. Zabrocki & I. Toth (2021). A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 26(2). doi: 10.3390/molecules26020430 | spa |
| dc.relation.references | Azari M, Asad S, Mehrnia MR. Heterologous production of porcine derived antimicrobial peptide PR-39 in Escherichia coli using SUMO and intein fusion systems. Protein Expression and Purification. 2020 May 1;169:105568. | spa |
| dc.relation.references | Babaei P., NMDA and AMPA receptors dysregulation in Alzheimer’s disease. European Journal of Pharmacology, 908, 174310, 2021, doi:10.1016/j.ejphar.2021.174310 | spa |
| dc.relation.references | Behrendt R., White P. & J. Offer, Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science, 22(1), 4–27, 2016 doi: 10.1002/psc.2836 | spa |
| dc.relation.references | Benkert P., Biasini M., and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinformatics, vol. 27, no. 3, pp. 343–350, Feb. 2011, doi: 10.1093/bioinformatics/btq662. | spa |
| dc.relation.references | Berjanskii MV. & Wishart DS., Application of the random coil index to studying protein flexibility. Journal of Biomolecular NMR. 2008 Jan 1;40(1):31–48. | spa |
| dc.relation.references | Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol. 2021;9:630551. | spa |
| dc.relation.references | Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, et al. Chapter 27 Immobilized-Metal Affinity Chromatography (IMAC): A Review. In: Burgess RR, Deutscher MP, editors. Methods in Enzymology [Internet]. Academic Press; 2009. p. 439–73. | spa |
| dc.relation.references | Boman HG. Antibacterial peptides: basic facts and emerging concepts. Journal of Internal Medicine. 2003 Sep 1;254(3):197–215. | spa |
| dc.relation.references | Borrero LJH & El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2021;1876(1):188556. | spa |
| dc.relation.references | Bottone MG, Santin G., F Aredia, G Bernocchi, C Pellicciari, AI Scovassi. Morphological Features of Organelles during Apoptosis: An Overview. Cells. 2013;2(2):294–305. | spa |
| dc.relation.references | Braga L, Gonçalves BÔP, Coelho PL, da Silva Filho AL, Silva LM. Identification of best housekeeping genes for the normalization of RT-qPCR in human cell lines. Acta Histochemica. 2022 Jan 1;124(1):151821 | spa |
| dc.relation.references | Caraci F., Nicoletti F. & Copani A., Metabotropic glutamate receptors: the potential for therapeutic applications in Alzheimer’s disease. Current Opinion in Pharmacology, 38, 1–7, 2018, doi:10.1016/j.coph.2017.12.001 | spa |
| dc.relation.references | Carson S., Miller HB., DS. Witherow, MC. Srougi, Lab Session 5 - DNA Ligation and Transformation of Escherichia coli. In: Carson S, Miller HB, Witherow DS, Srougi MC, editors. Molecular Biology Techniques (Fourth Edition) [Internet]. Fourth Edition. Academic Press; 2019. p. 35–40. | spa |
| dc.relation.references | Chai D., Wang G., L. Fang, H. Li, S. Liu, H. Zhu, J. Zheng, The optimization system for preparation of TG1 competent cells and electrotransformation. Microbiologyopen. 2020 Jul;9(7):e1043. doi: 10.1002/mbo3.1043. Epub 2020 May 11. PMID: 32394632; PMCID: PMC7349126. | spa |
| dc.relation.references | Chakraborty A., Mthembu SN., BG. de la Torre, F. Albericio, Ready to Use Cysteine Thiol Protecting Groups in SPPS, A Practical Overview. Org Process Res Dev. 2024 Jan 19;28(1):26–45. | spa |
| dc.relation.references | Chan V, Dreolini L, Flintoff K, Lloyd S, Mattenley A. The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli. J Exp Microbiol Immunol. 2002 Jan 1;2. | spa |
| dc.relation.references | Chen D., Oezguen N., Urvil P., Ferguson C., S. M. Dann, and T. C. Savidge, “Regulation of protein-ligand binding affinity by hydrogen bond pairing,” Science Advances, vol. 2, no. 3, p. e1501240, Mar. 2016, doi: 10.1126/sciadv.1501240 | spa |
| dc.relation.references | Chen D., Zhao Z., K Zhang, F Jin, C Zheng, Y Jin. Protocol for differential centrifugationbased separation and characterization of apoptotic vesicles derived from human mesenchymal stem cells. STAR Protocols. 2022 Dec 1;3:101695. | spa |
| dc.relation.references | Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells. 2020 Aug 28;9(9). | spa |
| dc.relation.references | Chen Y, Xu E, Sang M, Wang Z, Zhang Y, Ye J, et al. Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic analgesia in inflammatory pain models. Journal of Ethnopharmacology. 2022 Apr 24;288:114998. | spa |
| dc.relation.references | Chen YF, Chang CA, YH Lin, YG Tsay. Determination of accurate protein monoisotopic mass with the most abundant mass measurable using high-resolution mass spectrometry. Analytical Biochemistry. 2013 Sep 1;440(1):108–13. | spa |
| dc.relation.references | Ciemny M., Kurcinski M., K. Kamel, A. Kolinski, N. Alam, O. Schueler-Furman, “Protein–peptide docking: opportunities and challenges”, Drug Discovery Today. 2018;23(8):1530–7. | spa |
| dc.relation.references | Ciulla MG, Civera M, Sattin S, Kumar K. Nature-inspired and medicinally relevant short peptides. Exploration of Drug Science. 2023;1(3):140–71. | spa |
| dc.relation.references | Cong L, Liang W, Wu Y, Li C, Chang Y, Dong L, et al. High-level soluble expression of the functional peptide derived from the C-terminal domain of the sea cucumber lysozyme and analysis of its antimicrobial activity. Electronic Journal of Biotechnology. 2014 Nov 1;17(6):280–6. | spa |
| dc.relation.references | Cui Y, Wang T, Hao Z, Zhang J, Zhao Y. Methionine 58 is a key residue in the modulation of BmK scorpion toxin AGP-SYPU2 activity through in silico and in vivo studies. Journal of Biomolecular Structure and Dynamics. 2022 May 3;40(7):2955–62. | spa |
| dc.relation.references | Cui Y, Wang Y, Wang X, Zhang Z, Zhang J, Zhao Y. The role of the arginine residue in site RC for the analgesic activity of the recombinant Chinese scorpion Buthus martensii Karsch, BmK AGP-SYPU1. Comput Biol Chem. 2018 Jun;74:247–52. | spa |
| dc.relation.references | Cui Z., Dabas H., BC Leonard, JV Shiah, JR Grandis, DE Johnson. Caspase-8 mutations associated with head and neck cancer differentially retain functional properties related to TRAIL-induced apoptosis and cytokine induction. Cell Death & Disease. 2021 Aug 6;12(8):775. | spa |
| dc.relation.references | Daneste H., Sadeghzadeh A., M Mokhtari, H Mohammadkhani, F Lavaee, J Moayedi. Immunoexpression of p53 mutant-type in Iranian patients with primary and recurrence oral squamous cell carcinoma. European Journal of Translational Myology, 2022; 33(1), 10847. | spa |
| dc.relation.references | Daverkausen-Fischer L. & Pröls F. Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. Journal of Biological Chemistry [Internet]. 2022;298(7). | spa |
| dc.relation.references | Deo S., Turton K. L., T. Kainth, A. Kumar & H. J. Wieden, Strategies for improving antimicrobial peptide production. Biotechnology Advances, 59, 107968, 2022, doi:10.1016/j.biotechadv.2022.107968 | spa |
| dc.relation.references | Desale K., Kuche K., S. Jain, Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci. 2021;9(4):1153–88. | spa |
| dc.relation.references | Ding M., Wang H., C. Qu, F. Xu, Y. Zhu, G. Lv, Y. Lu, Q. Zhou, H. Zhou, X. Zeng, J. Zhang, C. Yan, J. Lin, H. R. Lou, Z. Deng, Y. Xiao, J. Tian, M. X. Zhu and X. Hong, “Pyrazolo[1,5-a]pyrimidine TRPC6 antagonists for the treatment of gastric cancer,” Cancer Letters, vol. 432, pp. 47–55, Sep. 2018, doi: 10.1016/j.canlet.2018.05.041. | spa |
| dc.relation.references | Doudou N. R., Kampo S., Y. Liu, B. Ahmmed, D. Zeng, M. Zheng, A. Mohamadou, Q. P. Wen and S. Wang, “Monitoring the Early Antiproliferative Effect of the Analgesic– Antitumor Peptide, BmK AGAP on Breast Cancer Using Intravoxel Incoherent Motion With a Reduced Distribution of Four b-Values,” Frontiers in Physiology, vol. 10, 2019, doi: 10.3389/fphys.2019.00708. | spa |
| dc.relation.references | Drukewitz S. H. & von Reumont B. M., “The Significance of Comparative Genomics in Modern Evolutionary Venomics,” Frontiers in Ecology and Evolution, vol. 7, 2029, doi: 10.3389/fevo.2019.00163. | spa |
| dc.relation.references | Dueñas-Cuellar R. A., Santana C. J., A. C. Magalhães, O. R. Pires, W. Fontes, and M. S. Castro, “Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy,” Toxins, vol. 12, no. 5, 2020, doi: 10.3390/toxins12050326 | spa |
| dc.relation.references | Dwivedi R., Pandey R., S Chandra, D Mehrotra. Apoptosis and genes involved in oral cancer-a comprehensive review. Oncology reviews. 2020;14(2). | spa |
| dc.relation.references | Eberhardt J., Santos-Martins D., A. F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” J. Chem. Inf. Model., vol. 61, no. 8, pp. 3891–3898, 2021, doi: 10.1021/acs.jcim.1c00203 | spa |
| dc.relation.references | El-Far AH, Darwish NHE, SA Mousa. Senescent Colon and Breast Cancer Cells Induced by Doxorubicin Exhibit Enhanced Sensitivity to Curcumin, Caffeine, and Thymoquinone. Integr Cancer Ther. 2020 Jan 1;19:1534735419901160. | spa |
| dc.relation.references | Feroz W., Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. Egyptian Journal of Medical Human Genetics. 2020 Nov 16;21(1):49. | spa |
| dc.relation.references | Ganci F., Pulito C., S Valsoni, A Sacconi, C Turco, M Vahab. PI3K Inhibitors Curtail MYC-Dependent Mutant p53 Gain-of-Function in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2020 Jun 15;26(12):2956–71. | spa |
| dc.relation.references | Gao YY, Tian W, Zhang HN, Sun Y, Meng JR, Cao W, et al. Canonical ch receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Archives of Pharmacal Research. 2021 Apr 1;44(4):354–77. | spa |
| dc.relation.references | García R. Evaluación funcional del péptido EAR-20 como posible agonista de los receptores ionotrópicos de glutamato de tipo NMDA. Programa de Doctorat en Biomedicina de la Universitat de Barcelona, 2022. Tesis de doctorado en Biotecnología. Universidad Nacional de Colombia, instituto de Biotecnología, Bogotá, Colombia, 2023. | spa |
| dc.relation.references | Gautam A, Chaudhary K, Kumar R, Raghava GPS. Computer-Aided Virtual Screening and Designing of Cell-Penetrating Peptides. In: Langel Ü, editor. Cell-Penetrating Peptides: Methods and Protocols [Internet]. New York, NY: Springer New York; 2015. p. 59–69. | spa |
| dc.relation.references | Groenendyk J., Agellon LB, M Michalak. Chapter One - Calcium signaling and endoplasmic reticulum stress. In: Marchi S, Galluzzi L, editors. International Review of Cell and Molecular Biology [Internet]. Academic Press; 2021. p. 1–20. | spa |
| dc.relation.references | Gu M., Guo R., J Zhang, Y Yao, L Yang, Thermal dissociation of the singly protonated Arginine: Competition between side-chain and backbone fragmentation. Chemical Physics. 2020 Oct 1;538:110890. | spa |
| dc.relation.references | Gu M., Zhang J., WL Hase, L Yang. Direct Dynamics Simulations of the Thermal Fragmentation of a Protonated Peptide Containing Arginine. ACS Omega. 2020 Jan 28;5(3):1463–71. | spa |
| dc.relation.references | Guzmán F., Aróstica M., T. Román, D. Beltrán, A. Gauna, F. Albericio, Peptides, solidphase synthesis and characterization: Tailor-made methodologies. Electronic Journal of Biotechnology. 2023 Jul 1;64:27–33. | spa |
| dc.relation.references | Hansen IKØ, Lövdahl T, D Simonovic, KØ Hansen, AJC Andersen, H Devold. Antimicrobial Activity of Small Synthetic Peptides Based on the Marine Peptide Turgencin A: Prediction of Antimicrobial Peptide Sequences in a Natural Peptide and Strategy for Optimization of Potency. Int J Mol Sci. 2020 Jul 30;21(15). | spa |
| dc.relation.references | Hao Y. & Plested A. J. R., Seeing glutamate at central synapses. Journal of Neuroscience Methods, 109531, 2022, doi:10.1016/j.jneumeth.2022.109531 | spa |
| dc.relation.references | Hemamalini N., Ezhilmathi S. & A. A. Mercy, Recombinant protein expression optimization in Escherichia coli: A review. Indian J Anim Res, 54(6), 653–660, 2020, doi: 10.18805/ijar.B-3808 | spa |
| dc.relation.references | Henry CM, Hollville E., SJ Martin. Measuring apoptosis by microscopy and flow cytometry. Methods. 2013 Jun 1;61(2):90–7. | spa |
| dc.relation.references | Herschlag D. & Pinney M. M., “Hydrogen Bonds: Simple after All?,” Biochemistry, vol. 57, no. 24, pp. 3338–3352, Jun. 2018, doi: 10.1021/acs.biochem.8b00217. | spa |
| dc.relation.references | Hilgarth RS & Sarge KD. Detection of sumoylated proteins. Methods Mol Biol. 2005;301:329–38. | spa |
| dc.relation.references | Ho CS, Lam CWK, MHM Chan, RCK Cheung, LK Law, LCW Lit, Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003;24(1):3–12. | spa |
| dc.relation.references | Hou T., Wang X., X. Liu, T. Lu, S. Liu, F. Li, Amplified Detection of T4 Polynucleotide Kinase Activity by the Coupled λ Exonuclease Cleavage Reaction and Catalytic Assembly of Bimolecular Beacons. Anal Chem. 2014 Jan 7;86(1):884–90. | spa |
| dc.relation.references | Iacobucci G. & Popescu G., Kinetic models for activation and modulation of NMDA receptor subtypes. Current Opinion in Physiology, 2, 114–122, 2018, doi:10.1016/j.cophys.2018.02.002 | spa |
| dc.relation.references | Idres YM., McMillan NAJ., A Idri. Hyperactivating p53 in Human Papillomavirus-Driven Cancers: A Potential Therapeutic Intervention. Mol Diagn Ther. 2022 May;26(3):301– 8. | spa |
| dc.relation.references | Ijaz S., Haq IU., R. Malik, G. Nadeem, HM. Ali, S. Kaur, In silico characterization of differentially expressed short-read nucleotide sequences identified in dieback stressinduced transcriptomic analysis reveals their role as antimicrobial peptides. Front. Plant Sci. 2023. 14:1168221. doi: 10.3389/fpls.2023.1168221 | spa |
| dc.relation.references | Ilangala A., Lechanteur A., Fillet M. & G. Piel, Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 167, 140–158, 2021, doi:10.1016/j.ejpb.2021.07.010 | spa |
| dc.relation.references | INVITROGEN, Champion pET SUMO Protein Expression System For High-level expression and enhanced solubility of recombinant proteins in E. coli and cleavage of native protein, 2010. | spa |
| dc.relation.references | Ishchenko Y., Carrizales M. & Koleske A., Regulation of the NMDA receptor by its cytoplasmic domains: (How) is the tail wagging the dog? Neuropharmacology, 195, 108634, 2021, doi:10.1016/j.neuropharm.2021.108634 | spa |
| dc.relation.references | Isidro-Llobet A., Kenworthy M. N., S. Mukherjee, M. E. Kopach, K. Wegner, F. Gallou, A. G. Smith & F. Roschangar, Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. The Journal of Organic Chemistry, 84(8), 4615– 4628, 2019, doi: 10.1021/acs.joc.8b03001 | spa |
| dc.relation.references | Jain S., Gupta S., S Patiyal, GPS Raghava. THPdb2: compilation of FDA approved therapeutic peptides and proteins. Drug Discovery Today. 2024 Jul 1;29(7):104047. | spa |
| dc.relation.references | Jamil S, Lam I, M Majd, SH Tsai, V Duronio. Etoposide induces cell death via mitochondrial-dependent actions of p53. Cancer Cell Int. 2015;15:79. | spa |
| dc.relation.references | Jardín I., Nieto J., G. M. Salido, and J. A. Rosado, “TRPC6 channel and its implications in breast cancer: an overview,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1867, no. 12, p. 118828, Dec. 2020, doi: 10.1016/j.bbamcr.2020.118828. | spa |
| dc.relation.references | Jokar S., Erfani M., O. Bavi, S. Khazaei, M. Sharifzadeh, M. Hajiramezanali, “Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation” Bioorganic Chemistry. 2020;102:104050. | spa |
| dc.relation.references | Jones MR, Aruna T., N Bhavya, B Lavanya, F Jaweed. Role of bcl-2 as a prognostic marker in oral squamous cell carcinoma. Int J Acad Med Pharm. 2023;5(5):842–50. | spa |
| dc.relation.references | Kachhawaha K, Singh S, Joshi K, Nain P, Singh S. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Preparative Biochemistry & Biotechnology. 2022 Dec 19;53:1–25. | spa |
| dc.relation.references | Kampo S., Ahmmed B., Zhou T., Owusu L., Anabah T. W., Doudou N. R., Kuugbee D. E., Cui Y., Lu Z., Yan Q. & Wen Q. P., “Scorpion Venom Analgesic Peptide, BmK AGAP Inhibits Stemness, and Epithelial-Mesenchymal Transition by Down-Regulating PTX3 in Breast Cancer.,” Front Oncol, vol. 9, p. 21, 2019, doi: 10.3389/fonc.2019.00021. | spa |
| dc.relation.references | Kampo S., Cui Y., Yu J., Anabah T. W., Falagán A. A., Bayor M. T. & Wen Q. P., “Scorpion Venom peptide, AGAP inhibits TRPV1 and potentiates the analgesic effect of lidocaine,” Heliyon, vol. 7, no. 12, 2021, doi: 10.1016/j.heliyon.2021.e08560. | spa |
| dc.relation.references | Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol. 2018 Jan;106:803–22. | spa |
| dc.relation.references | Kciuk M., Gielecińska A., S Mujwar, D Kołat, Z Kałuzińska-Kołat, I Celik. Doxorubicin— an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):659. | spa |
| dc.relation.references | Ki M. R. & Pack S. P., Fusion tags to enhance heterologous protein expression. Applied Microbiology and Biotechnology, 104(6), 2411–2425, 2020, doi: 10.1007/s00253-020- 10402-8 | spa |
| dc.relation.references | Kijewska M., Gąszczyk D., R Bąchor, P Stefanowicz, Z Szewczuk. Analysis of Fragmentation Pathways of Peptide Modified with Quaternary Ammonium and Phosphonium Group as Ionization Enhancers. Molecules. 2021 Nov 18;26(22). | spa |
| dc.relation.references | Köppl C., Lingg N., A. Fischer, C. Kröß, J. Loibl, W. Buchinger, R. Schneider, A. Jungbauer, G. Striedner & M. Cserjan-Puschmann, Fusion Tag Design Influences Soluble Recombinant Protein Production in Escherichia coli. International Journal of Molecular Sciences, 23(14), 2022, doi: 10.3390/ijms23147678 | spa |
| dc.relation.references | Kotnik T., Frey W., M. Sack, S. Haberl Meglič, M. Peterka, & D. Miklavčič, Electroporation-based applications in biotechnology. Trends in Biotechnology, 33(8), 480–488, 2015. | spa |
| dc.relation.references | Kumar P., Nagarajan A., P Uchil. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor Protocols. 2018 Jun 1;2018:pdb.prot095497. | spa |
| dc.relation.references | Lalo U., Koh W., Lee C. & Pankratov Y., The tripartite glutamatergic synapse. Neuropharmacology, 199, 108758, 2021, doi:10.1016/j.neuropharm.2021.108758 | spa |
| dc.relation.references | Lamer T., van Belkum M. J., A. Wijewardane, S. Chiorean, L. A. Martin‐Visscher & J. C. Vederas, SPI “sandwich”: Combined SUMO‐Peptide‐Intein expression system and isolation procedure for improved stability and yield of peptides. Protein Science, 31(5), e4316, 2022, doi: 10.1002/pro.4316 | spa |
| dc.relation.references | Lauwerys L, Beroske L, A Solania, C Vangestel, A Miranda, N Van Giel. Development of caspase-3-selective activity-based probes for PET imaging of apoptosis. EJNMMI Radiopharmacy and Chemistry. 2024 Aug 8;9(1):58. | spa |
| dc.relation.references | LeBleu VS & Neilson ED. Origin and functional heterogeneity of fibroblasts. The FASEB Journal. 2020 Mar 1;34(3):3519–36. | spa |
| dc.relation.references | Lestari B., Fukushima T., RY Utomo, MSH Wahyuningsih. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta. 2024 Jun 1;151:37– 47. | spa |
| dc.relation.references | Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expression and Purification. 2011 Dec 1;80(2):260–7. | spa |
| dc.relation.references | Li Z, Yang L, Wang J, Shi W, Pawar RA, Liu Y, et al. β-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the halfsmooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish & Shellfish Immunology. 2010 Jul 1;29(1):89–93. | spa |
| dc.relation.references | Li Z., Hu P., Wu W. & Wang Y., “Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch,” Peptides, vol. 115, pp. 43–50, 2019, doi: https://doi.org/10.1016/j.peptides.2019.02.009. | spa |
| dc.relation.references | Li, Y. (2013). Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expression and Purification, 87(2), 72–78. | spa |
| dc.relation.references | Liu W., Jiang X., Zu Y., Yang Y., Liu Y., Sun X., Xu Z., Ding H. & Zhao Q., A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. European Journal of Medicinal Chemistry, 200, 112447, 2020, doi:10.1016/j.ejmech.2020.112447 | spa |
| dc.relation.references | Liu X., Liu L., Y. Wang, X. Wang, Y. Ma, Y. Li, The Study on the factors affecting transformation efficiency of E. coli competent cells. Pakistan journal of pharmaceutical sciences, 2014, 27(3 Suppl), 679–684. | spa |
| dc.relation.references | Livak KJ & Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402– 8. | spa |
| dc.relation.references | Lutzu S. & Castillo P., Modulation of NMDA Receptors by G-protein-coupled receptors: Role in Synaptic Transmission, Plasticity and Beyond. Neuroscience, 456, 27–42, 2021, doi:10.1016/j.neuroscience.2020.02.019 | spa |
| dc.relation.references | Ma Y., Liu Y., and J. Cheng, “Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method,” Scientific Reports, vol. 8, no. 1, p. 9856, Jun. 2018, doi: 10.1038/s41598-018-28084-8. | spa |
| dc.relation.references | Mahmoodi S., Pourhassan-Moghaddam M., D. W. Wood, H. Majdi & N. Zarghami, Current affinity approaches for purification of recombinant proteins. Cogent Biology, 5(1), 1665406, 2019, doi: 10.1080/23312025.2019.1665406 | spa |
| dc.relation.references | Mahmoud A., Singh R., M. Morsi & M. Ahmed, Plasmids for Optimizing Expression of Recombinant Proteins in E. coli. In M. Gull (Ed.), Plasmid. IntechOpen, 2019, doi: 10.5772/intechopen.82205 | spa |
| dc.relation.references | Maia E., Medaglia L., A. da Silva, A. Taranto, “Molecular Architect: A User-Friendly Workflow for Virtual Screening”. ACS Omega. 2020 Mar 31;5(12):6628–40. | spa |
| dc.relation.references | Manne SR, Sharma A, Sazonovas A, A El-Faham, BG de la Torre, F Albericio. Understanding OxymaPure as a Peptide Coupling Additive: A Guide to New Oxyma Derivatives. ACS Omega. 2022 Feb 22;7(7):6007–23. | spa |
| dc.relation.references | Manning MC., Liu J., T. Li, RE. Holcomb, Chapter One - Rational Design of Liquid Formulations of Proteins. In: Donev R, editor. Advances in Protein Chemistry and Structural Biology [Internet]. Academic Press; 2018. p. 1–59. Available from: https://www.sciencedirect.com/science/article/pii/S1876162318300257 | spa |
| dc.relation.references | Marino S. M., “Protein flexibility and cysteine reactivity: influence of mobility on the Hbond network and effects on pKa prediction.,” Protein J, vol. 33, no. 4, pp. 323–336, Aug. 2014, doi: 10.1007/s10930-014-9564-z. | spa |
| dc.relation.references | Marisch K., Bayer K., T. Scharl, J. Mairhofer, P. M. Krempl, K. Hummel, E. Razzazi- Fazeli & G. Striedner, A Comparative Analysis of Industrial Escherichia coli K–12 and B Strains in High-Glucose Batch Cultivations on Process-, Transcriptome- and Proteome Level. PLoS ONE, 8(8), e70516, 2013, doi: 10.1371/journal.pone.0070516 | spa |
| dc.relation.references | Martin V., Jadhav S., P. Egelund, R. Liffert, H. Castro, T. Krüeger, Harnessing polarity and viscosity to identify green binary solvent mixtures as viable alternatives to DMF in solid-phase peptide synthesis. Green Chemistry. 2021 Jan 1;23. | spa |
| dc.relation.references | Mawalizadeh F, Mohammadzadeh G, Khedri A, Rashidi M. Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil. Molecular Biology Reports. 2021 Dec 1;48(12):7733–42. | spa |
| dc.relation.references | Mazmanian K., Sargsyan K., and C. Lim, “How the Local Environment of Functional Sites Regulates Protein Function,” J. Am. Chem. Soc., vol. 142, no. 22, pp. 9861–9871, Jun. 2020, doi: 10.1021/jacs.0c02430. | spa |
| dc.relation.references | Mikaelian A. G., Traboulay E., Zhang X. M., Yeritsyan E., Pedersen P. L., Ko Y. H. & Matalka K. Z., “Pleiotropic Anticancer Properties of Scorpion Venom Peptides: Rhopalurus princeps Venom as an Anticancer Agent,” Drug Des Devel Ther, vol. 14, pp. 881–893, Feb. 2020, doi: 10.2147/DDDT.S231008. | spa |
| dc.relation.references | Mirzaei S., Fekri H. S., Hashemi F., Hushmandi K., Mohammadinejad R., Ashrafizadeh M., Zarrabi A. & Garg M., “Venom peptides in cancer therapy: An updated review on cellular and molecular aspects,” Pharmacological Research, vol. 164, p. 105327, 2021, doi:10.1016/j.phrs.2020.105327. | spa |
| dc.relation.references | Nagamalleswari G. & Umashankar M., Derivatization of Proline for the Enantiomeric Separation and Estimation of D-Proline in L-Proline by NP-HPLC. INTERNATIONAL JOURNAL OF PHARMACEUTICAL QUALITY ASSURANCE. 2023 Sep 25;14:767–70. | spa |
| dc.relation.references | Naoum JN., Alshanski I., G. Mayer, P. Strauss, M. Hurevich, Stirring Peptide Synthesis to a New Level of Efficiency. Org Process Res Dev. 2022 Jan 21;26(1):129–36. | spa |
| dc.relation.references | Neumann K., Farnung J., S. Baldauf, JW. Bode, Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups. Nature Communications. 2020 Feb 20;11(1):982. | spa |
| dc.relation.references | Nguyen N., Nguyen T., T. Pham, N. Huy, M. Bay, M. Pham, “Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity”. J Chem Inf Model. 2020 Jan 27;60(1):204–11. | spa |
| dc.relation.references | Nie T., Wang W., Liu X., Wang Y., Li K., Song X., Zhang J., Yu L. & He Z., Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules, 22(6), 2299–2324, 2021, doi:10.1021/acs.biomac.1c00160 | spa |
| dc.relation.references | Orning P & Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. Journal of Leukocyte Biology. 2021 Jan 1;109(1):121–41. | spa |
| dc.relation.references | Pagano J., Giona F., Beretta S., Verpelli C. & Sala C., N-methyl-d-aspartate receptor function in neuronal and synaptic development and signaling. Current Opinion in Pharmacology, 56, 93–101, 2021, doi:10.1016/j.coph.2020.12.006 | spa |
| dc.relation.references | Palumbo C., Mecchia A., A Bocedi, K Aquilano, D Lettieri-Barbato, M Rosina. Revisited role of TRAF2 and TRAF2 C-terminal domain in endoplasmic reticulum stress-induced autophagy in HAP1 leukemia cells. The International Journal of Biochemistry & Cell Biology. 2022 Apr 1;145:106193. | spa |
| dc.relation.references | Pandya A. K. & Patravale V. B., Computational avenues in oral protein and peptide therapeutics. Drug Discovery Today, 26(6), 1510–1520, 2021, doi:10.1016/j.drudis.2021.03.003 | spa |
| dc.relation.references | Parys JB, Bultynck G., T Vervliet. IP3 Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer. In: Agellon LB, Michalak M, editors. Cellular Biology of the Endoplasmic Reticulum [Internet]. Cham: Springer International Publishing; 2021. p. 215–37. | spa |
| dc.relation.references | Peirson SN & Butler JN. RNA Extraction From Mammalian Tissues. In: Rosato E, editor. Circadian Rhythms: Methods and Protocols [Internet]. Totowa, NJ: Humana Press; 2007. p. 315–27. Available from: https://doi.org/10.1007/978-1-59745-257-1_22 | spa |
| dc.relation.references | Pereira H, Silva P, B Johansson. Bacteria and Yeast Colony PCR. In: Methods in molecular biology (Clifton, NJ). 2023. p. 209–21. | spa |
| dc.relation.references | Prakash G., Anish R. V., G. Jagadeesh & D. Chakravortty, Bacterial transformation using micro-shock waves. Analytical Biochemistry, 419(2), 292–301, 2011, doi: 10.1016/j.ab.2011.08.038 | spa |
| dc.relation.references | Prakash G., Rakesh S. G., D. Chakravortty, N. Karaba & G. Jagadeesh, Micro-shock Wave Assisted Bacterial Transformation. In K. Kontis (Ed.), 28th International Symposium on Shock Waves (pp. 1009–1014). Springer Berlin Heidelberg, 2012, doi: 10.1007/978-3-642-25685-1_153 | spa |
| dc.relation.references | Přibylka A., Krchňák V., E. Schütznerová, Environmentally Friendly SPPS II: Scope of Green Fmoc Removal Protocol Using NaOH and Its Application for Synthesis of Commercial Drug Triptorelin. J Org Chem. 2020 Jul 17;85(14):8798–811. | spa |
| dc.relation.references | Rádis-Baptista G., Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins [Internet]. 2021;13(2). Available from: https://www.mdpi.com/2072- 6651/13/2/147 | spa |
| dc.relation.references | Rahimzadeh M., Sadeghizadeh M., F. Najafi, S. Arab & H. Mobasheri, Impact of heat shock step on bacterial transformation efficiency. Molecular Biology Research Communications, 5(4), 257–261, 2016, doi: 10.22099/MBRC.2016.3915 | spa |
| dc.relation.references | Ramazi S., Mohammadi N., A Allahverdi, E Khalili, P Abdolmaleki. A review on antimicrobial peptides databases and computational tools. Database. 2022 Jan 1;2022:baac011. | spa |
| dc.relation.references | Ramos A, Muñoz M, Moreno-Perez D, Patarroyo M. pELMO, an optimised in-house cloning vector. AMB Express. 2017 Jan 24;7. | spa |
| dc.relation.references | Ren J., Karna S., HM. Lee, SM Yoo, D. Na, Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Applied Microbiology and Biotechnology. 2019 Dec 1;103(23):9205–15. | spa |
| dc.relation.references | Reyes E., Diseño y evaluación funcional de péptidos que interactúan con la subunidad GluN2B del receptor NMDA (Tesis de doctorado). Universidad Nacional de Colombia, Bogotá, Colombia, 2015. | spa |
| dc.relation.references | Reyes-Guzman E., Vega-Castro N., Reyes-Montaño E. & Recio-Pinto E., Antagonistic action on NMDA/GluN2B mediated currents of two peptides that were conantokin-G structure-based designed. BMC Neuroscience, 18(1), 2017, doi:10.1186/s12868-017- 0361-4 | spa |
| dc.relation.references | Reyes-Montaño E., Reyes-Guzman E. & Vega-Castro N., Patente de invención para la creación titulada: “Péptido sintético modulador antagonista del receptor NMDA” CO15303915 / WO 2017109756 A2. 22, 2020. | spa |
| dc.relation.references | Roca-Pinilla R., Lisowski L., A. Arís, & E. Garcia-Fruitós, The future of recombinant host defense peptides. Microbial Cell Factories, 21(1), 1–15, 2022, doi: 10.1186/s12934- 022-01991-2 | spa |
| dc.relation.references | Rodríguez-Campuzano A. & Ortega A., Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology, 192, 108602, 2021, doi:10.1016/j.neuropharm.2021.108602 | spa |
| dc.relation.references | Roos G., Foloppe N., and J. Messens, “Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding.,” Antioxid Redox Signal, vol. 18, no. 1, pp. 94–127, Jan. 2013, doi: 10.1089/ars.2012.4521. | spa |
| dc.relation.references | Rosano G. L. & Ceccarelli E. A., Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5. 2014, doi: 10.3389/fmicb.2014.00172 | spa |
| dc.relation.references | Roy U, Mishra A, P Jana, S Karmakar. A Comparative Study on Different Plasmid Isolation Procedures, Int. J. Pure App. Biosci. 2018. 6(5): 533-541 | spa |
| dc.relation.references | Sadr V, Saffar B, Emamzadeh R. Functional expression and purification of recombinant Hepcidin25 production in Escherichia coli using SUMO fusion technology. Gene. 2017 Apr 30;610:112–7. | spa |
| dc.relation.references | Salem M, Keshavarzi-Arshadi A., JS Yuan. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning. BMC Bioinformatics. 2022 Sep 26;23(1):389. | spa |
| dc.relation.references | Schreiber C, Müller H, Birrenbach O, Klein M, Heerd D, Weidner T, et al. A highthroughput expression screening platform to optimize the production of antimicrobial peptides. Microbial Cell Factories. 2017 Feb 13;16(1):29. | spa |
| dc.relation.references | Sharifi S., Barar J., MS Hejazi, N Samadi. Doxorubicin Changes Bax /Bcl-xL Ratio, Caspase-8 and 9 in Breast Cancer Cells. Adv Pharm Bull. 2015 Sep;5(3):351–9. | spa |
| dc.relation.references | Sharma K., Sharma K. K., Sharma A. & Jain R., Peptide-based drug discovery: Current status and recent advances. Drug Discovery Today, 103464, 2022, doi:10.1016/j.drudis.2022.103464 | spa |
| dc.relation.references | Singha T. K., Gulati P., A. Mohanty, Y. P. Khasa, R. K. Kapoor & S. Kumar, Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli : A review. Process Biochemistry, 55, 17–31, 2017, doi: 10.1016/j.procbio.2017.01.026 | spa |
| dc.relation.references | Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk (1985). "Measurement of protein using bicinchoninic acid." Analytical biochemistry 150(1): 76-85. | spa |
| dc.relation.references | Spears R, McMahon C, Chudasama V. Cysteine protecting groups: applications in peptide and protein science. Chemical Society Reviews. 2021 Aug 17;50. | spa |
| dc.relation.references | Srairi-Abid N., Othman H., Aissaoui D. & BenAissa R., “Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways,” Cell Calcium, vol. 80, pp. 160–174, 2019, doi: 10.1016/j.ceca.2019.05.003. | spa |
| dc.relation.references | Stráner P., Taricska N., M. Szabó, GK. Tóth, A. Perczel, Bacterial expression and/or solid phase peptide synthesis of 20-40 amino acid long polypeptides and miniproteins, the case study of Class B GPCR ligands. Curr Protein Pept Sci. 2016;17(2):147–55. | spa |
| dc.relation.references | Sulkowska M., Famulski W., S Sulkowski, J Reszeć, M Koda, M Baltaziak.. Correlation between Bcl-2 protein expression and some clinicopathological features of oral squamous cell carcinoma. Pol J Pathol. 2003;54(1):49–52. | spa |
| dc.relation.references | Sun G. Death and survival from executioner caspase activation. Seminars in Cell & Developmental Biology. 2024 Mar 15;156:66–73. | spa |
| dc.relation.references | Sun M, Zhou T, Jonasch E, Jope RS. DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys Acta. 2013 Jun;1833(6):1489–97. | spa |
| dc.relation.references | Tan L., Hong P., P. Yang, C. Zhou, D. Xiao, T. Zhong. Correlation Between the Water Solubility and Secondary Structure of Tilapia-Soybean Protein Co-Precipitates. Molecules [Internet]. 2019;24(23). | spa |
| dc.relation.references | Tang Y., Chen Y., R. Liu, W. Li, B. Hua, and Y. Bao, “Wnt Signaling Pathways: A Role in Pain Processing,” NeuroMolecular Medicine, Jan. 2022, doi: 10.1007/s12017-021- 08700-z. | spa |
| dc.relation.references | Teilum K., Olsen J. G., and B. B. Kragelund, “Protein stability, flexibility and function,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1814, no. 8, pp. 969–976, Aug. 2011, doi: 10.1016/j.bbapap.2010.11.005. | spa |
| dc.relation.references | Terziyski Z., Terziyska M., S. Hadzhikoleva, I. Desseva, A software tool for data mining of physicochemical properties of peptides. BIO Web Conf. 2023; 58:03007. | spa |
| dc.relation.references | Theillet FX., Kalmar L., P Tompa, KH Han, P Selenko, AK Dunker. The alphabet of intrinsic disorder. Intrinsically Disordered Proteins. 2013 Jan 1;1(1):e24360. | spa |
| dc.relation.references | Thomas SA & Sethupathy S. Expression of apoptotic markers in patients with oral squamous cell carcinoma (OSCC). IOSR J Dent Med Sci. 2014;13:78–8 | spa |
| dc.relation.references | Tian T. MCF-7 cells lack the expression of Caspase-3. International Journal of Biological Macromolecules. 2023 Mar 15;231:123310 | spa |
| dc.relation.references | Timmons PB & Hewage CM. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports. 2020 Jul 2;10(1):10869. | spa |
| dc.relation.references | Trejos M., Aristizabal Y., A. Aragón-Muriel, J. Oñate-Garzón, Y. Liscano, Characterization and Classification In Silico of Peptides with Dual Activity (Antimicrobial and Wound Healing). International Journal of Molecular Sciences [Internet]. 2023; 24(17). | spa |
| dc.relation.references | Trott O. and Olson A. J., “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.,” J Comput Chem, vol. 31, no. 2, pp. 455–461,2010, doi: 10.1002/jcc.21334. | spa |
| dc.relation.references | Vargas N., Evaluación in-vitro de péptidos sintéticos diseñados a partir de la Conantoquina G (Con-G) con interacción sobre la subunidad GluN2B del receptor de Glutamato tipo N-metil-D-aspartato (NMDAr) y su posible efecto sobre las vías de señalización involucradas en procesos de excitotoxicidad por calcio. Tesis de doctorado. Universidad Nacional de Colombia, Bogotá, Colombia, 2020. | spa |
| dc.relation.references | Varnava K. G. & Sarojini V., Making Solid-Phase Peptide Synthesis Greener: A Review of the Literature. Chemistry – An Asian Journal, 14(8), 1088–1097, 2019, doi:10.1002/asia.201801807 | spa |
| dc.relation.references | Vidya V., Achar R. R., Himathi M. U., Akshita N., Yogish S. T., Kameshwar V. H., Byrappa K. & Ramadad D., “Venom peptides – A comprehensive translational perspective in pain management,” Current Research in Toxicology, vol. 2, pp. 329–340, 2021, doi: 10.1016/j.crtox.2021.09.001. | spa |
| dc.relation.references | von Bergen M., Barghorn S., J. Biernat, EM. Mandelkow, E. Mandelkow, Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2005 Jan 3;1739(2):158–66. | spa |
| dc.relation.references | Waegeman H., De Lausnay S., J. Beauprez, J. Maertens, M. De Mey & W. Soetaert, Increasing recombinant protein production in Escherichia coli K12 through metabolic engineering. New Biotechnology, 30(2), 255–261, 2013, doi: 10.1016/j.nbt.2011.11.008. | spa |
| dc.relation.references | Walker M. & van der Donk W., The many roles of glutamate in metabolism. Journal of Industrial Microbiology and Biotechnology, 43(2-3), 419–430, 2016, doi:10.1007/s10295-015-1665-y | spa |
| dc.relation.references | Wang H., Cheng X., J. Tian, Y. Xiao, T. Tian, F. Xu, X. Hong and M. X. Zhu, “TRPC channels: Structure, function, regulation and recent advances in small molecular probes,” Pharmacology & Therapeutics, vol. 209, p. 107497, May 2020, doi: 10.1016/j.pharmthera.2020.107497. | spa |
| dc.relation.references | Wang J, Yang F, Zhuang J, Huo Q, Li J, Xie N. TRIM58 inactivates p53/p21 to promote chemoresistance via ubiquitination of DDX3 in breast cancer. The International Journal of Biochemistry & Cell Biology. 2022 Feb 1;143:106140. | spa |
| dc.relation.references | Wang L., Wang N., Zhang W., Cheng X., Yan Z., Shao G., Wang X., Wang R. & Fu C., Therapeutic peptides: current applications and future directions. Signal Transduction and Targeted Therapy, 7(1), 48, 2022, doi:10.1038/s41392-022-00904-4 | spa |
| dc.relation.references | Wang X., Zhang S., Zhu Y., Zhang Z., Sun M., Cheng J., Xiao Q., Li G. & Tao J., “Scorpion Toxins from Buthus martensii Karsch (BmK) as Potential Therapeutic Agents for Neurological Disorders: State of the Art and Beyond”, 2020. | spa |
| dc.relation.references | Wang, G, Li, X. and Wang, Z.(2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research 44, D1087-D1093. Consultado el 10 de octubre de 2024 | spa |
| dc.relation.references | Wanmakok M., Orrapin S., A. Intorasoot & S. Intorasoot, Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Gene, 671, 1–9, 2018, doi: 10.1016/j.gene.2018.05.106 | spa |
| dc.relation.references | Wei H., Wang H., G Wang, L Qu, L Jiang, S Dai. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nature Communications. 2023 Jul 18;14(1):4300 | spa |
| dc.relation.references | Weng G., Gao J., Z. Wang, E. Wang, X. Hu, X. Yao, “Comprehensive Evaluation of Fourteen Docking Programs on Protein–Peptide Complexes”, J Chem Theory Comput. 2020 Jun 9;16(6):3959–69. | spa |
| dc.relation.references | Wood WN, Smith KD, JA Ream, LK Lewis. Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells. J Microbiol Methods. 2017 Feb;133:46–51. | spa |
| dc.relation.references | Wu A. & Zhao C. Astilbin Induces Apoptosis in Oral Squamous Cell Carcinoma through p53 Reactivation and Mdm-2 Inhibition. Doklady Biochemistry and Biophysics. 2024 Oct 1;518(1):429–41. | spa |
| dc.relation.references | Yadav P., Yadav R., S Jain, A Vaidya. Caspase‐3: A primary target for natural and synthetic compounds for cancer therapy. Chemical biology & drug design. 2021;98(1):144–65. | spa |
| dc.relation.references | Yan J., Cai J., B Zhang, Y Wang, DF Wong, SWI Siu. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics [Internet]. 2022;11(10). | spa |
| dc.relation.references | Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, et al. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio. 2023 Jun;20:100644. | spa |
| dc.relation.references | Zaman R. & Chowdhury EH. Therapeutic peptides targeting intracellular molecules. European Polymer Journal. 2024 Oct 16;219:113386. | spa |
| dc.relation.references | Zhang X., Wu Y., J Lin, S Lu, X Lu, A Cheng, Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharmaceutica Sinica B. 2024 Sep 1;14(9):3818–33. | spa |
| dc.relation.references | Zhang Y, Li Y, Bian L. Design and Unique Expression of a Novel Antibacterial Fusion Protein Cecropin B-Human Lysozyme to Be Toxic to Prokaryotic Host Cells. Probiotics and Antimicrobial Proteins. 2019 Dec 1;11(4):1362–9. | spa |
| dc.relation.references | Zhao F., Wang J.L., H.Y. Ming, Y.N. Zhang, Y.Q. Dun & J.H. Zhang JH, Insights into the binding mode and functional components of the analgesic-antitumour peptide from Buthus martensii Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. Apr 12;38(6):1868–79, 2020, doi: 10.1080/07391102.2019.1620126 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
| dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
| dc.subject.lemb | TOXINAS | spa |
| dc.subject.lemb | Toxins | eng |
| dc.subject.lemb | PEPTIDOS | spa |
| dc.subject.lemb | Peptides | eng |
| dc.subject.lemb | SINTESIS QUIMICA | spa |
| dc.subject.lemb | Chemical synthesis | eng |
| dc.subject.lemb | BIOSINTESIS | spa |
| dc.subject.lemb | Biosynthesis | eng |
| dc.subject.lemb | CITOTOXICIDAD POR MEDIACION CELULAR | spa |
| dc.subject.lemb | Cell-mediated cytotoxicity | eng |
| dc.subject.lemb | MUERTE CELULAR | spa |
| dc.subject.lemb | Cell death | eng |
| dc.subject.lemb | ESPECTROSCOPIA NUCLEAR | spa |
| dc.subject.lemb | Nuclear spectroscopy | eng |
| dc.subject.proposal | Bmk AGAP | spa |
| dc.subject.proposal | TRPC6, EAR | spa |
| dc.subject.proposal | Péptidos recombinantes | spa |
| dc.subject.proposal | Síntesis química en fase sólida | spa |
| dc.subject.proposal | Expresión génica | spa |
| dc.subject.proposal | Antitumorales | spa |
| dc.subject.proposal | Recombinant peptides | eng |
| dc.subject.proposal | Solid phase peptide synthesis | eng |
| dc.subject.proposal | Genic expression | eng |
| dc.subject.proposal | Antitumoral peptide | eng |
| dc.title | Obtención de péptidos derivados de toxinas de origen animal con actividad biológica mediante un sistema recombinante y síntesis química | spa |
| dc.title.translated | Production of bioactive peptides derived from animal toxins using recombinant systems and chemical synthesis | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1013640683.2024.pdf
- Tamaño:
- 7.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

