Implementación de un sistema de detección de intrusos soportado en técnicas de aprendizaje supervisado orientado a servicios en la nube para la detección de ataques de denegación de servicios distribuidos

dc.contributor.advisorDuque Méndez, Néstor Darío
dc.contributor.advisorIsaza Echeverri, Gustavo Adolfo
dc.contributor.authorMontes Gil, José Albeiro
dc.contributor.researchgroupGaia Grupo de Ambientes Inteligentes Adaptativosspa
dc.date.accessioned2023-05-28T00:44:07Z
dc.date.available2023-05-28T00:44:07Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractDados los avances presentados en la actualidad en el área de las Tecnologías de la Información y las Comunicaciones, la dependencia de las organizaciones hacia los activos tecnológicos cada día es más importante, razón por la cual, el área de seguridad informática tiene la responsabilidad de proporcionar mecanismos que garanticen la protección de la infraestructura tecnológica. Sin embargo, actualmente son constantes los ataques informáticos, los cuales buscan afectar la disponibilidad, integridad o confidencialidad de los datos y la información. A pesar de los numerosos mecanismos de seguridad con los que se cuenta actualmente, los atacantes logran vulnerar los diferentes mecanismos de protección, en particular, realizando ataques de Denegación de Servicios (DoS) y Denegación de Servicios Distribuidos (DDoS). Teniendo en cuenta que a pesar de la implementación de sistemas de seguridad tradicionales, no se ha conseguido una mitigación de los ataques en su totalidad, la adaptación de técnicas de aprendizaje supervisado para la detección de ataques de tipo DoS/DDoS es viable, dada la capacidad de los algoritmos de inteligencia artificial para clasificar y emitir predicciones. La comunidad científica respalda ampliamente la propuesta de implementar Sistemas de Detección de Intrusos usando técnicas de inteligencia artificial, no obstante, las soluciones desarrolladas no están orientadas a usuarios administradores de seguridad en redes sin conocimientos en aprendizaje de máquina y con la generación de reportes dinámicos y con carácter estadístico orientado a servicios en la nube. En esta tesis de maestría, se propuso el diseño e implementación de una arquitectura orientada a servicios en la nube, la selección de las técnicas de aprendizaje supervisado más relevantes en la detección de ataques DoS/DDoS y la implementación del sistema de Detección de Intrusos. El prototipo demuestra que las técnicas de aprendizaje supervisado pueden ser implementadas como servicios en la nube, garantizando su desempeño en la detección de este tipo de ataques en redes físicas y en tiempo real. (Texto tomado de la fuente)spa
dc.description.abstractGiven the advances presented today in the field of Information and Communication Technologies, the dependence of organizations on technological assets is becoming increasingly important. Therefore, the area of computer security has the responsibility to provide mechanisms that ensure the protection of technological infrastructure. However, cyberattacks seeking to affect the availability, integrity, or confidentiality of data and information are becoming increasingly constant. Despite the numerous security mechanisms currently available, attackers manage to compromise different protection mechanisms, particularly by carrying out Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks. Considering that traditional security systems have not achieved complete mitigation of attacks, the adaptation of supervised learning techniques for DoS/DDoS attack detection is viable given the ability of artificial intelligence algorithms to classify and make predictions. The scientific community widely supports the proposal to implement Intrusion Detection Systems using artificial intelligence techniques. However, the solutions developed are not aimed at security administrators in networks without knowledge of machine learning and with the generation of dynamic and statistical reports oriented towards cloud services. This master's thesis proposes the design and implementation of a cloud-oriented architecture, the selection of the most relevant supervised learning techniques in the detection of DoS/DDoS attacks, and the implementation of the Intrusion Detection System. The prototype demonstrates that supervised learning techniques can be implemented as cloud services, guaranteeing their performance in detecting these types of attacks in physical networks in real-time.eng
dc.description.curricularareaInformática Y Computación.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Administración de Sistemas Informáticosspa
dc.description.researchareaInteligencia Artificialspa
dc.format.extentxviii, 130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83889
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Administración - Maestría en Administración de Sistemas Informáticosspa
dc.relation.referencesAbughazleh, A., Almiani, M., Magableh, B., & Razaque, A. (2019). Intelligent intrusion detection using radial basis function neural network. 2019 6th International Conference on Software Defined Systems, SDS 2019, 200–208. https://doi.org/10.1109/SDS.2019.8768575spa
dc.relation.referencesAhmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021a). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1). https://doi.org/10.1002/ett.4150spa
dc.relation.referencesAhmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021b). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1). https://doi.org/10.1002/ett.4150spa
dc.relation.referencesAlmanza J., A. R. (2019). XIX Encuesta Nacional de Seguridad Informática. Revista SISTEMAS, 151, 12–41. https://doi.org/10.29236/sistemas.n151a3spa
dc.relation.referencesAlmseidin, M., & Kovacs, S. (2019). Intrusion detection mechanism using fuzzy rule interpolation. ArXiv.spa
dc.relation.referencesAlonso, A., Gomez, R., Juan, E., Jaimes, C., Francisco, U., & Santander, D. P. (2018). Recibido: 13 de septiembre de 2017 Aceptado: 8 de diciembre de 2017.spa
dc.relation.referencesAlzubi, O. A., Alzubi, J. A., Alazab, M., Alrabea, A., Awajan, A., & Qiqieh, I. (2022). Optimized Machine Learning-Based Intrusion Detection System for Fog and Edge Computing Environment. Electronics (Switzerland), 11(19). https://doi.org/10.3390/electronics11193007spa
dc.relation.referencesAndrade Carrera, H., Sinche Maita, S., & Hidalgo Lascano, P. (2021). Modelo para detectar el uso correcto de mascarillas en tiempo real utilizando redes neuronales convolucionales. Revista de Investigación En Tecnologías de La Información, 9(17), 111–120. https://doi.org/10.36825/riti.09.17.011spa
dc.relation.referencesArango Serna, M. D., Londoño Salazar, J. E., & Zapata Cortes, J. A. (2010). Arquitectura orientada a servicios en el contexto de la arquitectura empresaria. Avances En Sistemas e Informática, 7, 15–88.spa
dc.relation.referencesAsharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., & Wahab, A. (2020). A review of intrusion detection systems using machine and deep learning in internet of things: Challenges, solutions and future directions. In Electronics (Switzerland) (Vol. 9, Issue 7). MDPI AG. https://doi.org/10.3390/electronics9071177spa
dc.relation.referencesAzahari Mohd, Y. M., Fakariah Hani Mohd, A., & Mohamad Yusof, D. (2018). Detection and Defense Algorithms of Different Types of DDoS Attacks. International Journal of Engineering and Technology, 9(5), 410–444. https://doi.org/10.7763/ijet.2017.v9.1008spa
dc.relation.referencesBalaji, S., Salih, A., & Al-Atroshi, C. (2018). Adaptability of SOA in IoT Services – An Empirical Survey. International Journal of Computer Applications, 182(31), 25–28. https://doi.org/10.5120/ijca2018918249spa
dc.relation.referencesBautista, J., Tutores, R., & Manzano, L. G. (2018). Ataques DDoS con IoT, Análisis y Prevención de Riesgos. https://e-archivo.uc3m.es/handle/10016/29630spa
dc.relation.referencesBebortta, S., & Singh, S. K. (2021). An Adaptive Machine Learning-based Threat Detection Framework for Industrial Communication Networks. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). https://doi.org/10.1109/CSNT.2021.91spa
dc.relation.referencesBeckmann, M., Ebecken, N. F. F., & Pires de Lima, B. S. L. (2015). A KNN Undersampling Approach for Data Balancing. Journal of Intelligent Learning Systems and Applications, 07(04), 104–116. https://doi.org/10.4236/jilsa.2015.74010spa
dc.relation.referencesBeechey, M., Lambotharan, S., & Kyriakopoulos, K. G. (2023). Evidential classification for defending against adversarial attacks on network traffic. Information Fusion, 92, 115–126. https://doi.org/10.1016/j.inffus.2022.11.024spa
dc.relation.referencesBenza¨ıdbenza¨ıd, C., Boukhalfa, M., & Taleb, T. (2020). Robust Self-Protection Against Application-Layer (D)DoS Attacks in SDN Environment. IEEE Wireless Communications and Networking Conference (WCNC). https://github.com/grafov/hulkspa
dc.relation.referencesBhardwaj, A., Mangat, V., & Vig, R. (2020). Hyperband Tuned Deep Neural Network With Well Posed Stacked Sparse AutoEncoder for Detection of DDoS Attacks in Cloud. IEEE Access, 8, 181916–181929. https://doi.org/10.1109/access.2020.3028690spa
dc.relation.referencesBlack, S., & Kim, Y. (2022). An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, CCWC 2022, 791–800. https://doi.org/10.1109/CCWC54503.2022.9720741spa
dc.relation.referencesBogdanoski, M. (2013). Analysis of the SYN Flood DoS Attack. June, 1–11. https://doi.org/10.5815/ijcnis.2013.08.01spa
dc.relation.referencesBravo, S., & Mauricio, D. (2019). Systematic review of aspects of DDoS attacks detection. Indonesian Journal of Electrical Engineering and Computer Science, 14(1), 155. https://doi.org/10.11591/ijeecs.v14.i1.pp155-168spa
dc.relation.referencesCaballero, J. S., De, L., Sánchez, P., Jorge, P., & López De Vergara, E. (2019). Estudio de detección de ciberataques en Internet mediante algoritmos de clasificación de parámetros de tráfico.spa
dc.relation.referencesCano, J. J. (2012). Seguridad de la información y privacidad: dos conceptos convergentes. http://acis.org.co/revistasistemas/index.php/ediciones-revistasistemas/edicion-no-123/item/100-seguridad-de-la-información-y-privacidad-dosconceptos-convergentesspa
dc.relation.referencesCarlin, A., Hammoudeh, M., & Aldabbas, O. (2015). Defence for Distributed Denial of Service Attacks in Cloud Computing. Procedia Computer Science, 73, 490–497. https://doi.org/10.1016/j.procs.2015.12.037spa
dc.relation.referencesČelesová, B., Val’ko, J., Grežo, R., & Helebrandt, P. (2019). Enhancing security of SDN focusing on control plane and data plane. 7th International Symposium on Digital Forensics and Security, ISDFS 2019, 1–6. https://doi.org/10.1109/ISDFS.2019.8757542spa
dc.relation.referencesChang, V., Golightly, L., Modesti, P., Xu, Q. A., Doan, L. M. T., Hall, K., Boddu, S., & Kobusińska, A. (2022). A Survey on Intrusion Detection Systems for Fog and Cloud Computing. Future Internet, 14(3). https://doi.org/10.3390/fi14030089spa
dc.relation.referencesChaudhary, A., & Shrimal, G. (2019). Intrusion Detection System Based on Genetic Algorithm for Detection of Distribution Denial of Service Attacks in MANETs. SSRN Electronic Journal, 370–377. https://doi.org/10.2139/ssrn.3351807spa
dc.relation.referencesCisar, P., & Pinter, R. (2019). Journal of Applied Technical and Educational Sciences jATES Some ethical hacking possibilities in Kali Linux environment. 9(4), 129–149. https://doi.org/10.24368/jates.v9i4.139spa
dc.relation.referencesCorrea Wachter, J. F., & Henao Villas, C. F. (2021). Análisis del aporte del aprendizaje de máquinas a la seguridad de la información. Ingente Americana, 1(1), 9–20. https://doi.org/10.21803/ingecana.1.1.407spa
dc.relation.referencesCroft, R., Xie, Y., & Babar, M. A. (2022). Data Preparation for Software Vulnerability Prediction: A Systematic Literature Review. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2022.3171202spa
dc.relation.referencesDisha, R. A., & Waheed, S. (2022). Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique. Cybersecurity, 5(1). https://doi.org/10.1186/s42400-021-00103-8spa
dc.relation.referencesDong, S., Su, H., & Liu, Y. (2022). A-CAVE: Network abnormal traffic detection algorithm based on variational autoencoder. ICT Express. https://doi.org/10.1016/j.icte.2022.11.006spa
dc.relation.referencesDoriguzzi-Corin, R., Millar, S., Scott-Hayward, S., Martínez-del-Rincón, J., & Siracusa, D. (2020). LUCID: A practical, lightweight deep learning solution for DDoS attack detection. ArXiv, 17(2), 876–889.spa
dc.relation.referencesFarhana, N., Firdaus, A., Darmawan, M. F., & Ab Razak, M. F. (2022). Evaluation of Boruta algorithm in DDoS detection. Egyptian Informatics Journal. https://doi.org/10.1016/j.eij.2022.10.005spa
dc.relation.referencesFigueroa, J. A., Rodríguez-Andrade, R. F., Bone-Obando, C. C., & Saltos-Gómez, J. A. (2018). La seguridad informática y la seguridad de la información. Polo Del Conocimiento, 2(12), 145. https://doi.org/10.23857/pc.v2i12.420spa
dc.relation.referencesGangula, R., Mohan, V. M., & Kumar, R. (2022). A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier. Measurement: Sensors, 24. https://doi.org/10.1016/j.measen.2022.100570spa
dc.relation.referencesGholizadeh, S. (2022). Top Popular Python Libraries in Research. In Journal of Robotics and Automation Research (Vol. 3, Issue 2). www.opastonline.comspa
dc.relation.referencesHadeel S. Obaid. (2020). Denial of Service Attacks: Tools and Categories. International Journal of Engineering Research And, V9(03), 631–636. https://doi.org/10.17577/ijertv9is030289spa
dc.relation.referencesHaider, S., Akhunzada, A., Mustafa, I., Patel, T. B., Fernandez, A., Choo, K. K. R., & Iqbal, J. (2020). A Deep CNN Ensemble Framework for Efficient DDoS Attack Detection in Software Defined Networks. IEEE Access, 8, 53972–53983. https://doi.org/10.1109/ACCESS.2020.2976908spa
dc.relation.referencesHarshita, H. (2017). Detection and Prevention of ICMP Flood DDOS Attack. International Journal of New Technology and Research, 3(3), 263333.spa
dc.relation.referencesHasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., & Budiarto, R. (2020). Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. IEEE Access, 8, 90847–90861. https://doi.org/10.1109/ACCESS.2020.2994222spa
dc.relation.referencesHumayun, M., Niazi, M., Jhanjhi, N., Alshayeb, M., & Mahmood, S. (2020). Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study. Arabian Journal for Science and Engineering, 45(4), 3171–3189. https://doi.org/10.1007/s13369-01904319-2spa
dc.relation.referencesIram, A., Zahrah, A., Faheem, M., & Alwi M, B. (2020). A Machine Learning Approach for Intrusion Detection System on NSL-KDD Dataset.eng
dc.relation.referencessaza, G., & Ramírez, F. (2023). Prototipo de Red Neuronal Profunda Aplicada en Ciberseguridad [Tesis]. Universidad de Caldasspa
dc.relation.referencesIssa, A., Albayrak, Z., & Sardar, A. (2023). DDoS Attack Intrusion Detection System Based on Hybridization of CNN and LSTM. Acta Polytechnica Hungarica, 20(2), 105–123. https://doi.org/10.12700/APH.20.3.2023.3.6eng
dc.relation.referencesKrishnaveni, S., Sivamohan, S., Sridhar, S. S., & Prabakaran, S. (2021). Efficient feature selection and classification through ensemble method for network intrusion detection on cloud computing. Cluster Computing, 24(3), 1761–1779. https://doi.org/10.1007/s10586-020-03222-yeng
dc.relation.referencesKumar, V. (2014). Feature Selection: A literature Review. The Smart Computing Review, 4(3). https://doi.org/10.6029/smartcr.2014.03.007eng
dc.relation.referencesLachnit, S., Gallenmüller, S., Scholz, D., & Stubbe, H. (2021). xdpcap: XDP Packet Capture. Network Architectures and Services, 41–44. https://doi.org/10.2313/NET2021-05-1_09eng
dc.relation.referencesLafram, I., Berbiche, N., & el Alami, J. (2019). Artificial Neural Networks Optimized with Unsupervised Clustering for IDS Classification. ICSSD 2019 - International Conference on Smart Systems and Data Science. https://doi.org/10.1109/ICSSD47982.2019.9002827eng
dc.relation.referencesLayme Fernández, C., Manuel, J., Canaza, S., Jose, D., Ugarte, P., Yoset, J., & Quispe, L. (2022). Application of decision trees in the identification of fraudulent websites. Revista Innovación y Software, 3(1).eng
dc.relation.referencesLe, T. T. H., Kim, Y., & Kim, H. (2019). Network intrusion detection based on novel feature selection model and various recurrent neural networks. Applied Sciences (Switzerland), 9(7). https://doi.org/10.3390/app9071392eng
dc.relation.referencesLee, K. J. (2021). Architecture of neural processing unit for deep neural networks. In Advances in Computers (Vol. 122, pp. 217–245). Academic Press Inc. https://doi.org/10.1016/bs.adcom.2020.11.001eng
dc.relation.referencesLee, T. H., Chang, L. H., & Syu, C. W. (2020). Deep learning enabled intrusion detection and prevention system over SDN networks. 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings. https://doi.org/10.1109/ICCWorkshops49005.2020.9145085eng
dc.relation.referencesLeevy, J. L., Hancock, J., Zuech, R., & Khoshgoftaar, T. M. (2021). Detecting cybersecurity attacks across different network features and learners. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00426-weng
dc.relation.referencesLublinsky, B. (2007). Defining SOA as an architectural style: Align your business model with technology. IBM DeveloperWorks Site.eng
dc.relation.referencesMaldonado, J. (2018). Avances en Sistemas de Detección de Intrusos con on Sistemática de la Literatura. 978–980.spa
dc.relation.referencesManso, P., Moura, J., & Serrão, C. (2019). SDN-based intrusion detection system for early detection and mitigation of DDoS attacks. Information (Switzerland), 10(3), 117. https://doi.org/10.3390/info10030106eng
dc.relation.referencesMerchán, G., & César, E. (2022). Transhumanismo y consciencia fenoménica Transhumanism and phenomenal consciousness. 109–126.spa
dc.relation.referencesMishra, N., & Pandya, S. (2021). Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review. In IEEE Access (Vol. 9, pp. 59353–59377). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3073408eng
dc.relation.referencesMohammadpour, L., Ling, T. C., Liew, C. S., & Aryanfar, A. (2022). A Survey of CNNBased Network Intrusion Detection. In Applied Sciences (Switzerland) (Vol. 12, Issue 16). MDPI. https://doi.org/10.3390/app12168162eng
dc.relation.referencesMontes-Gil, J. A., Isaza-Cadavid, G., & Duque-Méndez, N. D. (2023). Efecto de la selección de atributos en el desempeño de un IDS basado en machine learning para detección de intrusos en ataques DDoS. South Florida Journal of Development, 4(2), 918–928. https://doi.org/10.46932/sfjdv4n2-023spa
dc.relation.referencesMoukafih, N., Orhanou, G., & el Hajji, S. (2020). Neural Network-Based Voting System with High Capacity and Low Computation for Intrusion Detection in SIEM/IDS Systems. Security and Communication Networks, 2020. https://doi.org/10.1155/2020/3512737eng
dc.relation.referencesMoukhaf, M., El Yassini, K., Bri, S., & Oufaska, K. (2019). Building an e-learning recommender system using Association Rules techniques and R environment (Vol. 3, Issue 2). Springer International Publishing. https://doi.org/10.1007/978-3-03011928-7eng
dc.relation.referencesMuraleedharan, N., & Janet, B. (2021). A deep learning based HTTP slow DoS classification approach using flow data. ICT Express, 7(2), 210–214. https://doi.org/10.1016/j.icte.2020.08.005eng
dc.relation.referencesNiknejad, N., Ismail, W., Ghani, I., Nazari, B., Bahari, M., & Hussin, A. R. B. C. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 91. https://doi.org/10.1016/j.is.2020.101491eng
dc.relation.referencesOcampo, C. A., Viviana, Y., Bermúdez, C., & Solarte Martínez, G. R. (2017). Sistema de detección de intrusos en redes corporativas Intrusion Detection System in Corporate Networks. Scientia et Technica Año XXII, 22(1), 122–170.spa
dc.relation.referencesPanigrahi, R., & Borah, S. (2018). A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems Analysis of Selected Clustering Algorithms Used in Intrusion Detection Systems View project IEEE International Conference on Advanced Computational and Communication Paradigms (ICACCP-2017) View project A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems. In Article in International Journal of Engineering & Technology (Vol. 7, Issue 3). https://www.researchgate.net/publication/329045441eng
dc.relation.referencesPantoja, N. D., Donado, A. S., & Villalba, M. K. (2019). Selección de indicadores para la implementación de un IDS en PYMES. Risti, 777–786.spa
dc.relation.referencesPawlicki, M., Choraś, M., & Kozik, R. (2020). Defending network intrusion detection systems against adversarial evasion attacks. Future Generation Computer Systems, 110, 148–154. https://doi.org/10.1016/j.future.2020.04.013eng
dc.relation.referencesPhan, T. V., Nguyen, T. G., Dao, N. N., Huong, T. T., Thanh, N. H., & Bauschert, T. (2020). DeepGuard: Efficient Anomaly Detection in SDN with Fine-Grained Traffic Flow Monitoring. IEEE Transactions on Network and Service Management, 17(3), 1349–1362. https://doi.org/10.1109/TNSM.2020.3004415eng
dc.relation.referencesPreuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., & Ilie-Zudor, E. (2018). Chained anomaly detection models for federated learning: An intrusion detection case study. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122663eng
dc.relation.referencesPuder, A., Rumez, M., Grimm, D., & Sax, E. (2022). Generic Patterns for Intrusion Detection Systems in Service-Oriented Automotive and Medical Architectures. Journal of Cybersecurity and Privacy, 2(3), 731–749. https://doi.org/10.3390/jcp2030037eng
dc.relation.referencesQuiroz, & Valencia, D. (2017). Seguridad en informática: consideraciones. Dominio de Las Ciencias, 3(3), 676–688.spa
dc.relation.referencesQuirumbay Yagual, D. I., Castillo Yagual, C., & Coronel Suárez, I. (2022). Una revisión del Aprendizaje profundo aplicado a la ciberseguridad. Revista Científica y Tecnológica UPSE, 9(1), 57–65. https://doi.org/10.26423/rctu.v9i1.671spa
dc.relation.referencesRojas, C., Sebastian, B., Rodríguez, C., Uriel, C., Osorio, E., Javier, D., Tatiana, Y., Universitaria, F., & Gil, D. S. (2020). Redes neuronales artificiales y estado del arte aplicado en la ciberseguridad State of the art artificial networks applied to cybersegurity. 58–63.spa
dc.relation.referencesRoopak, M., Tian, G. Y., & Chambers, J. (2020). An Intrusion Detection System Against DDoS Attacks in IoT Networks. 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, 562–567. https://doi.org/10.1109/CCWC47524.2020.9031206eng
dc.relation.referencesRt’, K., Selvi’, S. T., & Govindarajan2, K. (2014). DDoS Detection and Analysis in SDNbased Environment Using Support Vector Machine Classifier.eng
dc.relation.referencesS, S. A., Ramesh Babu, D. R., & Venkatesan, S. (2019). Twilio Integration with Dialogflow for Effective Communication. Journal of Web Development and Web Designing, 4(2). https://doi.org/10.5281/zenodo.3251169eng
dc.relation.referencesSallam, A. A., Kabir, M. N., Alginahi, Y. M., Jamal, A., & Esmeel, T. K. (2020). IDS for Improving DDoS Attack Recognition Based on Attack Profiles and Network Traffic Features. Proceedings - 2020 16th IEEE International Colloquium on Signal Processing and Its Applications, CSPA 2020, Cspa, 255–260. https://doi.org/10.1109/CSPA48992.2020.9068679eng
dc.relation.referencesSampedro, C. R., Machuca Vivar, S. A., Palma Rivera, D. P., & Carrera Calderón, F. A. (2019). Percepción de seguridad de la información en las pequeñas y medianas empresas en santo domingo. Investigacion Operacional, 40(3), 421–428.spa
dc.relation.referencesSharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSP 2018 - Proceedings of the 4th International Conference on Information Systems Security and Privacy, 2018-January, 108–116. https://doi.org/10.5220/0006639801080116eng
dc.relation.referencesSharma, N. V., & Yadav, N. S. (2021). An optimal intrusion detection system using recursive feature elimination and ensemble of classifiers. Microprocessors and Microsystems, 85. https://doi.org/10.1016/j.micpro.2021.104293eng
dc.relation.referencesShi, Z., Li, J., & Wu, C. (2019). DeepDDoS: Online DDoS attack detection. 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings, 0–5. https://doi.org/10.1109/GLOBECOM38437.2019.9013186eng
dc.relation.referencesSingh, A., Akash, R., & Gokul Rajan, V. (2022). Flower Classifier Web App Using Ml & Flask Web Framework. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022, 974–977. https://doi.org/10.1109/ICACITE53722.2022.9823577eng
dc.relation.referencesSnigdho, M. A., Chowdhury, S., & Jahan, N. (2022). Real-Time DDoS Attack Prediction using Supervised Algorithms and CNN. 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings, 1342–1348. https://doi.org/10.1109/ICCES54183.2022.9835977eng
dc.relation.referencesSolanki, S. D., & Solanki, A. D. (2020). Identification of DOS Attack by implementing SYN Flood Attack and considering CPU Load Analysis. International Research Journal on Advanced Science Hub, 2(8), 68–74. https://doi.org/10.47392/irjash.2020.96eng
dc.relation.referencesSpiekermann, D., & Keller, J. (2021). Unsupervised packet-based anomaly detection in virtual networks. Computer Networks, 192. https://doi.org/10.1016/j.comnet.2021.108017eng
dc.relation.referencesSusa Velandia, J. S., Carvajal Hoyos, A. C., & Cadena Muñoz, E. (2022). Modelo de Detección de Ataques DDoS (Distributed Denial of Services), con Base en el Clasificador Decision Tree. https://repository.udistrital.edu.co/handle/11349/30117spa
dc.relation.referencesSze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. (2017). Efficient Processing of Deep Neural Networks: A Tutorial and Survey. http://arxiv.org/abs/1703.09039eng
dc.relation.referencesTaheri, S., Salem, M., & Yuan, J. S. (2018). Leveraging image representation of network traffic data and transfer learning in botnet detection. Big Data and Cognitive Computing, 2(4), 1–16. https://doi.org/10.3390/bdcc2040037eng
dc.relation.referencesThakkar, A., & Lohiya, R. (2021). Attack classification using feature selection techniques: a comparative study. Journal of Ambient Intelligence and Humanized Computing, 12(1), 1249–1266. https://doi.org/10.1007/s12652-020-02167-9eng
dc.relation.referencesVirupakshar, K. B., Asundi, M., Channal, K., Shettar, P., Patil, S., & Narayan, D. G. (2020). Distributed Denial of Service (DDoS) Attacks Detection System for OpenStack-based Private Cloud. Procedia Computer Science, 167(2019), 22972307. https://doi.org/10.1016/j.procs.2020.03.282eng
dc.relation.referencesWang, J., Chang, X., Wang, Y., Rodríguez, R. J., & Zhang, J. (2021). LSGAN-AT: enhancing malware detector robustness against adversarial examples. Cybersecurity, 4(1). https://doi.org/10.1186/s42400-021-00102-9eng
dc.relation.referencesWang, W., Chakraborty, G., & Chakraborty, B. (2021). Predicting the risk of chronic kidney disease (Ckd) using machine learning algorithm. Applied Sciences (Switzerland), 11(1), 1–17. https://doi.org/10.3390/app11010202eng
dc.relation.referencesWu, X., Kumar, V., Ross, Q. J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37. https://doi.org/10.1007/s10115-007-0114-2eng
dc.relation.referencesXiao, Y., Xing, C., Zhang, T., & Zhao, Z. (2019). An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks. IEEE Access, 7, 4221042219. https://doi.org/10.1109/ACCESS.2019.2904620eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.proposalIDSspa
dc.subject.proposalAttacksspa
dc.subject.proposalSOAspa
dc.subject.proposalDoSspa
dc.subject.proposalDDoSspa
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalMachine learningspa
dc.subject.unescoProtección de datosspa
dc.subject.unescoInteligencia artificialspa
dc.titleImplementación de un sistema de detección de intrusos soportado en técnicas de aprendizaje supervisado orientado a servicios en la nube para la detección de ataques de denegación de servicios distribuidosspa
dc.title.translatedImplementation of an intrusion detection system supported by supervised service-oriented learning techniques in the cloud for the detection of distributed denial of service attacks.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1053828905.2023.pdf
Tamaño:
4.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Administración de Sistemas Informáticos
No hay miniatura disponible
Nombre:
U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1) (2).docx (1).pdf
Tamaño:
115.68 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: