Implementación de un sistema de detección de intrusos soportado en técnicas de aprendizaje supervisado orientado a servicios en la nube para la detección de ataques de denegación de servicios distribuidos
dc.contributor.advisor | Duque Méndez, Néstor Darío | |
dc.contributor.advisor | Isaza Echeverri, Gustavo Adolfo | |
dc.contributor.author | Montes Gil, José Albeiro | |
dc.contributor.researchgroup | Gaia Grupo de Ambientes Inteligentes Adaptativos | spa |
dc.date.accessioned | 2023-05-28T00:44:07Z | |
dc.date.available | 2023-05-28T00:44:07Z | |
dc.date.issued | 2023 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Dados los avances presentados en la actualidad en el área de las Tecnologías de la Información y las Comunicaciones, la dependencia de las organizaciones hacia los activos tecnológicos cada día es más importante, razón por la cual, el área de seguridad informática tiene la responsabilidad de proporcionar mecanismos que garanticen la protección de la infraestructura tecnológica. Sin embargo, actualmente son constantes los ataques informáticos, los cuales buscan afectar la disponibilidad, integridad o confidencialidad de los datos y la información. A pesar de los numerosos mecanismos de seguridad con los que se cuenta actualmente, los atacantes logran vulnerar los diferentes mecanismos de protección, en particular, realizando ataques de Denegación de Servicios (DoS) y Denegación de Servicios Distribuidos (DDoS). Teniendo en cuenta que a pesar de la implementación de sistemas de seguridad tradicionales, no se ha conseguido una mitigación de los ataques en su totalidad, la adaptación de técnicas de aprendizaje supervisado para la detección de ataques de tipo DoS/DDoS es viable, dada la capacidad de los algoritmos de inteligencia artificial para clasificar y emitir predicciones. La comunidad científica respalda ampliamente la propuesta de implementar Sistemas de Detección de Intrusos usando técnicas de inteligencia artificial, no obstante, las soluciones desarrolladas no están orientadas a usuarios administradores de seguridad en redes sin conocimientos en aprendizaje de máquina y con la generación de reportes dinámicos y con carácter estadístico orientado a servicios en la nube. En esta tesis de maestría, se propuso el diseño e implementación de una arquitectura orientada a servicios en la nube, la selección de las técnicas de aprendizaje supervisado más relevantes en la detección de ataques DoS/DDoS y la implementación del sistema de Detección de Intrusos. El prototipo demuestra que las técnicas de aprendizaje supervisado pueden ser implementadas como servicios en la nube, garantizando su desempeño en la detección de este tipo de ataques en redes físicas y en tiempo real. (Texto tomado de la fuente) | spa |
dc.description.abstract | Given the advances presented today in the field of Information and Communication Technologies, the dependence of organizations on technological assets is becoming increasingly important. Therefore, the area of computer security has the responsibility to provide mechanisms that ensure the protection of technological infrastructure. However, cyberattacks seeking to affect the availability, integrity, or confidentiality of data and information are becoming increasingly constant. Despite the numerous security mechanisms currently available, attackers manage to compromise different protection mechanisms, particularly by carrying out Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks. Considering that traditional security systems have not achieved complete mitigation of attacks, the adaptation of supervised learning techniques for DoS/DDoS attack detection is viable given the ability of artificial intelligence algorithms to classify and make predictions. The scientific community widely supports the proposal to implement Intrusion Detection Systems using artificial intelligence techniques. However, the solutions developed are not aimed at security administrators in networks without knowledge of machine learning and with the generation of dynamic and statistical reports oriented towards cloud services. This master's thesis proposes the design and implementation of a cloud-oriented architecture, the selection of the most relevant supervised learning techniques in the detection of DoS/DDoS attacks, and the implementation of the Intrusion Detection System. The prototype demonstrates that supervised learning techniques can be implemented as cloud services, guaranteeing their performance in detecting these types of attacks in physical networks in real-time. | eng |
dc.description.curriculararea | Informática Y Computación.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Administración de Sistemas Informáticos | spa |
dc.description.researcharea | Inteligencia Artificial | spa |
dc.format.extent | xviii, 130 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83889 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Administración | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Administración - Maestría en Administración de Sistemas Informáticos | spa |
dc.relation.references | Abughazleh, A., Almiani, M., Magableh, B., & Razaque, A. (2019). Intelligent intrusion detection using radial basis function neural network. 2019 6th International Conference on Software Defined Systems, SDS 2019, 200–208. https://doi.org/10.1109/SDS.2019.8768575 | spa |
dc.relation.references | Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021a). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1). https://doi.org/10.1002/ett.4150 | spa |
dc.relation.references | Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021b). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1). https://doi.org/10.1002/ett.4150 | spa |
dc.relation.references | Almanza J., A. R. (2019). XIX Encuesta Nacional de Seguridad Informática. Revista SISTEMAS, 151, 12–41. https://doi.org/10.29236/sistemas.n151a3 | spa |
dc.relation.references | Almseidin, M., & Kovacs, S. (2019). Intrusion detection mechanism using fuzzy rule interpolation. ArXiv. | spa |
dc.relation.references | Alonso, A., Gomez, R., Juan, E., Jaimes, C., Francisco, U., & Santander, D. P. (2018). Recibido: 13 de septiembre de 2017 Aceptado: 8 de diciembre de 2017. | spa |
dc.relation.references | Alzubi, O. A., Alzubi, J. A., Alazab, M., Alrabea, A., Awajan, A., & Qiqieh, I. (2022). Optimized Machine Learning-Based Intrusion Detection System for Fog and Edge Computing Environment. Electronics (Switzerland), 11(19). https://doi.org/10.3390/electronics11193007 | spa |
dc.relation.references | Andrade Carrera, H., Sinche Maita, S., & Hidalgo Lascano, P. (2021). Modelo para detectar el uso correcto de mascarillas en tiempo real utilizando redes neuronales convolucionales. Revista de Investigación En Tecnologías de La Información, 9(17), 111–120. https://doi.org/10.36825/riti.09.17.011 | spa |
dc.relation.references | Arango Serna, M. D., Londoño Salazar, J. E., & Zapata Cortes, J. A. (2010). Arquitectura orientada a servicios en el contexto de la arquitectura empresaria. Avances En Sistemas e Informática, 7, 15–88. | spa |
dc.relation.references | Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., & Wahab, A. (2020). A review of intrusion detection systems using machine and deep learning in internet of things: Challenges, solutions and future directions. In Electronics (Switzerland) (Vol. 9, Issue 7). MDPI AG. https://doi.org/10.3390/electronics9071177 | spa |
dc.relation.references | Azahari Mohd, Y. M., Fakariah Hani Mohd, A., & Mohamad Yusof, D. (2018). Detection and Defense Algorithms of Different Types of DDoS Attacks. International Journal of Engineering and Technology, 9(5), 410–444. https://doi.org/10.7763/ijet.2017.v9.1008 | spa |
dc.relation.references | Balaji, S., Salih, A., & Al-Atroshi, C. (2018). Adaptability of SOA in IoT Services – An Empirical Survey. International Journal of Computer Applications, 182(31), 25–28. https://doi.org/10.5120/ijca2018918249 | spa |
dc.relation.references | Bautista, J., Tutores, R., & Manzano, L. G. (2018). Ataques DDoS con IoT, Análisis y Prevención de Riesgos. https://e-archivo.uc3m.es/handle/10016/29630 | spa |
dc.relation.references | Bebortta, S., & Singh, S. K. (2021). An Adaptive Machine Learning-based Threat Detection Framework for Industrial Communication Networks. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). https://doi.org/10.1109/CSNT.2021.91 | spa |
dc.relation.references | Beckmann, M., Ebecken, N. F. F., & Pires de Lima, B. S. L. (2015). A KNN Undersampling Approach for Data Balancing. Journal of Intelligent Learning Systems and Applications, 07(04), 104–116. https://doi.org/10.4236/jilsa.2015.74010 | spa |
dc.relation.references | Beechey, M., Lambotharan, S., & Kyriakopoulos, K. G. (2023). Evidential classification for defending against adversarial attacks on network traffic. Information Fusion, 92, 115–126. https://doi.org/10.1016/j.inffus.2022.11.024 | spa |
dc.relation.references | Benza¨ıdbenza¨ıd, C., Boukhalfa, M., & Taleb, T. (2020). Robust Self-Protection Against Application-Layer (D)DoS Attacks in SDN Environment. IEEE Wireless Communications and Networking Conference (WCNC). https://github.com/grafov/hulk | spa |
dc.relation.references | Bhardwaj, A., Mangat, V., & Vig, R. (2020). Hyperband Tuned Deep Neural Network With Well Posed Stacked Sparse AutoEncoder for Detection of DDoS Attacks in Cloud. IEEE Access, 8, 181916–181929. https://doi.org/10.1109/access.2020.3028690 | spa |
dc.relation.references | Black, S., & Kim, Y. (2022). An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, CCWC 2022, 791–800. https://doi.org/10.1109/CCWC54503.2022.9720741 | spa |
dc.relation.references | Bogdanoski, M. (2013). Analysis of the SYN Flood DoS Attack. June, 1–11. https://doi.org/10.5815/ijcnis.2013.08.01 | spa |
dc.relation.references | Bravo, S., & Mauricio, D. (2019). Systematic review of aspects of DDoS attacks detection. Indonesian Journal of Electrical Engineering and Computer Science, 14(1), 155. https://doi.org/10.11591/ijeecs.v14.i1.pp155-168 | spa |
dc.relation.references | Caballero, J. S., De, L., Sánchez, P., Jorge, P., & López De Vergara, E. (2019). Estudio de detección de ciberataques en Internet mediante algoritmos de clasificación de parámetros de tráfico. | spa |
dc.relation.references | Cano, J. J. (2012). Seguridad de la información y privacidad: dos conceptos convergentes. http://acis.org.co/revistasistemas/index.php/ediciones-revistasistemas/edicion-no-123/item/100-seguridad-de-la-información-y-privacidad-dosconceptos-convergentes | spa |
dc.relation.references | Carlin, A., Hammoudeh, M., & Aldabbas, O. (2015). Defence for Distributed Denial of Service Attacks in Cloud Computing. Procedia Computer Science, 73, 490–497. https://doi.org/10.1016/j.procs.2015.12.037 | spa |
dc.relation.references | Čelesová, B., Val’ko, J., Grežo, R., & Helebrandt, P. (2019). Enhancing security of SDN focusing on control plane and data plane. 7th International Symposium on Digital Forensics and Security, ISDFS 2019, 1–6. https://doi.org/10.1109/ISDFS.2019.8757542 | spa |
dc.relation.references | Chang, V., Golightly, L., Modesti, P., Xu, Q. A., Doan, L. M. T., Hall, K., Boddu, S., & Kobusińska, A. (2022). A Survey on Intrusion Detection Systems for Fog and Cloud Computing. Future Internet, 14(3). https://doi.org/10.3390/fi14030089 | spa |
dc.relation.references | Chaudhary, A., & Shrimal, G. (2019). Intrusion Detection System Based on Genetic Algorithm for Detection of Distribution Denial of Service Attacks in MANETs. SSRN Electronic Journal, 370–377. https://doi.org/10.2139/ssrn.3351807 | spa |
dc.relation.references | Cisar, P., & Pinter, R. (2019). Journal of Applied Technical and Educational Sciences jATES Some ethical hacking possibilities in Kali Linux environment. 9(4), 129–149. https://doi.org/10.24368/jates.v9i4.139 | spa |
dc.relation.references | Correa Wachter, J. F., & Henao Villas, C. F. (2021). Análisis del aporte del aprendizaje de máquinas a la seguridad de la información. Ingente Americana, 1(1), 9–20. https://doi.org/10.21803/ingecana.1.1.407 | spa |
dc.relation.references | Croft, R., Xie, Y., & Babar, M. A. (2022). Data Preparation for Software Vulnerability Prediction: A Systematic Literature Review. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2022.3171202 | spa |
dc.relation.references | Disha, R. A., & Waheed, S. (2022). Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique. Cybersecurity, 5(1). https://doi.org/10.1186/s42400-021-00103-8 | spa |
dc.relation.references | Dong, S., Su, H., & Liu, Y. (2022). A-CAVE: Network abnormal traffic detection algorithm based on variational autoencoder. ICT Express. https://doi.org/10.1016/j.icte.2022.11.006 | spa |
dc.relation.references | Doriguzzi-Corin, R., Millar, S., Scott-Hayward, S., Martínez-del-Rincón, J., & Siracusa, D. (2020). LUCID: A practical, lightweight deep learning solution for DDoS attack detection. ArXiv, 17(2), 876–889. | spa |
dc.relation.references | Farhana, N., Firdaus, A., Darmawan, M. F., & Ab Razak, M. F. (2022). Evaluation of Boruta algorithm in DDoS detection. Egyptian Informatics Journal. https://doi.org/10.1016/j.eij.2022.10.005 | spa |
dc.relation.references | Figueroa, J. A., Rodríguez-Andrade, R. F., Bone-Obando, C. C., & Saltos-Gómez, J. A. (2018). La seguridad informática y la seguridad de la información. Polo Del Conocimiento, 2(12), 145. https://doi.org/10.23857/pc.v2i12.420 | spa |
dc.relation.references | Gangula, R., Mohan, V. M., & Kumar, R. (2022). A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier. Measurement: Sensors, 24. https://doi.org/10.1016/j.measen.2022.100570 | spa |
dc.relation.references | Gholizadeh, S. (2022). Top Popular Python Libraries in Research. In Journal of Robotics and Automation Research (Vol. 3, Issue 2). www.opastonline.com | spa |
dc.relation.references | Hadeel S. Obaid. (2020). Denial of Service Attacks: Tools and Categories. International Journal of Engineering Research And, V9(03), 631–636. https://doi.org/10.17577/ijertv9is030289 | spa |
dc.relation.references | Haider, S., Akhunzada, A., Mustafa, I., Patel, T. B., Fernandez, A., Choo, K. K. R., & Iqbal, J. (2020). A Deep CNN Ensemble Framework for Efficient DDoS Attack Detection in Software Defined Networks. IEEE Access, 8, 53972–53983. https://doi.org/10.1109/ACCESS.2020.2976908 | spa |
dc.relation.references | Harshita, H. (2017). Detection and Prevention of ICMP Flood DDOS Attack. International Journal of New Technology and Research, 3(3), 263333. | spa |
dc.relation.references | Hasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., & Budiarto, R. (2020). Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. IEEE Access, 8, 90847–90861. https://doi.org/10.1109/ACCESS.2020.2994222 | spa |
dc.relation.references | Humayun, M., Niazi, M., Jhanjhi, N., Alshayeb, M., & Mahmood, S. (2020). Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study. Arabian Journal for Science and Engineering, 45(4), 3171–3189. https://doi.org/10.1007/s13369-01904319-2 | spa |
dc.relation.references | Iram, A., Zahrah, A., Faheem, M., & Alwi M, B. (2020). A Machine Learning Approach for Intrusion Detection System on NSL-KDD Dataset. | eng |
dc.relation.references | saza, G., & Ramírez, F. (2023). Prototipo de Red Neuronal Profunda Aplicada en Ciberseguridad [Tesis]. Universidad de Caldas | spa |
dc.relation.references | Issa, A., Albayrak, Z., & Sardar, A. (2023). DDoS Attack Intrusion Detection System Based on Hybridization of CNN and LSTM. Acta Polytechnica Hungarica, 20(2), 105–123. https://doi.org/10.12700/APH.20.3.2023.3.6 | eng |
dc.relation.references | Krishnaveni, S., Sivamohan, S., Sridhar, S. S., & Prabakaran, S. (2021). Efficient feature selection and classification through ensemble method for network intrusion detection on cloud computing. Cluster Computing, 24(3), 1761–1779. https://doi.org/10.1007/s10586-020-03222-y | eng |
dc.relation.references | Kumar, V. (2014). Feature Selection: A literature Review. The Smart Computing Review, 4(3). https://doi.org/10.6029/smartcr.2014.03.007 | eng |
dc.relation.references | Lachnit, S., Gallenmüller, S., Scholz, D., & Stubbe, H. (2021). xdpcap: XDP Packet Capture. Network Architectures and Services, 41–44. https://doi.org/10.2313/NET2021-05-1_09 | eng |
dc.relation.references | Lafram, I., Berbiche, N., & el Alami, J. (2019). Artificial Neural Networks Optimized with Unsupervised Clustering for IDS Classification. ICSSD 2019 - International Conference on Smart Systems and Data Science. https://doi.org/10.1109/ICSSD47982.2019.9002827 | eng |
dc.relation.references | Layme Fernández, C., Manuel, J., Canaza, S., Jose, D., Ugarte, P., Yoset, J., & Quispe, L. (2022). Application of decision trees in the identification of fraudulent websites. Revista Innovación y Software, 3(1). | eng |
dc.relation.references | Le, T. T. H., Kim, Y., & Kim, H. (2019). Network intrusion detection based on novel feature selection model and various recurrent neural networks. Applied Sciences (Switzerland), 9(7). https://doi.org/10.3390/app9071392 | eng |
dc.relation.references | Lee, K. J. (2021). Architecture of neural processing unit for deep neural networks. In Advances in Computers (Vol. 122, pp. 217–245). Academic Press Inc. https://doi.org/10.1016/bs.adcom.2020.11.001 | eng |
dc.relation.references | Lee, T. H., Chang, L. H., & Syu, C. W. (2020). Deep learning enabled intrusion detection and prevention system over SDN networks. 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings. https://doi.org/10.1109/ICCWorkshops49005.2020.9145085 | eng |
dc.relation.references | Leevy, J. L., Hancock, J., Zuech, R., & Khoshgoftaar, T. M. (2021). Detecting cybersecurity attacks across different network features and learners. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00426-w | eng |
dc.relation.references | Lublinsky, B. (2007). Defining SOA as an architectural style: Align your business model with technology. IBM DeveloperWorks Site. | eng |
dc.relation.references | Maldonado, J. (2018). Avances en Sistemas de Detección de Intrusos con on Sistemática de la Literatura. 978–980. | spa |
dc.relation.references | Manso, P., Moura, J., & Serrão, C. (2019). SDN-based intrusion detection system for early detection and mitigation of DDoS attacks. Information (Switzerland), 10(3), 117. https://doi.org/10.3390/info10030106 | eng |
dc.relation.references | Merchán, G., & César, E. (2022). Transhumanismo y consciencia fenoménica Transhumanism and phenomenal consciousness. 109–126. | spa |
dc.relation.references | Mishra, N., & Pandya, S. (2021). Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review. In IEEE Access (Vol. 9, pp. 59353–59377). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3073408 | eng |
dc.relation.references | Mohammadpour, L., Ling, T. C., Liew, C. S., & Aryanfar, A. (2022). A Survey of CNNBased Network Intrusion Detection. In Applied Sciences (Switzerland) (Vol. 12, Issue 16). MDPI. https://doi.org/10.3390/app12168162 | eng |
dc.relation.references | Montes-Gil, J. A., Isaza-Cadavid, G., & Duque-Méndez, N. D. (2023). Efecto de la selección de atributos en el desempeño de un IDS basado en machine learning para detección de intrusos en ataques DDoS. South Florida Journal of Development, 4(2), 918–928. https://doi.org/10.46932/sfjdv4n2-023 | spa |
dc.relation.references | Moukafih, N., Orhanou, G., & el Hajji, S. (2020). Neural Network-Based Voting System with High Capacity and Low Computation for Intrusion Detection in SIEM/IDS Systems. Security and Communication Networks, 2020. https://doi.org/10.1155/2020/3512737 | eng |
dc.relation.references | Moukhaf, M., El Yassini, K., Bri, S., & Oufaska, K. (2019). Building an e-learning recommender system using Association Rules techniques and R environment (Vol. 3, Issue 2). Springer International Publishing. https://doi.org/10.1007/978-3-03011928-7 | eng |
dc.relation.references | Muraleedharan, N., & Janet, B. (2021). A deep learning based HTTP slow DoS classification approach using flow data. ICT Express, 7(2), 210–214. https://doi.org/10.1016/j.icte.2020.08.005 | eng |
dc.relation.references | Niknejad, N., Ismail, W., Ghani, I., Nazari, B., Bahari, M., & Hussin, A. R. B. C. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 91. https://doi.org/10.1016/j.is.2020.101491 | eng |
dc.relation.references | Ocampo, C. A., Viviana, Y., Bermúdez, C., & Solarte Martínez, G. R. (2017). Sistema de detección de intrusos en redes corporativas Intrusion Detection System in Corporate Networks. Scientia et Technica Año XXII, 22(1), 122–170. | spa |
dc.relation.references | Panigrahi, R., & Borah, S. (2018). A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems Analysis of Selected Clustering Algorithms Used in Intrusion Detection Systems View project IEEE International Conference on Advanced Computational and Communication Paradigms (ICACCP-2017) View project A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems. In Article in International Journal of Engineering & Technology (Vol. 7, Issue 3). https://www.researchgate.net/publication/329045441 | eng |
dc.relation.references | Pantoja, N. D., Donado, A. S., & Villalba, M. K. (2019). Selección de indicadores para la implementación de un IDS en PYMES. Risti, 777–786. | spa |
dc.relation.references | Pawlicki, M., Choraś, M., & Kozik, R. (2020). Defending network intrusion detection systems against adversarial evasion attacks. Future Generation Computer Systems, 110, 148–154. https://doi.org/10.1016/j.future.2020.04.013 | eng |
dc.relation.references | Phan, T. V., Nguyen, T. G., Dao, N. N., Huong, T. T., Thanh, N. H., & Bauschert, T. (2020). DeepGuard: Efficient Anomaly Detection in SDN with Fine-Grained Traffic Flow Monitoring. IEEE Transactions on Network and Service Management, 17(3), 1349–1362. https://doi.org/10.1109/TNSM.2020.3004415 | eng |
dc.relation.references | Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., & Ilie-Zudor, E. (2018). Chained anomaly detection models for federated learning: An intrusion detection case study. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122663 | eng |
dc.relation.references | Puder, A., Rumez, M., Grimm, D., & Sax, E. (2022). Generic Patterns for Intrusion Detection Systems in Service-Oriented Automotive and Medical Architectures. Journal of Cybersecurity and Privacy, 2(3), 731–749. https://doi.org/10.3390/jcp2030037 | eng |
dc.relation.references | Quiroz, & Valencia, D. (2017). Seguridad en informática: consideraciones. Dominio de Las Ciencias, 3(3), 676–688. | spa |
dc.relation.references | Quirumbay Yagual, D. I., Castillo Yagual, C., & Coronel Suárez, I. (2022). Una revisión del Aprendizaje profundo aplicado a la ciberseguridad. Revista Científica y Tecnológica UPSE, 9(1), 57–65. https://doi.org/10.26423/rctu.v9i1.671 | spa |
dc.relation.references | Rojas, C., Sebastian, B., Rodríguez, C., Uriel, C., Osorio, E., Javier, D., Tatiana, Y., Universitaria, F., & Gil, D. S. (2020). Redes neuronales artificiales y estado del arte aplicado en la ciberseguridad State of the art artificial networks applied to cybersegurity. 58–63. | spa |
dc.relation.references | Roopak, M., Tian, G. Y., & Chambers, J. (2020). An Intrusion Detection System Against DDoS Attacks in IoT Networks. 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, 562–567. https://doi.org/10.1109/CCWC47524.2020.9031206 | eng |
dc.relation.references | Rt’, K., Selvi’, S. T., & Govindarajan2, K. (2014). DDoS Detection and Analysis in SDNbased Environment Using Support Vector Machine Classifier. | eng |
dc.relation.references | S, S. A., Ramesh Babu, D. R., & Venkatesan, S. (2019). Twilio Integration with Dialogflow for Effective Communication. Journal of Web Development and Web Designing, 4(2). https://doi.org/10.5281/zenodo.3251169 | eng |
dc.relation.references | Sallam, A. A., Kabir, M. N., Alginahi, Y. M., Jamal, A., & Esmeel, T. K. (2020). IDS for Improving DDoS Attack Recognition Based on Attack Profiles and Network Traffic Features. Proceedings - 2020 16th IEEE International Colloquium on Signal Processing and Its Applications, CSPA 2020, Cspa, 255–260. https://doi.org/10.1109/CSPA48992.2020.9068679 | eng |
dc.relation.references | Sampedro, C. R., Machuca Vivar, S. A., Palma Rivera, D. P., & Carrera Calderón, F. A. (2019). Percepción de seguridad de la información en las pequeñas y medianas empresas en santo domingo. Investigacion Operacional, 40(3), 421–428. | spa |
dc.relation.references | Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSP 2018 - Proceedings of the 4th International Conference on Information Systems Security and Privacy, 2018-January, 108–116. https://doi.org/10.5220/0006639801080116 | eng |
dc.relation.references | Sharma, N. V., & Yadav, N. S. (2021). An optimal intrusion detection system using recursive feature elimination and ensemble of classifiers. Microprocessors and Microsystems, 85. https://doi.org/10.1016/j.micpro.2021.104293 | eng |
dc.relation.references | Shi, Z., Li, J., & Wu, C. (2019). DeepDDoS: Online DDoS attack detection. 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings, 0–5. https://doi.org/10.1109/GLOBECOM38437.2019.9013186 | eng |
dc.relation.references | Singh, A., Akash, R., & Gokul Rajan, V. (2022). Flower Classifier Web App Using Ml & Flask Web Framework. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022, 974–977. https://doi.org/10.1109/ICACITE53722.2022.9823577 | eng |
dc.relation.references | Snigdho, M. A., Chowdhury, S., & Jahan, N. (2022). Real-Time DDoS Attack Prediction using Supervised Algorithms and CNN. 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings, 1342–1348. https://doi.org/10.1109/ICCES54183.2022.9835977 | eng |
dc.relation.references | Solanki, S. D., & Solanki, A. D. (2020). Identification of DOS Attack by implementing SYN Flood Attack and considering CPU Load Analysis. International Research Journal on Advanced Science Hub, 2(8), 68–74. https://doi.org/10.47392/irjash.2020.96 | eng |
dc.relation.references | Spiekermann, D., & Keller, J. (2021). Unsupervised packet-based anomaly detection in virtual networks. Computer Networks, 192. https://doi.org/10.1016/j.comnet.2021.108017 | eng |
dc.relation.references | Susa Velandia, J. S., Carvajal Hoyos, A. C., & Cadena Muñoz, E. (2022). Modelo de Detección de Ataques DDoS (Distributed Denial of Services), con Base en el Clasificador Decision Tree. https://repository.udistrital.edu.co/handle/11349/30117 | spa |
dc.relation.references | Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. (2017). Efficient Processing of Deep Neural Networks: A Tutorial and Survey. http://arxiv.org/abs/1703.09039 | eng |
dc.relation.references | Taheri, S., Salem, M., & Yuan, J. S. (2018). Leveraging image representation of network traffic data and transfer learning in botnet detection. Big Data and Cognitive Computing, 2(4), 1–16. https://doi.org/10.3390/bdcc2040037 | eng |
dc.relation.references | Thakkar, A., & Lohiya, R. (2021). Attack classification using feature selection techniques: a comparative study. Journal of Ambient Intelligence and Humanized Computing, 12(1), 1249–1266. https://doi.org/10.1007/s12652-020-02167-9 | eng |
dc.relation.references | Virupakshar, K. B., Asundi, M., Channal, K., Shettar, P., Patil, S., & Narayan, D. G. (2020). Distributed Denial of Service (DDoS) Attacks Detection System for OpenStack-based Private Cloud. Procedia Computer Science, 167(2019), 22972307. https://doi.org/10.1016/j.procs.2020.03.282 | eng |
dc.relation.references | Wang, J., Chang, X., Wang, Y., Rodríguez, R. J., & Zhang, J. (2021). LSGAN-AT: enhancing malware detector robustness against adversarial examples. Cybersecurity, 4(1). https://doi.org/10.1186/s42400-021-00102-9 | eng |
dc.relation.references | Wang, W., Chakraborty, G., & Chakraborty, B. (2021). Predicting the risk of chronic kidney disease (Ckd) using machine learning algorithm. Applied Sciences (Switzerland), 11(1), 1–17. https://doi.org/10.3390/app11010202 | eng |
dc.relation.references | Wu, X., Kumar, V., Ross, Q. J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37. https://doi.org/10.1007/s10115-007-0114-2 | eng |
dc.relation.references | Xiao, Y., Xing, C., Zhang, T., & Zhao, Z. (2019). An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks. IEEE Access, 7, 4221042219. https://doi.org/10.1109/ACCESS.2019.2904620 | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.proposal | IDS | spa |
dc.subject.proposal | Attacks | spa |
dc.subject.proposal | SOA | spa |
dc.subject.proposal | DoS | spa |
dc.subject.proposal | DDoS | spa |
dc.subject.proposal | Aprendizaje de máquina | spa |
dc.subject.proposal | Machine learning | spa |
dc.subject.unesco | Protección de datos | spa |
dc.subject.unesco | Inteligencia artificial | spa |
dc.title | Implementación de un sistema de detección de intrusos soportado en técnicas de aprendizaje supervisado orientado a servicios en la nube para la detección de ataques de denegación de servicios distribuidos | spa |
dc.title.translated | Implementation of an intrusion detection system supported by supervised service-oriented learning techniques in the cloud for the detection of distributed denial of service attacks. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 1053828905.2023.pdf
- Tamaño:
- 4.61 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Administración de Sistemas Informáticos
No hay miniatura disponible
- Nombre:
- U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1) (2).docx (1).pdf
- Tamaño:
- 115.68 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: