Documento técnico: Sacha Inchi (Plukenetia volubilis) como ingrediente potencial en el desarrollo de bebidas proteicas a base de plantas

dc.contributor.advisorGutiérrez Álvarez, Luis Felipespa
dc.contributor.authorAcosta Fonseca, Jesús Davidspa
dc.date.accessioned2024-11-08T13:27:20Z
dc.date.available2024-11-08T13:27:20Z
dc.date.issued2024-01
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLas bebidas vegetales (BV) hacen parte de un mercado en crecimiento, alentado por consumidores interesados en alimentos nutritivos y sostenibles, así como por aquellos con condiciones de salud relacionadas al consumo de leche o de sus componentes, quienes las han adoptado como una alternativa a las bebidas lácteas. El perfil nutricional de las BV es variado, dependiendo de las fuentes vegetales empleadas, siendo en diversos casos incapaz de equiparar el aporte de nutrientes de la leche. Además, en algunos mercados, más del 50% de las bebidas comerciales son elaboradas a partir de un reducido número de fuentes vegetales, como avena, soya y almendras. Por lo que existe la necesidad de evaluar nuevas fuentes vegetales que permitan el desarrollo de opciones de BV con alta calidad nutricional y sensorial. El Sacha Inchi (Plukenetia volubilis) (SI), ha despertado interés en la industria alimentaria gracias a su alto porcentaje de aceite rico en ácidos grasos polinsaturados, su contenido proteico, así como la presencia de vitaminas, minerales y compuestos bioactivos, considerándose una matriz con un elevado potencial desde el punto de vista nutricional y funcional, pese a lo cual, su aprovechamiento es bajo. Este trabajo de revisión explora características prometedoras del SI como un ingrediente potencial en el desarrollo de BV, abordando aspectos funcionales, nutricionales y tecnológicos (Texto tomado de la fuente).spa
dc.description.abstractPlant-based beverages (BV) are part of a growing market, encouraged by consumers interested in nutritious and sustainable foods, as well as those with health conditions related to the consumption of milk or its components, who have adopted them as an alternative to dairy drinks. The nutritional profile of BV is varied, depending on the plant sources used, being in several cases unable to match the nutrient composition of milk. Additionally, in some markets, more than 50% of commercial beverages are made from a small number of plant sources, such as oats, soy, and almonds. Therefore, there is a need to evaluate new plant sources that allow the development of BV with high nutritional and sensory quality. Sacha Inchi (Plukenetia volubilis) (SI) has aroused interest in the food industry thanks to its high percentage of oil rich in polyunsaturated fatty acids, its protein content, as well as the presence of vitamins, minerals, and bioactive compounds. Considering a plant source with a high potential from a nutritional and functional point of view, despite which, its use is low. This review explores promising characteristics of SI as a potential ingredient in the development of BV, addressing functional, technological and nutritional aspects.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaDiseño y desarrollo de productos alimenticiosspa
dc.format.extent62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87163
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAlonso-Miravalles, L., Zannini, E., Bez, J., Arendt, E. K., & O’Mahony, J. A. (2022). Formation and thermal and colloidal stability of oil-in-water emulsions stabilized using quinoa and lentil protein blends. Journal of the Science of Food and Agriculture, 102(12), 5077–5085. https://doi.org/10.1002/jsfa.11219spa
dc.relation.referencesAmbulay, J. P., Rojas, P. A., Timoteo, O. S., Barreto, T. V, Vila, Z. N., de los Santos, M. B., Eguiluz, M., & Colarossi, A. (2021). Oil emulsion from Plukenetia huayllabambana (Sacha inchi) modifies nitric oxide and leptin in the liver and antioxidant and inflammation markers in the adipose tissue in obese rats. Functional Foods in Health and Disease, 11(3), 92–103. https://doi.org/10.31989/FFHD.V11I3.778spa
dc.relation.referencesAngelino, D., Rosi, A., Vici, G., Russo, M. D., Pellegrini, N., & Martini, D. (2020). Nutritional quality of plant-based drinks sold in Italy: The Food Labelling of Italian Products (FLIP) study. Foods, 9(5). https://doi.org/10.3390/foods9050682spa
dc.relation.referencesBueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V, Rodrigues, P. H. V, & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1spa
dc.relation.referencesČepková, P. H., Jágr, M., Viehmannová, I., Dvořáček, V., Huansi, D. C., & Mikšík, I. (2019). Diversity in seed storage protein profile of oilseed crop Plukenetia volubilis from Peruvian Amazon. International Journal of Agriculture and Biology, 21(3), 679–688. https://doi.org/10.17957/IJAB/15.0945spa
dc.relation.referencesChalupa-Krebzdak, S., Long, C. J., & Bohrer, B. M. (2018). Nutrient density and nutritional value of milk and plant-based milk alternatives. International Dairy Journal, 87, 84 – 92. https://doi.org/10.1016/j.idairyj.2018.07.018spa
dc.relation.referencesChasquibol, N., Alarcón, R., Gonzales, B. F., Sotelo, A., Landoni, L., Gallardo, G., García, B., & Pérez-Camino, M. C. (2022). Design of Functional Powdered Beverages Containing Co-Microcapsules of Sacha Inchi P. huayllabambana Oil and Antioxidant Extracts of Camu Camu and Mango Skins. Antioxidants, 11(8). https://doi.org/10.3390/antiox11081420spa
dc.relation.referencesCordero-Clavijo, L. M., Serna-Saldívar, S. O., Lazo-Vélez, M. A., González, J. F. A., Panata-Saquicilí, D., & Briones-Garcia, M. (2021). Characterization, functional and biological value of protein-enriched defatted meals from sacha inchi (Plukenetia volubilis) and chocho (Lupinus mutabilis). Journal of Food Measurement and Characterization, 15(6), 5071–5077. https://doi.org/10.1007/s11694-021-01084-5spa
dc.relation.referencesCraig, W. J., & Fresán, U. (2021). International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients, 13(3), 1 – 14. https://doi.org/10.3390/nu13030842spa
dc.relation.referencesda Rocha Esperança, V. J., Corrêa de Souza Coelho, C., Tonon, R., Torrezan, R., & Freitas-Silva, O. (2022). A review on plant-based tree nuts beverages: technological, sensory, nutritional, health and microbiological aspects. International Journal of Food Properties, 25(1), 2396–2408. https://doi.org/10.1080/10942912.2022.2134417spa
dc.relation.referencesEl-Sohaimy, S. A., Androsova, N. V, Toshev, A. D., & El Enshasy, H. A. (2022). Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants, 11(21). https://doi.org/10.3390/plants11212825spa
dc.relation.referencesGonzález-Cardozo, L. M., Mora-Huertas, C. E., & Gutiérrez, L.-F. (2021). Production of Sacha Inchi oil emulsions by high-shear and high-intensity ultrasound emulsification: Physical properties and stability. Journal of Food Processing and Preservation, 45(10). https://doi.org/10.1111/jfpp.15865spa
dc.relation.referencesGoyal, A., Tanwar, B., Kumar Sihag, M., & Sharma, V. (2022). Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry, 373. https://doi.org/10.1016/j.foodchem.2021.131459spa
dc.relation.referencesGrau-Fuentes, E., Rodrigo, D., Garzón, R., & Rosell, C. M. (2023). Understanding the marketed plant-based beverages: From ingredients technological function to their nutritional value. Journal of Functional Foods, 106. https://doi.org/10.1016/j.jff.2023.105609spa
dc.relation.referencesGutiérrez, L.-F., Rosada, L.-M., & Jiméneza, Á. (2011). Chemical composition of sacha inchi (plukenetia volubilis l.) seeds and characteristics of their lipid fraction. Grasas y Aceites, 62(1), 76 – 83. https://doi.org/10.3989/gya044510spa
dc.relation.referencesHerazo, M. Á., Ciro-Velásquez, H. J., & Márquez, C. J. (2019). Rheological and thermal study of structured oils: avocado (Persea americana) and sacha inchi (Plukenetia volubilis L.) systems. Journal of Food Science and Technology, 56(1), 321–329. https://doi.org/10.1007/s13197-018-3492-4spa
dc.relation.referencesKim, D.-S., Iida, F., & Joo, N. (2023). Nutritional composition of Sacha inchi (Plukenetia volubilis) according to cooking method and its application as an elder-friendly drink. International Journal of Food Science and Technology, 58(2), 841–850. https://doi.org/10.1111/ijfs.16249spa
dc.relation.referencesKim, D.-S., & Joo, N. (2019). Nutritional composition of Sacha inchi (Plukenetia Volubilis L.) as affected by different cooking methods. International Journal of Food Properties, 22(1), 1235–1241. https://doi.org/10.1080/10942912.2019.1640247spa
dc.relation.referencesKodahl, N., & Sørensen, M. (2021). Sacha inchi (Plukenetia volubilis L.) is an underutilized crop with a great potential. Agronomy, 11(6). https://doi.org/10.3390/agronomy11061066spa
dc.relation.referencesKulczyk, E., Drozłowska-Sobieraj, E., & Bartkowiak, A. (2023). Novel Milk Substitute Based on Pea, Bean and Sunflower Seeds with Natural Bioactive Stabilisers. Plants, 12(12). https://doi.org/10.3390/plants12122303spa
dc.relation.referencesLi, P., Wen, J., Ma, X., Lin, F., Jiang, Z., & Du, B. (2018). Structural, functional properties and immunomodulatory activity of isolated Inca peanut (Plukenetia volubilis L.) seed albumin fraction. International Journal of Biological Macromolecules, 118, 1931–1941. https://doi.org/10.1016/j.ijbiomac.2018.07.046spa
dc.relation.referencesLiu, J., Guo, Y., Li, X., Si, T., Mcclements, D. J., & Ma, C. (2019). Effects of Chelating Agents and Salts on Interfacial Properties and Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 67(49), 13718–13727. https://doi.org/10.1021/acs.jafc.8b05867spa
dc.relation.referencesLopez, C., Rabesona, H., Novales, B., Weber, M., & Anton, M. (2023). Walnut (Juglans regia L.) kernel oil bodies recovered by aqueous extraction for utilization as ingredient in food emulsions: Exploration of their microstructure, composition and the effects of homogenization, pH, and salt ions on their physical stability. Food Research International, 173. https://doi.org/10.1016/j.foodres.2023.113197spa
dc.relation.referencesMunekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., Roohinejad, S., & Lorenzo, J. M. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9(3). https://doi.org/10.3390/foods9030288spa
dc.relation.referencesNawaz, M. A., Buckow, R., Jegasothy, H., & Stockmann, R. (2022). Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. Food and Bioproducts Processing, 132, 200–210. https://doi.org/10.1016/j.fbp.2022.01.008spa
dc.relation.referencesNawaz, M. A., Singh, T. K., Stockmann, R., Jegasothy, H., & Buckow, R. (2021). Quality attributes of ultra-high temperature-treated model beverages prepared with faba bean protein concentrates. Foods, 10(6). https://doi.org/10.3390/foods10061244spa
dc.relation.referencesNawaz, M. A., Tan, M., Øiseth, S., & Buckow, R. (2020). An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Reviews International, 1 – 39. https://doi.org/10.1080/87559129.2020.1762641spa
dc.relation.referencesOquendo, L. A., Lewis, G., Mahdinia, E., & Harte, F. (2023). Effect of high-pressure jet processing on the structure and physicochemical properties of plant protein isolate aqueous dispersions. Food Hydrocolloids, 138. https://doi.org/10.1016/j.foodhyd.2022.108437spa
dc.relation.referencesPaul, A. A., Kumar, S., Kumar, V., & Sharma, R. (2020). Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Critical Reviews in Food Science and Nutrition, 60(18), 3005 – 3023. https://doi.org/10.1080/10408398.2019.1674243spa
dc.relation.referencesQamar, S., Manrique, Y. J., Parekh, H., & Falconer, J. R. (2020). Nuts, cereals, seeds and legumes proteins derived emulsifiers as a source of plant protein beverages: A review. Critical Reviews in Food Science and Nutrition, 60(16), 2742–2762. https://doi.org/10.1080/10408398.2019.1657062spa
dc.relation.referencesRajpurohit, B., & Li, Y. (2023). Overview on pulse proteins for future foods: ingredient development and novel applications. Journal of Future Foods, 3(4), 340–356. https://doi.org/10.1016/j.jfutfo.2023.03.005spa
dc.relation.referencesRamos-Escudero, F., Morales, M. T., Ramos Escudero, M., Muñoz, A. M., Cancino Chavez, K., & Asuero, A. G. (2021). Assessment of phenolic and volatile compounds of commercial Sacha inchi oils and sensory evaluation. Food Research International, 140. https://doi.org/10.1016/j.foodres.2020.110022spa
dc.relation.referencesRave, M. C., Echeverri, J. D., & Salamanca, C. H. (2020). Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. Journal of Food Engineering, 273. https://doi.org/10.1016/j.jfoodeng.2019.109801spa
dc.relation.referencesRawdkuen, S., D’amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods, 11(13). https://doi.org/10.3390/foods11131869spa
dc.relation.referencesReyes-Jurado, F., Soto-Reyes, N., Dávila-Rodríguez, M., Lorenzo-Leal, A. C., Jiménez-Munguía, M. T., Mani-López, E., & López-Malo, A. (2023). Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Reviews International, 39(4), 2320 – 2351. https://doi.org/10.1080/87559129.2021.1952421spa
dc.relation.referencesRodríguez-Cortina, A., & Hernández-Carrión, M. (2023). Microcapsules of Sacha Inchi seed oil (Plukenetia volubilis L.) obtained by spray drying as a potential ingredient to formulate functional foods. Food Research International, 170. https://doi.org/10.1016/j.foodres.2023.113014spa
dc.relation.referencesRodríguez-Cortina, A., Rodríguez-Cortina, J., & Hernández-Carrión, M. (2022). Obtention of Sacha Inchi (Plukenetia volubilis Linneo) Seed Oil Microcapsules as a Strategy for the Valorization of Amazonian Fruits: Physicochemical, Morphological, and Controlled Release Characterization. Foods, 11(24). https://doi.org/10.3390/foods11243950spa
dc.relation.referencesRomão, B., Botelho, R. B. A., Nakano, E. Y., Borges, V. R. P., de Holanda, M. E. M., Raposo, A., Han, H., Gil-Marín, M., Ariza-Montes, A., & Zandonadi, R. P. (2022). Vegan milk and egg alternatives commercialized in Brazil: A study of the nutritional composition and main ingredients. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.964734spa
dc.relation.referencesRuiz, C., DÃ\-az, C., Anaya, J., & Rojas, R. (2013). Análisis proximal, antinutrientes, perfil de Ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de Sacha inchi (Plukenetia volubilis y Plukenetia huayllabambana). Revista de La Sociedad Química Del Perú, 79, 29–36. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000100005&nrm=isospa
dc.relation.referencesSaengsorn, K., & Jimtaisong, A. (2017). Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1092–1096. https://doi.org/10.1016/j.apjtb.2017.10.011spa
dc.relation.referencesSanchez-Reinoso, Z., & Gutiérrez, L.-F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354–1366. https://doi.org/10.1007/s11947-017-1906-3spa
dc.relation.referencesSharan, S., Zotzel, J., Stadtmüller, J., Bonerz, D., Aschoff, J., Saint-Eve, A., Maillard, M.-N., Olsen, K., Rinnan, Å., & Orlien, V. (2021). Two statistical tools for assessing functionality and protein characteristics of different fava bean (Vicia faba l.) ingredients. Foods, 10(10). https://doi.org/10.3390/foods10102489spa
dc.relation.referencesSilva, K. F. C. E., da Silva Carvalho, A. G., Rabelo, R. S., & Hubinger, M. D. (2019). Sacha inchi oil encapsulation: Emulsion and alginate beads characterization. Food and Bioproducts Processing, 116, 118–129. https://doi.org/10.1016/j.fbp.2019.05.001spa
dc.relation.referencesSinsuebpol, C., & Changsan, N. (2020). Effects of ultrasonic operating parameters and emulsifier system on sacha inchi oil nanoemulsion characteristics. Journal of Oleo Science, 69(5), 437–448. https://doi.org/10.5650/jos.ess19193spa
dc.relation.referencesSong, X., Wang, J., Li, S., & Wang, Y. (2022). Formation of sacha inchi oil microemulsion systems: effects of non-ionic surfactants, short-chain alcohols, straight-chain esters and essential oils. Journal of the Science of Food and Agriculture, 102(9), 3572–3580. https://doi.org/10.1002/jsfa.11703spa
dc.relation.referencesStrieder, M. M., Silva, E. K., Mekala, S., Meireles, M. A. A., & Saldaña, M. D. A. (2023). Barley-Based Non-dairy Alternative Milk: Stabilization Mechanism, Protein Solubility, Physicochemical Properties, and Kinetic Stability. Food and Bioprocess Technology, 16(10), 2231–2246. https://doi.org/10.1007/s11947-023-03037-wspa
dc.relation.referencesSun, M., Li, X., McClements, D. J., Xiao, M., Chen, H., Zhou, Q., Xu, S., Chen, Y., & Deng, Q. (2022). Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum. Food Hydrocolloids, 122. https://doi.org/10.1016/j.foodhyd.2021.107069spa
dc.relation.referencesSuwannasang, S., Zhong, Q., Thumthanaruk, B., Vatanyoopaisarn, S., Uttapap, D., Puttanlek, C., & Rungsardthong, V. (2022). Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. LWT, 161. https://doi.org/10.1016/j.lwt.2022.113375spa
dc.relation.referencesTan, Y., & McClements, D. J. (2021). Plant-based colloidal delivery systems for bioactives. Molecules, 26(22). https://doi.org/10.3390/molecules26226895spa
dc.relation.referencesTorres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2023). Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Reviews International, 39(1), 148–159. https://doi.org/10.1080/87559129.2021.1900231spa
dc.relation.referencesUSDA. (30 de 10 de 2020). FoodData Central. Obtenido de Flour, soy, full-fat: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1104766/nutrientsspa
dc.relation.referencesUSDA. (1 de 4 de 2020). FoodData Central. Obtenido de Flour, rice, white, unenriched: https://fdc.nal.usda.gov/fdc-app.html#/food-details/790214/nutrientsspa
dc.relation.referencesUSDA. (28 de 10 de 2022). FoodData Central. Obtenido de Nuts, almonds, whole, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2346393/nutrientsspa
dc.relation.referencesUSDA. (28 de 10 de 2022). FoodData Central. Obtenido de Nuts, pecans, halves, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2346395/nutrientsspa
dc.relation.referencesUSDA. (28 de 4 de 2022). FoodData Central. Obtenido de Flour, oat, whole grain: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2261421/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, cashew nuts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515374/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, pistachio nuts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515379/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, brazilnuts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515373/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, hazelnuts or filberts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515375/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Flour, coconut: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515382/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Seeds, pumpkin seeds (pepitas), raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515380/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Seeds, sunflower seed, kernel, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515381/nutrientsspa
dc.relation.referencesUSDA. (20 de 4 de 2023). FoodData Central. Obtenido de Flour, amaranth: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2512371/nutrientsspa
dc.relation.referencesUSDA. (26 de 10 de 2023). FoodData Central. Obtenido de Chickpeas, (garbanzo beans, bengal gram), dry: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2644282/nutrientsspa
dc.relation.referencesVallath, A., & Shanmugam, A. (2022). Study on model plant based functional beverage emulsion (non-dairy) using ultrasound – A physicochemical and functional characterization. Ultrasonics Sonochemistry, 88. https://doi.org/10.1016/j.ultsonch.2022.106070spa
dc.relation.referencesVicente, J., de Souza Cezarino, T., Pereira, L. J. B., da Rocha, E. P., Sá, G. R., Gamallo, O. D., de Carvalho, M. G., & Garcia-Rojas, E. E. (2017). Microencapsulation of sacha inchi oil using emulsion-based delivery systems. Food Research International, 99, 612–622. https://doi.org/10.1016/j.foodres.2017.06.039spa
dc.relation.referencesVicente, J., Pereira, L. J. B., Bastos, L. P. H., de Carvalho, M. G., & Garcia-Rojas, E. E. (2018). Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, 120, 339–345. https://doi.org/10.1016/j.ijbiomac.2018.08.041spa
dc.relation.referencesWang, S., Zhu, F., & Kakuda, Y. (2018). Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chemistry, 265, 316–328. https://doi.org/10.1016/j.foodchem.2018.05.055spa
dc.relation.referencesWongpattananukul, S., Nungarlee, U., Ruangprach, A., Sulong, S., Sanporkha, P., Adisakwattana, S., & Ngamukote, S. (2022). Effect of Inca peanut oil on omega-3 polyunsaturated fatty acids, physicochemical, texture and sensory properties in chicken sausage. LWT, 163. https://doi.org/10.1016/j.lwt.2022.113559spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.lembSEMILLAS-INDUSTRIA Y COMERCIOspa
dc.subject.lembSeed industry and tradeeng
dc.subject.lembSEMILLAS OLEAGINOSASspa
dc.subject.lembOilseedseng
dc.subject.lembALIMENTOS NATURALESspa
dc.subject.lembFood, naturaleng
dc.subject.lembALIMENTOS-CONTENIDO DE PROTEINASspa
dc.subject.lembFood-protein contenteng
dc.subject.lembNECESIDADES DE NUTRIENTESspa
dc.subject.lembNutrition - Requirementseng
dc.subject.proposalSacha Inchispa
dc.subject.proposalProteínas vegetalesspa
dc.subject.proposalBebidas de base vegetalspa
dc.subject.proposalProductos veganos y vegetarianosspa
dc.subject.proposalAlimentos funcionalesspa
dc.subject.proposalPlant proteineng
dc.subject.proposalPlant-based beverageseng
dc.subject.proposalVegan and vegetarian productseng
dc.subject.proposalFunctional foodseng
dc.titleDocumento técnico: Sacha Inchi (Plukenetia volubilis) como ingrediente potencial en el desarrollo de bebidas proteicas a base de plantasspa
dc.title.translatedTechnical document: Sacha Inchi (Plukenetia volubilis) as a potential ingredient in the development of plant-based protein beverageseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020802952.2024.pdf
Tamaño:
653.9 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: