Documento técnico: Sacha Inchi (Plukenetia volubilis) como ingrediente potencial en el desarrollo de bebidas proteicas a base de plantas
dc.contributor.advisor | Gutiérrez Álvarez, Luis Felipe | spa |
dc.contributor.author | Acosta Fonseca, Jesús David | spa |
dc.date.accessioned | 2024-11-08T13:27:20Z | |
dc.date.available | 2024-11-08T13:27:20Z | |
dc.date.issued | 2024-01 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | Las bebidas vegetales (BV) hacen parte de un mercado en crecimiento, alentado por consumidores interesados en alimentos nutritivos y sostenibles, así como por aquellos con condiciones de salud relacionadas al consumo de leche o de sus componentes, quienes las han adoptado como una alternativa a las bebidas lácteas. El perfil nutricional de las BV es variado, dependiendo de las fuentes vegetales empleadas, siendo en diversos casos incapaz de equiparar el aporte de nutrientes de la leche. Además, en algunos mercados, más del 50% de las bebidas comerciales son elaboradas a partir de un reducido número de fuentes vegetales, como avena, soya y almendras. Por lo que existe la necesidad de evaluar nuevas fuentes vegetales que permitan el desarrollo de opciones de BV con alta calidad nutricional y sensorial. El Sacha Inchi (Plukenetia volubilis) (SI), ha despertado interés en la industria alimentaria gracias a su alto porcentaje de aceite rico en ácidos grasos polinsaturados, su contenido proteico, así como la presencia de vitaminas, minerales y compuestos bioactivos, considerándose una matriz con un elevado potencial desde el punto de vista nutricional y funcional, pese a lo cual, su aprovechamiento es bajo. Este trabajo de revisión explora características prometedoras del SI como un ingrediente potencial en el desarrollo de BV, abordando aspectos funcionales, nutricionales y tecnológicos (Texto tomado de la fuente). | spa |
dc.description.abstract | Plant-based beverages (BV) are part of a growing market, encouraged by consumers interested in nutritious and sustainable foods, as well as those with health conditions related to the consumption of milk or its components, who have adopted them as an alternative to dairy drinks. The nutritional profile of BV is varied, depending on the plant sources used, being in several cases unable to match the nutrient composition of milk. Additionally, in some markets, more than 50% of commercial beverages are made from a small number of plant sources, such as oats, soy, and almonds. Therefore, there is a need to evaluate new plant sources that allow the development of BV with high nutritional and sensory quality. Sacha Inchi (Plukenetia volubilis) (SI) has aroused interest in the food industry thanks to its high percentage of oil rich in polyunsaturated fatty acids, its protein content, as well as the presence of vitamins, minerals, and bioactive compounds. Considering a plant source with a high potential from a nutritional and functional point of view, despite which, its use is low. This review explores promising characteristics of SI as a potential ingredient in the development of BV, addressing functional, technological and nutritional aspects. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Diseño y desarrollo de productos alimenticios | spa |
dc.format.extent | 62 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87163 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Alonso-Miravalles, L., Zannini, E., Bez, J., Arendt, E. K., & O’Mahony, J. A. (2022). Formation and thermal and colloidal stability of oil-in-water emulsions stabilized using quinoa and lentil protein blends. Journal of the Science of Food and Agriculture, 102(12), 5077–5085. https://doi.org/10.1002/jsfa.11219 | spa |
dc.relation.references | Ambulay, J. P., Rojas, P. A., Timoteo, O. S., Barreto, T. V, Vila, Z. N., de los Santos, M. B., Eguiluz, M., & Colarossi, A. (2021). Oil emulsion from Plukenetia huayllabambana (Sacha inchi) modifies nitric oxide and leptin in the liver and antioxidant and inflammation markers in the adipose tissue in obese rats. Functional Foods in Health and Disease, 11(3), 92–103. https://doi.org/10.31989/FFHD.V11I3.778 | spa |
dc.relation.references | Angelino, D., Rosi, A., Vici, G., Russo, M. D., Pellegrini, N., & Martini, D. (2020). Nutritional quality of plant-based drinks sold in Italy: The Food Labelling of Italian Products (FLIP) study. Foods, 9(5). https://doi.org/10.3390/foods9050682 | spa |
dc.relation.references | Bueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V, Rodrigues, P. H. V, & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1 | spa |
dc.relation.references | Čepková, P. H., Jágr, M., Viehmannová, I., Dvořáček, V., Huansi, D. C., & Mikšík, I. (2019). Diversity in seed storage protein profile of oilseed crop Plukenetia volubilis from Peruvian Amazon. International Journal of Agriculture and Biology, 21(3), 679–688. https://doi.org/10.17957/IJAB/15.0945 | spa |
dc.relation.references | Chalupa-Krebzdak, S., Long, C. J., & Bohrer, B. M. (2018). Nutrient density and nutritional value of milk and plant-based milk alternatives. International Dairy Journal, 87, 84 – 92. https://doi.org/10.1016/j.idairyj.2018.07.018 | spa |
dc.relation.references | Chasquibol, N., Alarcón, R., Gonzales, B. F., Sotelo, A., Landoni, L., Gallardo, G., García, B., & Pérez-Camino, M. C. (2022). Design of Functional Powdered Beverages Containing Co-Microcapsules of Sacha Inchi P. huayllabambana Oil and Antioxidant Extracts of Camu Camu and Mango Skins. Antioxidants, 11(8). https://doi.org/10.3390/antiox11081420 | spa |
dc.relation.references | Cordero-Clavijo, L. M., Serna-Saldívar, S. O., Lazo-Vélez, M. A., González, J. F. A., Panata-Saquicilí, D., & Briones-Garcia, M. (2021). Characterization, functional and biological value of protein-enriched defatted meals from sacha inchi (Plukenetia volubilis) and chocho (Lupinus mutabilis). Journal of Food Measurement and Characterization, 15(6), 5071–5077. https://doi.org/10.1007/s11694-021-01084-5 | spa |
dc.relation.references | Craig, W. J., & Fresán, U. (2021). International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients, 13(3), 1 – 14. https://doi.org/10.3390/nu13030842 | spa |
dc.relation.references | da Rocha Esperança, V. J., Corrêa de Souza Coelho, C., Tonon, R., Torrezan, R., & Freitas-Silva, O. (2022). A review on plant-based tree nuts beverages: technological, sensory, nutritional, health and microbiological aspects. International Journal of Food Properties, 25(1), 2396–2408. https://doi.org/10.1080/10942912.2022.2134417 | spa |
dc.relation.references | El-Sohaimy, S. A., Androsova, N. V, Toshev, A. D., & El Enshasy, H. A. (2022). Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants, 11(21). https://doi.org/10.3390/plants11212825 | spa |
dc.relation.references | González-Cardozo, L. M., Mora-Huertas, C. E., & Gutiérrez, L.-F. (2021). Production of Sacha Inchi oil emulsions by high-shear and high-intensity ultrasound emulsification: Physical properties and stability. Journal of Food Processing and Preservation, 45(10). https://doi.org/10.1111/jfpp.15865 | spa |
dc.relation.references | Goyal, A., Tanwar, B., Kumar Sihag, M., & Sharma, V. (2022). Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry, 373. https://doi.org/10.1016/j.foodchem.2021.131459 | spa |
dc.relation.references | Grau-Fuentes, E., Rodrigo, D., Garzón, R., & Rosell, C. M. (2023). Understanding the marketed plant-based beverages: From ingredients technological function to their nutritional value. Journal of Functional Foods, 106. https://doi.org/10.1016/j.jff.2023.105609 | spa |
dc.relation.references | Gutiérrez, L.-F., Rosada, L.-M., & Jiméneza, Á. (2011). Chemical composition of sacha inchi (plukenetia volubilis l.) seeds and characteristics of their lipid fraction. Grasas y Aceites, 62(1), 76 – 83. https://doi.org/10.3989/gya044510 | spa |
dc.relation.references | Herazo, M. Á., Ciro-Velásquez, H. J., & Márquez, C. J. (2019). Rheological and thermal study of structured oils: avocado (Persea americana) and sacha inchi (Plukenetia volubilis L.) systems. Journal of Food Science and Technology, 56(1), 321–329. https://doi.org/10.1007/s13197-018-3492-4 | spa |
dc.relation.references | Kim, D.-S., Iida, F., & Joo, N. (2023). Nutritional composition of Sacha inchi (Plukenetia volubilis) according to cooking method and its application as an elder-friendly drink. International Journal of Food Science and Technology, 58(2), 841–850. https://doi.org/10.1111/ijfs.16249 | spa |
dc.relation.references | Kim, D.-S., & Joo, N. (2019). Nutritional composition of Sacha inchi (Plukenetia Volubilis L.) as affected by different cooking methods. International Journal of Food Properties, 22(1), 1235–1241. https://doi.org/10.1080/10942912.2019.1640247 | spa |
dc.relation.references | Kodahl, N., & Sørensen, M. (2021). Sacha inchi (Plukenetia volubilis L.) is an underutilized crop with a great potential. Agronomy, 11(6). https://doi.org/10.3390/agronomy11061066 | spa |
dc.relation.references | Kulczyk, E., Drozłowska-Sobieraj, E., & Bartkowiak, A. (2023). Novel Milk Substitute Based on Pea, Bean and Sunflower Seeds with Natural Bioactive Stabilisers. Plants, 12(12). https://doi.org/10.3390/plants12122303 | spa |
dc.relation.references | Li, P., Wen, J., Ma, X., Lin, F., Jiang, Z., & Du, B. (2018). Structural, functional properties and immunomodulatory activity of isolated Inca peanut (Plukenetia volubilis L.) seed albumin fraction. International Journal of Biological Macromolecules, 118, 1931–1941. https://doi.org/10.1016/j.ijbiomac.2018.07.046 | spa |
dc.relation.references | Liu, J., Guo, Y., Li, X., Si, T., Mcclements, D. J., & Ma, C. (2019). Effects of Chelating Agents and Salts on Interfacial Properties and Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 67(49), 13718–13727. https://doi.org/10.1021/acs.jafc.8b05867 | spa |
dc.relation.references | Lopez, C., Rabesona, H., Novales, B., Weber, M., & Anton, M. (2023). Walnut (Juglans regia L.) kernel oil bodies recovered by aqueous extraction for utilization as ingredient in food emulsions: Exploration of their microstructure, composition and the effects of homogenization, pH, and salt ions on their physical stability. Food Research International, 173. https://doi.org/10.1016/j.foodres.2023.113197 | spa |
dc.relation.references | Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., Roohinejad, S., & Lorenzo, J. M. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9(3). https://doi.org/10.3390/foods9030288 | spa |
dc.relation.references | Nawaz, M. A., Buckow, R., Jegasothy, H., & Stockmann, R. (2022). Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. Food and Bioproducts Processing, 132, 200–210. https://doi.org/10.1016/j.fbp.2022.01.008 | spa |
dc.relation.references | Nawaz, M. A., Singh, T. K., Stockmann, R., Jegasothy, H., & Buckow, R. (2021). Quality attributes of ultra-high temperature-treated model beverages prepared with faba bean protein concentrates. Foods, 10(6). https://doi.org/10.3390/foods10061244 | spa |
dc.relation.references | Nawaz, M. A., Tan, M., Øiseth, S., & Buckow, R. (2020). An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Reviews International, 1 – 39. https://doi.org/10.1080/87559129.2020.1762641 | spa |
dc.relation.references | Oquendo, L. A., Lewis, G., Mahdinia, E., & Harte, F. (2023). Effect of high-pressure jet processing on the structure and physicochemical properties of plant protein isolate aqueous dispersions. Food Hydrocolloids, 138. https://doi.org/10.1016/j.foodhyd.2022.108437 | spa |
dc.relation.references | Paul, A. A., Kumar, S., Kumar, V., & Sharma, R. (2020). Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Critical Reviews in Food Science and Nutrition, 60(18), 3005 – 3023. https://doi.org/10.1080/10408398.2019.1674243 | spa |
dc.relation.references | Qamar, S., Manrique, Y. J., Parekh, H., & Falconer, J. R. (2020). Nuts, cereals, seeds and legumes proteins derived emulsifiers as a source of plant protein beverages: A review. Critical Reviews in Food Science and Nutrition, 60(16), 2742–2762. https://doi.org/10.1080/10408398.2019.1657062 | spa |
dc.relation.references | Rajpurohit, B., & Li, Y. (2023). Overview on pulse proteins for future foods: ingredient development and novel applications. Journal of Future Foods, 3(4), 340–356. https://doi.org/10.1016/j.jfutfo.2023.03.005 | spa |
dc.relation.references | Ramos-Escudero, F., Morales, M. T., Ramos Escudero, M., Muñoz, A. M., Cancino Chavez, K., & Asuero, A. G. (2021). Assessment of phenolic and volatile compounds of commercial Sacha inchi oils and sensory evaluation. Food Research International, 140. https://doi.org/10.1016/j.foodres.2020.110022 | spa |
dc.relation.references | Rave, M. C., Echeverri, J. D., & Salamanca, C. H. (2020). Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. Journal of Food Engineering, 273. https://doi.org/10.1016/j.jfoodeng.2019.109801 | spa |
dc.relation.references | Rawdkuen, S., D’amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods, 11(13). https://doi.org/10.3390/foods11131869 | spa |
dc.relation.references | Reyes-Jurado, F., Soto-Reyes, N., Dávila-Rodríguez, M., Lorenzo-Leal, A. C., Jiménez-Munguía, M. T., Mani-López, E., & López-Malo, A. (2023). Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Reviews International, 39(4), 2320 – 2351. https://doi.org/10.1080/87559129.2021.1952421 | spa |
dc.relation.references | Rodríguez-Cortina, A., & Hernández-Carrión, M. (2023). Microcapsules of Sacha Inchi seed oil (Plukenetia volubilis L.) obtained by spray drying as a potential ingredient to formulate functional foods. Food Research International, 170. https://doi.org/10.1016/j.foodres.2023.113014 | spa |
dc.relation.references | Rodríguez-Cortina, A., Rodríguez-Cortina, J., & Hernández-Carrión, M. (2022). Obtention of Sacha Inchi (Plukenetia volubilis Linneo) Seed Oil Microcapsules as a Strategy for the Valorization of Amazonian Fruits: Physicochemical, Morphological, and Controlled Release Characterization. Foods, 11(24). https://doi.org/10.3390/foods11243950 | spa |
dc.relation.references | Romão, B., Botelho, R. B. A., Nakano, E. Y., Borges, V. R. P., de Holanda, M. E. M., Raposo, A., Han, H., Gil-Marín, M., Ariza-Montes, A., & Zandonadi, R. P. (2022). Vegan milk and egg alternatives commercialized in Brazil: A study of the nutritional composition and main ingredients. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.964734 | spa |
dc.relation.references | Ruiz, C., DÃ\-az, C., Anaya, J., & Rojas, R. (2013). Análisis proximal, antinutrientes, perfil de Ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de Sacha inchi (Plukenetia volubilis y Plukenetia huayllabambana). Revista de La Sociedad Química Del Perú, 79, 29–36. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000100005&nrm=iso | spa |
dc.relation.references | Saengsorn, K., & Jimtaisong, A. (2017). Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1092–1096. https://doi.org/10.1016/j.apjtb.2017.10.011 | spa |
dc.relation.references | Sanchez-Reinoso, Z., & Gutiérrez, L.-F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354–1366. https://doi.org/10.1007/s11947-017-1906-3 | spa |
dc.relation.references | Sharan, S., Zotzel, J., Stadtmüller, J., Bonerz, D., Aschoff, J., Saint-Eve, A., Maillard, M.-N., Olsen, K., Rinnan, Å., & Orlien, V. (2021). Two statistical tools for assessing functionality and protein characteristics of different fava bean (Vicia faba l.) ingredients. Foods, 10(10). https://doi.org/10.3390/foods10102489 | spa |
dc.relation.references | Silva, K. F. C. E., da Silva Carvalho, A. G., Rabelo, R. S., & Hubinger, M. D. (2019). Sacha inchi oil encapsulation: Emulsion and alginate beads characterization. Food and Bioproducts Processing, 116, 118–129. https://doi.org/10.1016/j.fbp.2019.05.001 | spa |
dc.relation.references | Sinsuebpol, C., & Changsan, N. (2020). Effects of ultrasonic operating parameters and emulsifier system on sacha inchi oil nanoemulsion characteristics. Journal of Oleo Science, 69(5), 437–448. https://doi.org/10.5650/jos.ess19193 | spa |
dc.relation.references | Song, X., Wang, J., Li, S., & Wang, Y. (2022). Formation of sacha inchi oil microemulsion systems: effects of non-ionic surfactants, short-chain alcohols, straight-chain esters and essential oils. Journal of the Science of Food and Agriculture, 102(9), 3572–3580. https://doi.org/10.1002/jsfa.11703 | spa |
dc.relation.references | Strieder, M. M., Silva, E. K., Mekala, S., Meireles, M. A. A., & Saldaña, M. D. A. (2023). Barley-Based Non-dairy Alternative Milk: Stabilization Mechanism, Protein Solubility, Physicochemical Properties, and Kinetic Stability. Food and Bioprocess Technology, 16(10), 2231–2246. https://doi.org/10.1007/s11947-023-03037-w | spa |
dc.relation.references | Sun, M., Li, X., McClements, D. J., Xiao, M., Chen, H., Zhou, Q., Xu, S., Chen, Y., & Deng, Q. (2022). Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum. Food Hydrocolloids, 122. https://doi.org/10.1016/j.foodhyd.2021.107069 | spa |
dc.relation.references | Suwannasang, S., Zhong, Q., Thumthanaruk, B., Vatanyoopaisarn, S., Uttapap, D., Puttanlek, C., & Rungsardthong, V. (2022). Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. LWT, 161. https://doi.org/10.1016/j.lwt.2022.113375 | spa |
dc.relation.references | Tan, Y., & McClements, D. J. (2021). Plant-based colloidal delivery systems for bioactives. Molecules, 26(22). https://doi.org/10.3390/molecules26226895 | spa |
dc.relation.references | Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2023). Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Reviews International, 39(1), 148–159. https://doi.org/10.1080/87559129.2021.1900231 | spa |
dc.relation.references | USDA. (30 de 10 de 2020). FoodData Central. Obtenido de Flour, soy, full-fat: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1104766/nutrients | spa |
dc.relation.references | USDA. (1 de 4 de 2020). FoodData Central. Obtenido de Flour, rice, white, unenriched: https://fdc.nal.usda.gov/fdc-app.html#/food-details/790214/nutrients | spa |
dc.relation.references | USDA. (28 de 10 de 2022). FoodData Central. Obtenido de Nuts, almonds, whole, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2346393/nutrients | spa |
dc.relation.references | USDA. (28 de 10 de 2022). FoodData Central. Obtenido de Nuts, pecans, halves, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2346395/nutrients | spa |
dc.relation.references | USDA. (28 de 4 de 2022). FoodData Central. Obtenido de Flour, oat, whole grain: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2261421/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, cashew nuts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515374/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, pistachio nuts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515379/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, brazilnuts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515373/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Nuts, hazelnuts or filberts, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515375/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Flour, coconut: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515382/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Seeds, pumpkin seeds (pepitas), raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515380/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Seeds, sunflower seed, kernel, raw: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2515381/nutrients | spa |
dc.relation.references | USDA. (20 de 4 de 2023). FoodData Central. Obtenido de Flour, amaranth: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2512371/nutrients | spa |
dc.relation.references | USDA. (26 de 10 de 2023). FoodData Central. Obtenido de Chickpeas, (garbanzo beans, bengal gram), dry: https://fdc.nal.usda.gov/fdc-app.html#/food-details/2644282/nutrients | spa |
dc.relation.references | Vallath, A., & Shanmugam, A. (2022). Study on model plant based functional beverage emulsion (non-dairy) using ultrasound – A physicochemical and functional characterization. Ultrasonics Sonochemistry, 88. https://doi.org/10.1016/j.ultsonch.2022.106070 | spa |
dc.relation.references | Vicente, J., de Souza Cezarino, T., Pereira, L. J. B., da Rocha, E. P., Sá, G. R., Gamallo, O. D., de Carvalho, M. G., & Garcia-Rojas, E. E. (2017). Microencapsulation of sacha inchi oil using emulsion-based delivery systems. Food Research International, 99, 612–622. https://doi.org/10.1016/j.foodres.2017.06.039 | spa |
dc.relation.references | Vicente, J., Pereira, L. J. B., Bastos, L. P. H., de Carvalho, M. G., & Garcia-Rojas, E. E. (2018). Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, 120, 339–345. https://doi.org/10.1016/j.ijbiomac.2018.08.041 | spa |
dc.relation.references | Wang, S., Zhu, F., & Kakuda, Y. (2018). Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chemistry, 265, 316–328. https://doi.org/10.1016/j.foodchem.2018.05.055 | spa |
dc.relation.references | Wongpattananukul, S., Nungarlee, U., Ruangprach, A., Sulong, S., Sanporkha, P., Adisakwattana, S., & Ngamukote, S. (2022). Effect of Inca peanut oil on omega-3 polyunsaturated fatty acids, physicochemical, texture and sensory properties in chicken sausage. LWT, 163. https://doi.org/10.1016/j.lwt.2022.113559 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
dc.subject.lemb | SEMILLAS-INDUSTRIA Y COMERCIO | spa |
dc.subject.lemb | Seed industry and trade | eng |
dc.subject.lemb | SEMILLAS OLEAGINOSAS | spa |
dc.subject.lemb | Oilseeds | eng |
dc.subject.lemb | ALIMENTOS NATURALES | spa |
dc.subject.lemb | Food, natural | eng |
dc.subject.lemb | ALIMENTOS-CONTENIDO DE PROTEINAS | spa |
dc.subject.lemb | Food-protein content | eng |
dc.subject.lemb | NECESIDADES DE NUTRIENTES | spa |
dc.subject.lemb | Nutrition - Requirements | eng |
dc.subject.proposal | Sacha Inchi | spa |
dc.subject.proposal | Proteínas vegetales | spa |
dc.subject.proposal | Bebidas de base vegetal | spa |
dc.subject.proposal | Productos veganos y vegetarianos | spa |
dc.subject.proposal | Alimentos funcionales | spa |
dc.subject.proposal | Plant protein | eng |
dc.subject.proposal | Plant-based beverages | eng |
dc.subject.proposal | Vegan and vegetarian products | eng |
dc.subject.proposal | Functional foods | eng |
dc.title | Documento técnico: Sacha Inchi (Plukenetia volubilis) como ingrediente potencial en el desarrollo de bebidas proteicas a base de plantas | spa |
dc.title.translated | Technical document: Sacha Inchi (Plukenetia volubilis) as a potential ingredient in the development of plant-based protein beverages | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020802952.2024.pdf
- Tamaño:
- 653.9 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: