Desarrollo de una aplicación para la construcción de mapas de conocimiento generados por un tema de investigación

dc.contributor.advisorPardo Turriago, Campo Elíasspa
dc.contributor.authorCastrellón Torres, Jairospa
dc.date.accessioned2025-05-07T18:44:43Z
dc.date.available2025-05-07T18:44:43Z
dc.date.issued2025-05-07
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl uso de herramientas para la construcción de mapas de conocimiento con base en un tema de investigación se hace cada vez más necesario en el mundo de la producción académica debido a la velocidad con la que se está generando nuevo conocimiento y la gran capacidad de los medios digitales para poner esta información a disposición de los interesados en las diferentes bases de datos. Estos mapas de conocimiento se han convertido en guías importantes para los investigadores, en la medida en que les permite tener un amplio panorama del flujo que presenta su tema de interés, de tal manera que visualicen las áreas y subáreas más relevantes en su investigación. Este trabajo pretende ofrecer una alternativa a las herramientas que ya existen (mediante una aplicación), haciendo un análisis más exhaustivo en la generación de palabras y conceptos clave que se puedan inferir de la información básica de un texto investigativo, para posteriormente agrupar los textos y construir los respectivos mapas de conocimiento. (Texto tomado de la fuente).spa
dc.description.abstractThe use of tools for constructing knowledge maps based on a research topic is becoming increasingly necessary in the world of academic production due to the speed at which new knowledge is being generated and the vast capacity of digital media to make this information available to interested parties in various databases. These knowledge maps have become important guides for researchers, as they allow them to gain a broad view of the flow of their topic of interest, enabling them to visualize the most relevant areas and sub-areas in their research. This work aims to offer an alternative to existing tools (through an application) by conducting a more exhaustive analysis in generating keywords and key concepts that can be inferred from the basic information in a research text, in order to subsequently group the texts and construct the corresponding knowledge maps.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaProcesamiento de lenguaje naturalspa
dc.format.extent91 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88152
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesKamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and Martin Jaggi. Simple unsupervised keyphrase extraction using sentence embeddings. arXiv preprint arXiv:1801.04470, 2018.spa
dc.relation.referencesSteven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. .O’Reilly Media, Inc.”, 2009.spa
dc.relation.referencesAntoine Blanchard. Understanding and customizing stopword lists for enhanced patent mapping. World Patent Information, 29(4):308–316, 2007.spa
dc.relation.referencesAdrien Bougouin, Florian Boudin, and B´eatrice Daille. Topicrank: Graph-based topic ranking for keyphrase extraction. In International joint conference on natural language processing (IJCNLP), pages 543–551, 2013.spa
dc.relation.referencesRicardo JGB Campello, Davoud Moulavi, and J¨org Sander. Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining, pages 160–172. Springer, 2013.spa
dc.relation.referencesRicardo Campos, V´ıtor Mangaravite, Arian Pasquali, Al´ıpio M´ario Jorge, C´elia Nunes, and Adam Jatowt. Yake! collection-independent automatic keyword extractor. In Advances in Information Retrieval: 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings 40, pages 806–810. Springer, 2018.spa
dc.relation.referencesCitation Network Dataset. Dblp-citation-network v10 https://paperswithcode.com/dataset/dblp, 22 de Enero de 2024, 2024.spa
dc.relation.referencesManuel J Cobo, Antonio Gabriel L´opez-Herrera, Enrique Herrera-Viedma, and Francisco Herrera. Scimat: A new science mapping analysis software tool. Journal of the American Society for information Science and Technology, 63(8):1609–1630, 2012.spa
dc.relation.referencesYAKE Contributors. Yake! text keyword extraction, 2024. URL https://pypi.org/ project/yake/. Accessed on February 26, 2024.spa
dc.relation.referencesNetworkX Developers. Introduction to networkx, 2024. URL https://networkx.org/ documentation/stable/reference/introduction.html. Accedido: 27 de mayo de 2024.spa
dc.relation.referencesJacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.spa
dc.relation.referencesMartin Ester, Hans-Peter Kriegel, J¨org Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226– 231, 1996.spa
dc.relation.referencesLinton C Freeman et al. Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociology. Londres: Routledge, 1:238–263, 2002.spa
dc.relation.referencesAric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008spa
dc.relation.referencesAnette Hulth. Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of the 2003 conference on Empirical methods in natural language processing, pages 216–223, 2003.spa
dc.relation.referencesAnette Hulth and Be´ata Megyesi. A study on automatically extracted keywords in text categorization. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 537–544, 2006.spa
dc.relation.referencesPaul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2): 37–50, 1912.spa
dc.relation.referencesMatthew A Jaro. Advances in record-linkage methodology as applied to matching the 1985 census of tampa, florida. Journal of the American Statistical Association, 84(406):414–420, 1989.spa
dc.relation.referencesJon Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 91–101, 2002.spa
dc.relation.referencesVladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union, 1966spa
dc.relation.referencesLester Lusher, Wenni Yang, and Scott E Carrell. Congestion on the information superhigh- way: Inefficiencies in economics working papers. Journal of Public Economics, 225:104978, 2023.spa
dc.relation.referencesJames MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.spa
dc.relation.referencesChristopher Manning and Hinrich Schutze. Foundations of statistical natural language processing. MIT press, 1999.spa
dc.relation.referencesRada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing, pages 404–411, 2004spa
dc.relation.referencesAlan D Moore. Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter. Packt Publishing Ltd, 2018.spa
dc.relation.referencesPaco Nathan. PyTextRank, a Python implementation of TextRank for phrase extraction and summarization of text documents, 2016. URL https://github.com/DerwenAI/ pytextrank.spa
dc.relation.referencesFrancesco Osborne and Enrico Motta. Klink-2: integrating multiple web sources to generate semantic topic networks. In The Semantic Web-ISWC 2015: 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I 14, pages 408–424. Springer, 2015.spa
dc.relation.referencesFabian Pedregosa, Ga¨el Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct): 2825–2830, 2011.spa
dc.relation.referencesOlle Persson. The intellectual base and research fronts of jasis 1986–1990. Journal of the American society for information science, 45(1):31–38, 1994.spa
dc.relation.referencesFaisal Rahutomo, Teruaki Kitasuka, Masayoshi Aritsugi, et al. Semantic cosine similarity. In The 7th international student conference on advanced science and technology ICAST, volume 4, page 1. University of Seoul South Korea, 2012.spa
dc.relation.referencesGerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5):513–523, 1988.spa
dc.relation.referencesMonica Santana and Manuel J Cobo. What is the future of work? a science mapping analysis. European Management Journal, 38(6):846–862, 2020.spa
dc.relation.referencesHugo Steinhaus et al. Sur la division des corps mat´eriels en parties. Bull. Acad. Polon. Sci, 1(804):801, 1956.spa
dc.relation.referencesMarie B Synnestvedt, Chaomei Chen, and John H Holmes. Citespace ii: visualization and knowledge discovery in bibliographic databases. In AMIA annual symposium proceedings, volume 2005, page 724. American Medical Informatics Association, 2005.spa
dc.relation.referencesTALN-LS2N. In spec dataset, 2022. URL https://huggingface.co/datasets/taln-ls2n/ inspec/tree/refs%2Fconvert%2Fparquet/raw/validation.spa
dc.relation.referencesCornelis Joost Van Rijsbergen. A theoretical basis for the use of co-occurrence data in information retrieval. Journal of documentation, 33(2):106–119, 1977.spa
dc.relation.referencesPeter Willett. The porter stemming algorithm: then and now. Program, 40(3):219–223, 2006spa
dc.relation.referencesWilliam E Winkler. String comparator metrics and enhanced decision rules in the fellegisunter model of record linkage. 1990.spa
dc.relation.referencesBinbin Xie, Jia Song, Liangying Shao, Suhang Wu, Xiangpeng Wei, Baosong Yang, Huan Lin, Jun Xie, and Jinsong Su. From statistical methods to deep learning, automatic keyphrase prediction: A survey. Information Processing & Management, 60(4):103382, 2023.spa
dc.relation.referencesMoshe Zadka and Moshe Zadka. Requests. DevOps in Python: Infrastructure as Python, pages 85–94, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalGeneración de palabras clavespa
dc.subject.proposalFrases clavespa
dc.subject.proposalMapas de conocimientospa
dc.subject.proposalProcesamiento del lenguaje naturalspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalKeywords generationeng
dc.subject.proposalKeyphraseeng
dc.subject.proposalKnowledge Mapseng
dc.subject.proposalNatural Language Processingeng
dc.subject.proposalMachine Learningeng
dc.subject.unescoAplicación informáticaspa
dc.subject.unescoComputer applicationseng
dc.subject.unescoAnálisis de datosspa
dc.subject.unescoData analysiseng
dc.subject.wikidataMapas de tópicosspa
dc.subject.wikidataTopic Mapseng
dc.titleDesarrollo de una aplicación para la construcción de mapas de conocimiento generados por un tema de investigaciónspa
dc.title.translatedDevelopment of an application for the construction of knowledge maps generated by a research topiceng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032463021.2025.pdf
Tamaño:
2.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: