Desarrollo de una aplicación para la construcción de mapas de conocimiento generados por un tema de investigación
dc.contributor.advisor | Pardo Turriago, Campo Elías | spa |
dc.contributor.author | Castrellón Torres, Jairo | spa |
dc.date.accessioned | 2025-05-07T18:44:43Z | |
dc.date.available | 2025-05-07T18:44:43Z | |
dc.date.issued | 2025-05-07 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El uso de herramientas para la construcción de mapas de conocimiento con base en un tema de investigación se hace cada vez más necesario en el mundo de la producción académica debido a la velocidad con la que se está generando nuevo conocimiento y la gran capacidad de los medios digitales para poner esta información a disposición de los interesados en las diferentes bases de datos. Estos mapas de conocimiento se han convertido en guías importantes para los investigadores, en la medida en que les permite tener un amplio panorama del flujo que presenta su tema de interés, de tal manera que visualicen las áreas y subáreas más relevantes en su investigación. Este trabajo pretende ofrecer una alternativa a las herramientas que ya existen (mediante una aplicación), haciendo un análisis más exhaustivo en la generación de palabras y conceptos clave que se puedan inferir de la información básica de un texto investigativo, para posteriormente agrupar los textos y construir los respectivos mapas de conocimiento. (Texto tomado de la fuente). | spa |
dc.description.abstract | The use of tools for constructing knowledge maps based on a research topic is becoming increasingly necessary in the world of academic production due to the speed at which new knowledge is being generated and the vast capacity of digital media to make this information available to interested parties in various databases. These knowledge maps have become important guides for researchers, as they allow them to gain a broad view of the flow of their topic of interest, enabling them to visualize the most relevant areas and sub-areas in their research. This work aims to offer an alternative to existing tools (through an application) by conducting a more exhaustive analysis in generating keywords and key concepts that can be inferred from the basic information in a research text, in order to subsequently group the texts and construct the corresponding knowledge maps. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.description.researcharea | Procesamiento de lenguaje natural | spa |
dc.format.extent | 91 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88152 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.references | Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and Martin Jaggi. Simple unsupervised keyphrase extraction using sentence embeddings. arXiv preprint arXiv:1801.04470, 2018. | spa |
dc.relation.references | Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. .O’Reilly Media, Inc.”, 2009. | spa |
dc.relation.references | Antoine Blanchard. Understanding and customizing stopword lists for enhanced patent mapping. World Patent Information, 29(4):308–316, 2007. | spa |
dc.relation.references | Adrien Bougouin, Florian Boudin, and B´eatrice Daille. Topicrank: Graph-based topic ranking for keyphrase extraction. In International joint conference on natural language processing (IJCNLP), pages 543–551, 2013. | spa |
dc.relation.references | Ricardo JGB Campello, Davoud Moulavi, and J¨org Sander. Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining, pages 160–172. Springer, 2013. | spa |
dc.relation.references | Ricardo Campos, V´ıtor Mangaravite, Arian Pasquali, Al´ıpio M´ario Jorge, C´elia Nunes, and Adam Jatowt. Yake! collection-independent automatic keyword extractor. In Advances in Information Retrieval: 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, Proceedings 40, pages 806–810. Springer, 2018. | spa |
dc.relation.references | Citation Network Dataset. Dblp-citation-network v10 https://paperswithcode.com/dataset/dblp, 22 de Enero de 2024, 2024. | spa |
dc.relation.references | Manuel J Cobo, Antonio Gabriel L´opez-Herrera, Enrique Herrera-Viedma, and Francisco Herrera. Scimat: A new science mapping analysis software tool. Journal of the American Society for information Science and Technology, 63(8):1609–1630, 2012. | spa |
dc.relation.references | YAKE Contributors. Yake! text keyword extraction, 2024. URL https://pypi.org/ project/yake/. Accessed on February 26, 2024. | spa |
dc.relation.references | NetworkX Developers. Introduction to networkx, 2024. URL https://networkx.org/ documentation/stable/reference/introduction.html. Accedido: 27 de mayo de 2024. | spa |
dc.relation.references | Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. | spa |
dc.relation.references | Martin Ester, Hans-Peter Kriegel, J¨org Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226– 231, 1996. | spa |
dc.relation.references | Linton C Freeman et al. Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociology. Londres: Routledge, 1:238–263, 2002. | spa |
dc.relation.references | Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008 | spa |
dc.relation.references | Anette Hulth. Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of the 2003 conference on Empirical methods in natural language processing, pages 216–223, 2003. | spa |
dc.relation.references | Anette Hulth and Be´ata Megyesi. A study on automatically extracted keywords in text categorization. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 537–544, 2006. | spa |
dc.relation.references | Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2): 37–50, 1912. | spa |
dc.relation.references | Matthew A Jaro. Advances in record-linkage methodology as applied to matching the 1985 census of tampa, florida. Journal of the American Statistical Association, 84(406):414–420, 1989. | spa |
dc.relation.references | Jon Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 91–101, 2002. | spa |
dc.relation.references | Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union, 1966 | spa |
dc.relation.references | Lester Lusher, Wenni Yang, and Scott E Carrell. Congestion on the information superhigh- way: Inefficiencies in economics working papers. Journal of Public Economics, 225:104978, 2023. | spa |
dc.relation.references | James MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. | spa |
dc.relation.references | Christopher Manning and Hinrich Schutze. Foundations of statistical natural language processing. MIT press, 1999. | spa |
dc.relation.references | Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing, pages 404–411, 2004 | spa |
dc.relation.references | Alan D Moore. Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter. Packt Publishing Ltd, 2018. | spa |
dc.relation.references | Paco Nathan. PyTextRank, a Python implementation of TextRank for phrase extraction and summarization of text documents, 2016. URL https://github.com/DerwenAI/ pytextrank. | spa |
dc.relation.references | Francesco Osborne and Enrico Motta. Klink-2: integrating multiple web sources to generate semantic topic networks. In The Semantic Web-ISWC 2015: 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I 14, pages 408–424. Springer, 2015. | spa |
dc.relation.references | Fabian Pedregosa, Ga¨el Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct): 2825–2830, 2011. | spa |
dc.relation.references | Olle Persson. The intellectual base and research fronts of jasis 1986–1990. Journal of the American society for information science, 45(1):31–38, 1994. | spa |
dc.relation.references | Faisal Rahutomo, Teruaki Kitasuka, Masayoshi Aritsugi, et al. Semantic cosine similarity. In The 7th international student conference on advanced science and technology ICAST, volume 4, page 1. University of Seoul South Korea, 2012. | spa |
dc.relation.references | Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5):513–523, 1988. | spa |
dc.relation.references | Monica Santana and Manuel J Cobo. What is the future of work? a science mapping analysis. European Management Journal, 38(6):846–862, 2020. | spa |
dc.relation.references | Hugo Steinhaus et al. Sur la division des corps mat´eriels en parties. Bull. Acad. Polon. Sci, 1(804):801, 1956. | spa |
dc.relation.references | Marie B Synnestvedt, Chaomei Chen, and John H Holmes. Citespace ii: visualization and knowledge discovery in bibliographic databases. In AMIA annual symposium proceedings, volume 2005, page 724. American Medical Informatics Association, 2005. | spa |
dc.relation.references | TALN-LS2N. In spec dataset, 2022. URL https://huggingface.co/datasets/taln-ls2n/ inspec/tree/refs%2Fconvert%2Fparquet/raw/validation. | spa |
dc.relation.references | Cornelis Joost Van Rijsbergen. A theoretical basis for the use of co-occurrence data in information retrieval. Journal of documentation, 33(2):106–119, 1977. | spa |
dc.relation.references | Peter Willett. The porter stemming algorithm: then and now. Program, 40(3):219–223, 2006 | spa |
dc.relation.references | William E Winkler. String comparator metrics and enhanced decision rules in the fellegisunter model of record linkage. 1990. | spa |
dc.relation.references | Binbin Xie, Jia Song, Liangying Shao, Suhang Wu, Xiangpeng Wei, Baosong Yang, Huan Lin, Jun Xie, and Jinsong Su. From statistical methods to deep learning, automatic keyphrase prediction: A survey. Information Processing & Management, 60(4):103382, 2023. | spa |
dc.relation.references | Moshe Zadka and Moshe Zadka. Requests. DevOps in Python: Infrastructure as Python, pages 85–94, 2019. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.proposal | Generación de palabras clave | spa |
dc.subject.proposal | Frases clave | spa |
dc.subject.proposal | Mapas de conocimiento | spa |
dc.subject.proposal | Procesamiento del lenguaje natural | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Keywords generation | eng |
dc.subject.proposal | Keyphrase | eng |
dc.subject.proposal | Knowledge Maps | eng |
dc.subject.proposal | Natural Language Processing | eng |
dc.subject.proposal | Machine Learning | eng |
dc.subject.unesco | Aplicación informática | spa |
dc.subject.unesco | Computer applications | eng |
dc.subject.unesco | Análisis de datos | spa |
dc.subject.unesco | Data analysis | eng |
dc.subject.wikidata | Mapas de tópicos | spa |
dc.subject.wikidata | Topic Maps | eng |
dc.title | Desarrollo de una aplicación para la construcción de mapas de conocimiento generados por un tema de investigación | spa |
dc.title.translated | Development of an application for the construction of knowledge maps generated by a research topic | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032463021.2025.pdf
- Tamaño:
- 2.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: