Mayorización, politopos y clases de matrices combinatorias
| dc.contributor.advisor | Reyes Villamil, Milton Armando | spa |
| dc.contributor.author | Chitiva Huertas, Diego Alberto | spa |
| dc.date.accessioned | 2021-01-20T19:58:21Z | spa |
| dc.date.available | 2021-01-20T19:58:21Z | spa |
| dc.date.issued | 2020-08-15 | spa |
| dc.description.abstract | En este trabajo, investigamos el retículo de caras, la propiedad de aditividad, el f-vector y algunas conexiones con clases de matrices combinatorias de unos politopos asociados con tres conceptos de mayorización. El concepto clásico de mayorización fue introducido y caracterizado por Hardy, Littlewood y Pólya en [HLP34]; además, en el año 1959 el matemático ruso Mirsky describió geométricamente el concepto de mayorización débil en [Mir59] y, más recientemente, Roventa [Rov16] introdujo el concepto de mayorización fuerte para generalizarla desigualdad de Hardy, Littlewood y Pólya. De otra parte, en el año 2001, Dahl estudió el ideal principal de mayorización en [Dah01], donde exploró conexiones con optimización y presentó una descripción del 1-esqueleto de este politopo. Posteriormente, en [Dah10], él estableció una generalización del teorema de Gale-Ryser usando la aditividad entera del permutaedro de mayorización, trabajo que inauguró una nueva clase de matrices combinatorias llamada A(B,S), la cual él y Brualdi estudiaron en [BD12]. A partir de lo anterior, en este trabajo, nosotros definimos permutaedros e ideales principales asociados con los conceptos de mayorización débil y fuerte, los cuales investigamos motivados por las fuentes anteriormente mencionadas, e inspirados por la revisión presentada en [BKL85], [BS96] y [Bar02] de algunas demostraciones del resultado ya clásico que caracteriza el retículo de caras del permutaedro mediante las particiones ordenadas de [n]. Aprovechando la propiedad de ser simple que tienen varios delos politopos que investigamos, damos descripciones combinatorias de sus retículos de caras. Posteriormente, encontramos expresiones para las componentes del f-vector de cada uno delos politopos estudiados. Asimismo, establecemos caracterizaciones matricial y geométrica del concepto de mayorización fuerte, las cuales complementan los trabajos de Roventa [Rov16]sobre este concepto. Finalmente, ofrecemos demostraciones de la propiedad de aditividad para permutaedros e ideales de mayorización que obtenemos mediante la aplicación de politopos de Newton. Este es un enfoque para investigar la propiedad de aditividad alternativo a los encontrados en la literatura consultada. | spa |
| dc.description.abstract | In this work, we investigate the face lattice, the additivity property, the f-vector, and some connections with combinatorial matrix classes of some polytopes associated with three concepts of majorization. The classic concept of majorization was introduced and characterized by Hardy, Littlewood and Pólya in [HLP34]; besides, in 1959 the Russian mathematician Mirskydescribed geometrically the concept of weak majorization in [Mir59] and, more recently, Roventa[Rov16] introduced the concept of strong majorization to generalize the inequality of Hardy, Littlewood and Pólya. On the other hand, in 2001, Dahl studied the principal majorization ideal in [Dah01], where he explored connections with optimization and presented a description of the 1-skeleton of this polytope. Subsequently, in [Dah10], he established a generalization ofthe Gale-Ryser theorem using the integer additivity of the majorization permutahedron, workthat opened a new combinatorial matrix class calledA(B,S), which he and Brualdi studied in [BD12]. Based on the above, in this work, we define permutahedra and principal ideals associated with the concepts of weak and strong majorization, which we study motivated by the aforementioned references, and inspired by the review presented in [BKL85], [BS96] and [Bar02]of some proofs of the already classic result that characterizes the face lattice of permutahedron by means ordered partitions of [n]. Taking advantage of the property of being simple that seve-ral of the polytopes that we investigate have, we give combinatorial descriptions of their facelattices. Subsequently, we find expressions for thef-vector components of each of the polytopes studied. Likewise, we establish matrix and geometric characterizations of the concept of strong majorization, which complement the Roventa’s work on this concept. Finally, we offer proofs ofthe additivity property for majorization permutahedra and the majorization principal ideals that we obtain by applying Newton’s polytopes. This is an approach to investigate the additivity property alternative to those found in the references consulted. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 147 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Chitiva, D. (2020). Mayorización, politopos y clases de matrices combinatorias [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Institucional. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78854 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Matemáticas | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
| dc.relation.references | Lorenzo M. Acosta. Temas de teoría de retículos. Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia, 2016. | spa |
| dc.relation.references | Peter M. Alberti and Armin Uhlmann. Stochasticy and Partial Order. D. Reidel Publis-hing Company, VEB Deutscher Verlag der Wissenschaften, Berlin, 1982. | spa |
| dc.relation.references | R.B. Bapat. Majorization and singular values. iii.Linear Algebra Appl., 145:59–70, 1991. | spa |
| dc.relation.references | Alexander Barvinok.A course in convexity. Graduate Studies in Mathematics 54, American Mathematical Society, 2002. | spa |
| dc.relation.references | R.A. Brualdi and G. Dahl. Majorization classes of integral matrices.Linear AlgebraAppl., 436:802–813, 2012. | spa |
| dc.relation.references | A. Björner, B. Korte, and L. Lovász. Homotopy properties of greedoids. Adv. in Appl.Math., 6:447–494, 1985. | spa |
| dc.relation.references | R.A. Brualdi.Combinatorial matrix classes. Encyclopedia of Mathematics and its Applications Vol. 108, Cambridge University Press, Cambridge, 2006. | spa |
| dc.relation.references | Louis J. Billera and A. Sarangarajan. The combinatorics of permutation polytopes.Ser. Discrete Math. Theoret. Comput. Sci., 24:1–23, 1996. | spa |
| dc.relation.references | C. Benedetti and N. Saavedra. Introducción a la combinatoria enumerativa. Lect.Mat., 40 (2):117–147, 2019. | spa |
| dc.relation.references | Jhon B. Caicedo and Rafael S. González. Conjuntos parcialmente ordenados y retículos. Lect. Mat., 40 (2):149–175, 2019. | spa |
| dc.relation.references | G. Dahl. Principal majorization ideals and optimization. Linear Algebra Appl., 331:113–130, 2001. | spa |
| dc.relation.references | G. Dahl. Majorization permutahedra and (0,1)-matrices. Linear Algebra Appl.,432:3265–3271, 2010. | spa |
| dc.relation.references | G. Dahl and Z. Fuzhen. Integral majorization polytopes. Discrete Math. AlgorithmsAppl., 5, 2013. | spa |
| dc.relation.references | G. Dahl and F. Margot. Weak k-majorization and polyhedra.Math. Program., 81:37–53,1998. | spa |
| dc.relation.references | V.A. Emelichev, M.M. Kovalev, and M.K. Krasvtsov. Polytopes, Graphs and Optimization. Cambridge University Press, New York, 1984. | spa |
| dc.relation.references | G.A. Grätzer.Lattice theory. W.H. Freeman and Company, 1971. | spa |
| dc.relation.references | G.H. Hardy, J.E. Littlewood, and G. Pólya.Inequalities. Cambridge University Press, Cambridge, 1934. | spa |
| dc.relation.references | Carl W. Lee. Polytopes course notes. Department of Mathematics, University of Kentucky, Lexington, Kentucky, pages 1–35, 2013 | spa |
| dc.relation.references | L. Mirsky. On a convex set of matrices. Arch. Math., 10:88–92, 1959. | spa |
| dc.relation.references | Albert W. Marshall, Ingram Olkin, and Barry C. Arnold.Inequalities: Theory of majorization and its applications. Springer Series in Statistics, Springer-Verlag, 2011. | spa |
| dc.relation.references | Andrzej Nowicki. Convex polytopes and newton polytopes. Nicolas Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Torun, Poland., pages 1–10, 2016. | spa |
| dc.relation.references | I. Roventa. Hardy-littlewood-polya’s inequality and a new concept of weak majorization. Mediterr. J. Math., 13:573–583, 2016. | spa |
| dc.relation.references | Pieter Hendrik Schoute.Analytic treatment of the polytopes regularly derived from the regular polytopes. Verhandeling der Koninklijke Akademie van Wetenschappente Amsterdam, Johannes Muller, Anmsterdam, 1911 | spa |
| dc.relation.references | A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986. | spa |
| dc.relation.references | Rekha R. Thomas.Lectures in Geometric Combinatorics. Student Mathematical Library, Park City Mathematical Subseries Vol. 33, American Mathematical Society, 2006. | spa |
| dc.relation.references | Gunter M. Ziegler.Lectures on Polytopes. Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 510 - Matemáticas | spa |
| dc.subject.proposal | Majorization | eng |
| dc.subject.proposal | Politopos | spa |
| dc.subject.proposal | Permutaedro de mayorización | spa |
| dc.subject.proposal | Polytopes | eng |
| dc.subject.proposal | Ideal principal de mayorización | spa |
| dc.subject.proposal | Majorization permutahedron | eng |
| dc.subject.proposal | Principal majorization ideal | eng |
| dc.subject.proposal | Propiedad de aditividad | spa |
| dc.subject.proposal | Face lattice | eng |
| dc.subject.proposal | Mayorización | spa |
| dc.subject.proposal | Retículo de caras | spa |
| dc.subject.proposal | Additivity property | eng |
| dc.title | Mayorización, politopos y clases de matrices combinatorias | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Mayorización, politopos y clases de matrices combinatorias_.pdf
- Tamaño:
- 1.47 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

