Aplicaciones de Hénon: límite inverso de polinomios cuadráticos

dc.contributor.advisorBautista Díaz, Serafín
dc.contributor.authorParra Díaz, Manuel Alberto
dc.date.accessioned2021-07-27T18:15:52Z
dc.date.available2021-07-27T18:15:52Z
dc.date.issued2021-07
dc.descriptionilustraciones, tablasspa
dc.description.abstractEn este trabajo de maestría se estudia la dinámica de la aplicación de Hénon propuesta en \citep{H} así como su generalización a funciones sobre $\mathbb{C}^2$ planteada en \citep{H1},\citep{O3} y \citep{O4}. Se introducen conceptos tales como \textit{límites inversos}, \textit{herraduras complejas}, etc. que están involucrados en la relación de estas aplicaciones con la dinámica polinomial estudiada por el autor en \citep{parra2019}. Por último, se interpreta la definición y caracterización de Conjuntos de Julia en la dinámica de Hénon dada en \citep{HO1} y \citep{HO2}. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis the dynamics of the Hénon mapping, proposed in (Hénon, 1976) is studied as well as its generalization over C 2 raised in (Hubbard, 1986), (ObersteVorth, 2000) and (Oberste-Vorth, 1997). Concepts as inverse limits, complex horseshoes, etc. are introduced which are involved in the relation between these mappings and the polynomial dynamics studied by the author in (Parra, 2019). Finally, the definition and characterization of the Julia sets in the Hénon dynamic, given in (Hubbard, 1994a) and (Hubbard, 1994b), is interpreted. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extent90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79854
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesAbellán Zapata, C. (2015). Caos, linealidad y dimensión. Tesis de grado, Universidad de Murcia.spa
dc.relation.referencesAybar, O., Aybar, I., and Hacinliyan, A. (2013). Stability and bifurcation in the hénon map and its generalizations. Chaotic Modeling and Simulation (CMSIM), 4:529–538.spa
dc.relation.referencesBanks, J., Brooks, J., Cairns, G., Davis, G., and Stacey, P. (1992). On devaney’s definition of chaos. The American mathematical monthly, 99(4):332–334.spa
dc.relation.referencesBenedicks, M. & Carleson, L. (1991). The dynamics of the hénon map. Annals of Mathematics, 133(1):73–169.spa
dc.relation.referencesDevaney, R. (2008). An introduction to chaotic dynamical systems. Westview press.spa
dc.relation.referencesDevaney, R. and Nitecki, Z. (1979). Shift automorphisms in the hénon mapping. Commun.Math. Phys, 67:137–146.spa
dc.relation.referencesDevaney, R. L. (1994). The complex dynamics of quadratic polynomials. Proceedings of Symposia in Applied Mathematics, 49:1–29.spa
dc.relation.referencesDevaney, R. L. (2018). A first course in chaotic dynamical systems: theory and experiment. CRC Press.spa
dc.relation.referencesDevaney, R. L., Henk Broer, F., and Hasselblatt, B. (2010). Complex exponential dynamics. Handbook of dynamical systems, 3:125–224.spa
dc.relation.referencesDouady, A. & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. In Annales scientifiques de l’École normale supérieure, 18(2):287–343.spa
dc.relation.referencesGeyer, L. (2016). M597 lecture notes. Topics in Mathematics Complex Dynamic, 49:29–30.spa
dc.relation.referencesHénon, M. (1976). A two-dimensional mapping with a strange attractor. In The Theory of Chaotic Attractors. Springer, New York, NY., pages 94–102.spa
dc.relation.referencesHubbard, J. (1986). The hénon mapping in the complex domain. Chaotic Dynamics and Fractals. Academic Press. New York, pages 101–111.spa
dc.relation.referencesHubbard, J. & Oberste-Vorth, R. W. (1994a). Hénon mappings in the complex domain I: the global topology of dynamical space. Publications Mathématiques de l’IHÉS, pages 5–46.spa
dc.relation.referencesHubbard, J. & Oberste-Vorth, R. W. (1994b). Hénon mappings in the complex domain II: Projective and inductive limits of polynomials. Publications Mathématiques de l’IHÉS.spa
dc.relation.referencesKeen, L. (1994). Julia sets of rational maps. Proceedings of Symposia in Applied Mathematics, 49:71–89.spa
dc.relation.referencesKuznetsov, Y. A. (2013). Elements of applied bifurcation theory. Springer Science & Business Media, 112.spa
dc.relation.referencesLorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2), pages 130–141.spa
dc.relation.referencesMilnor, J. (1990). Dynamics in one complex variable: introductory lectures. Institute for Mathematical Sciences. Stony Brook, pages 130–141.spa
dc.relation.referencesMora, L. & Romero, N. (1994). Una introducción a los sistemas dinámicos: via la aplicación de hénon. Instituto Venezolano de Investigaciones Científicas.spa
dc.relation.referencesMunkres, J. (2014). Topology. Pearson Education.spa
dc.relation.referencesOberste-Vorth, R. (1997). An introduction to multi-dimensional complex dynamics: Hénon mappings in C1. Nonlinear Analysis: Theory, Methods & Applications, 30(4):2143–2154.spa
dc.relation.referencesOberste-Vorth, R. (2000). Horseshoes among hénon mappings. Recent Advances in Applied and Theoretical Mathematics, pages 116–121.spa
dc.relation.referencesOberste-Vorth, R. (2002). Horseshoes as projective limits. In Conference Proceedings: 2002 WSEAS MMACTEE, WAMUS, NOLASC, Vouliagmeni, Athens, Greece, Dec, pages 29–31.spa
dc.relation.referencesOberste-Vorth, R. (2005). Complex horseshoes and the dynamics of mappings of two complex variables. arXiv preprint math/0507073.spa
dc.relation.referencesParra, M. (2019). Rayos externos en el conjunto de mandelbrot. Universidad Distrital Francisco José de Caldas. Tesis de Grado.spa
dc.relation.referencesPoincaré, H. (1907). Sur l’uniformisation des fonctions analytiques. Acta Math, 31:1–64.spa
dc.relation.referencesRobinson, C. (1998). Dynamical systems: stability, symbolic dynamics, and chaos. CRC press, pages 73–169.spa
dc.relation.referencesSilverman, S. (1992). On maps with dense orbits and the definition of chaos. Rocky Mountain Journal, pages 353–375.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.otherPolinomios
dc.subject.otherPolynomials
dc.subject.proposalLímite inversospa
dc.subject.proposalAplicación de Hénonspa
dc.subject.proposalConjuntos de Juliaspa
dc.subject.proposalPolinomios cuadráticosspa
dc.subject.proposalInverse limiteng
dc.subject.proposalHenon mappingeng
dc.subject.proposalJulia setseng
dc.subject.proposalQuadratic polynomyalseng
dc.subject.unescoMatemáticas
dc.subject.unescoMathematics
dc.subject.unescoAlgebra
dc.subject.unescoÁlgebra
dc.titleAplicaciones de Hénon: límite inverso de polinomios cuadráticosspa
dc.title.translatedHénon mappings: inverse limit of quadratic polynomialseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneral
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030662407.2021.pdf
Tamaño:
1.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: