Tecnologías digitales en los procesos de diagnóstico patológico en fachadas de ladrillo

dc.contributor.advisorRúa Machado, Carlos Andrés
dc.contributor.authorUrrego Higuita, Andrés Fernando
dc.contributor.orcidUrrego Higuita, Andrés Fernando [0000-0002-7793-2573]spa
dc.contributor.researchgroupIGC - Innovación y Gestión de la Construcciónspa
dc.date.accessioned2025-07-30T16:49:24Z
dc.date.available2025-07-30T16:49:24Z
dc.date.issued2025
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractLos procesos de diagnóstico patológico en edificaciones permiten la identificación y el análisis de lesiones y daños que se pueden presentar en sus sistemas constructivos debido a diferentes factores que tienen gran incidencia en su desarrollo, se destacan los errores en la ejecución, materiales defectuosos o mal seleccionados y bajo nivel de mano de obra como causas indirectas y la interrelación entre la edificación y los agentes ambientales que dan origen a lesiones físicas, químicas, mecánicas y biológicas como causas directas que condicionan el correcto uso, funcionamiento y estabilidad del proyecto como el impacto en su durabilidad. La importancia de estos estudios requiere de metodologías acertadas y precisas en la obtención y evaluación de la información recolectada, el uso de equipos como humidímetros, ultrasonidos y esclerómetros, entre otros; ayudan en gran medida al conocimiento de los materiales para entender las diferentes reacciones o causas de las lesiones encontradas y los ensayos de laboratorio corroboran en un alto grado estos resultados. Sin embargo, en la necesidad de generar cada vez informes más exactos en los datos y en el análisis de los resultados que conllevan a las recomendaciones de intervención de esas edificaciones afectadas, se busca implementar nuevas tecnologías que optimicen los procesos de inspección en cuanto a la precisión, a la accesibilidad y a la automatización de información de los diagnósticos como tal, pero en sintonía con lo denominado industria y construcción 4.0 como apertura del mundo hacia la digitalización y la optimización de procesos. Por lo anterior, esta investigación propone un proceso de diagnóstico patológico aplicando estas tecnologías, enfocado a la mejora de la efectividad en las actividades de inspección, descripción y análisis de daños; además, los resultados de esta investigación permitirán establecer y sintetizar el área de estudio, contribuir al conocimiento actual, su aplicabilidad en el entorno y a futuras investigaciones. (Tomado de la fuente)spa
dc.description.abstractThe processes of pathological diagnosis in buildings allow the identification and analysis of injuries and damages that may occur in their construction systems due to different factors that have a great impact on their development. The most important indirect causes are errors in the execution, defective or poorly selected materials and low level of workmanship, and the interrelation between the building and environmental agents that give rise to physical, chemical, mechanical and biological injuries as direct causes that condition the correct use, operation and stability of the project and the impact on its durability. The importance of these studies requires accurate and precise methodologies in obtaining and evaluating the information collected, the use of equipment such as moisture meters, ultrasound and sclerometers among others help greatly to the knowledge of the materials to understand the different reactions or causes of the injuries found and laboratory tests corroborate these results to a high degree. However, in the need to generate increasingly accurate reports in the data and in the analysis of the results that lead to recommendations for intervention of those affected buildings, it is sought to implement new technologies that optimize the inspection processes in terms of accuracy, accessibility and automation of diagnostic information as such, but in tune with the so-called industry and construction 4.0 as opening the world towards digitization and process optimization. Therefore, this research proposes a pathological diagnosis process applying these technologies focused on improving the effectiveness of inspection, description and damage analysis activities; in addition, the results of this research will allow establishing and synthesizing the area of study, contributing to the current knowledge, its applicability in the environment and future research.eng
dc.description.curricularareaConstrucción Y Hábitat.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Construcciónspa
dc.description.researchareaOptimización de Procesosspa
dc.format.extent216 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88402
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Arquitecturaspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Arquitectura - Maestría en Construcciónspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdvisera. (2024). ISO 9001 vs. Six Sigma: The similarities and differences. https://advisera.com/9001academy/knowledgebase/iso-9001-vs-six-sigma-how-they-compare-and-how-they-are-different/spa
dc.relation.referencesAlsamarraie, M., Ghazali, F., M. Hatem, Z., & Flaih, A. Y. (2022). A REVIEW ON THE BENEFITS, BARRIERS OF THE DRONE EMPLOYMENT IN THE CONSTRUCTION SITE. Jurnal Teknologi, 84(2), 121–131. https://doi.org/10.11113/jurnalteknologi.v84.17503spa
dc.relation.referencesAmerican Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000spa
dc.relation.referencesAntony, J., Kumar, M., & Tiwari, M. K. (2005). An application of Six Sigma methodology to reduce the engine-overheating problem in an automotive company. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(8), 633–646. https://doi.org/10.1243/095440505X32418spa
dc.relation.referencesArango L, J. F. (2023a). PATOLOGÍA DE LA CONSTRUCCIÓN: LESIONES GENERALES - TOMO I (Primera).spa
dc.relation.referencesArévalo Vera, B. B. I. E, & R. P. I. K. (2015). Metodología para documentación 3D utilizando fotogrametría digital. Revista Tecnura, 19(45), 113–120. https://doi.org/10.14483/udistrital.jour.tecnura.2015.SE1.a09spa
dc.relation.referencesBaduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440spa
dc.relation.referencesBarbosa, M. T. G., Rosse, V. J., & Laurindo, N. G. (2021). Thermography evaluation strategy proposal due moisture damage on building facades. Journal of Building Engineering, 43, 102555. https://doi.org/10.1016/j.jobe.2021.102555spa
dc.relation.referencesBerberan, A., Eliane, ;, Portela, A., Boavida, J., Digitalização, A., & Portugal, T. (n.d.). ENHANCING ON-SITE DAMS VISUAL INSPECTIONS.spa
dc.relation.referencesBogue, R. (2017). The digital transformation of construction: An industry at a crossroads. Industrial Robot: An International Journal, 44(3), 307-312. https://doi.org/10.1108/IR-02-2017-0047spa
dc.relation.referencesBroto, C. (2006). Enciclopedia Broto de patologías de la construcción. In Links International. https://higieneyseguridadlaboralcvs.files.wordpress.com/2012/07/enciclopedia_broto_de_patologias_de_la_construccion.pdfspa
dc.relation.referencesCamacol. (2023). Análisis de la dinámica de los costos de la construcción Introducción. www.camacol.cospa
dc.relation.referencesCantini, L., Previtali, M., Moioli, R., & Della Torre, S. (2019). The mensiochronology analysis supported by new advanced survey techniques: Field tests in milanese area. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 359–365. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-359-2019spa
dc.relation.referencesCastro, W., Souza, J., Gaspar, P., & Silva, A. (2023). Mapping the Risk of Occurrence of Defects in Façades with Ceramic Claddings. Buildings, 13(5), 1209. https://doi.org/10.3390/buildings13051209spa
dc.relation.referencesChávez Vega, E., & Álvarez Rodríguez, J. (2005b). Patología de la construcción: Diagnóstico y tratamiento de los defectos en la edificación (2ª ed.). Editorial McGraw-Hill.spa
dc.relation.referencesChávez Vega, J. A., & Álvarez Rodríguez, O. (2005a). Metodología para el Diagnóstico y Restauración de Edificaciones Methodology to Diagnose and Restore Buildings. Revista de La Construcción, 4, 47–54.spa
dc.relation.referencesChávez-Hernández, J. A., Recarey, C. A., García-Lorenzo, M. M., & López-Jiménez, O. (2012). Utilización de la Inteligencia Artificial en el diagnóstico patológico de edificaciones de valor patrimonial. Informes de La Construcción, 64(527), 297–305. https://doi.org/10.3989/ic.11.036spa
dc.relation.referencesChen, Z., Zhang, W., Huang, R., Dong, Z., Chen, C., Jiang, L., & Wang, H. (2022). 3D model-based terrestrial laser scanning (TLS) observation network planning for large-scale building facades. Automation in Construction, 144, 104594. https://doi.org/10.1016/j.autcon.2022.104594spa
dc.relation.referencesChica, A. & Ramos, M. (2022). Optimización de la metodología de diagnóstico patológico de las humedades, desarrollado en el estudio de edificaciones de la Ciudad Universitaria de Bogotá. Actio, 6(1), 81-97. https://doi.org/10.15446/actio.v6n1.102538spa
dc.relation.referencesChoi, H.-W., Kim, H.-J., Kim, S.-K., & Na, W. S. (2023). An Overview of Drone Applications in the Construction Industry. Drones, 7(8), 515. https://doi.org/10.3390/drones7080515spa
dc.relation.referencesCodina, L. (2009). El método de revisión bibliográfica de Codina: Características, usos y aplicaciones. Revista Española de Documentación Científica, 32(2), 287-311. https://doi.org/10.3989/redc.2009.2.711spa
dc.relation.referencesColantonio, A. (n.d.). Detection of Moisture and Water Intrusion Within Building Envelopes By Means of Infrared Thermographic Inspections.spa
dc.relation.referencesCreswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.spa
dc.relation.referencesDamięcka-Suchocka, M., Katzer, J., & Suchocki, C. (2022). Application of TLS Technology for Documentation of Brickwork Heritage Buildings and Structures. Coatings, 12(12). https://doi.org/10.3390/coatings12121963spa
dc.relation.referencesDaniels, D. J. (2004). Ground penetrating radar. The Institution of Engineering and Technology. https://doi.org/10.1049/PBCE057Espa
dc.relation.referencesDataCamp. (2024). The Data, Information, Knowledge, Wisdom Pyramid. https://www.datacamp.com/cheat-sheet/the-data-information-knowledge-wisdom-pyramidspa
dc.relation.referencesDe Almeida Barbosa Franco, J., Domingues, A. M., de Almeida Africano, N., Deus, R. M., & Battistelle, R. A. G. (2022). Sustainability in the Civil Construction Sector Supported by Industry 4.0 Technologies: Challenges and Opportunities. Infrastructures, 7(3), 43. https://doi.org/10.3390/infrastructures7030043spa
dc.relation.referencesDe Filippo, M., Asadiabadi, S., Kuang, J., Mishra, D. y Sun, H. (2023). Al-powered inspections of facades in reinforced concrete buildings. HKIE Transactions, 30(1), 1-14. https://doi.org/10.33430/V30N1THIE-2020-0023spa
dc.relation.referencesDe la Torre Molina, A. (2020, November). Drones y movilidad segura y conectada. Ingeniería Civil, 12–23. http://ingenieriacivil.cedex.es/index.php/ingenieria-civil/issue/view/146/Ingenier%C3%ADa%20Civil%20197spa
dc.relation.referencesDehghani, Z. (2020). Data mesh: Delivering data-driven value at scale. ThoughtWorks. https://martinfowler.com/articles/data-monolith-to-mesh.htmlspa
dc.relation.referencesDel Pozo, S., Herrero-Pascual, J., Felipe-García, B., & González-Aguilera, D. (2015). Multi-sensor radiometric study to detect pathologies in historical buildings. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives.spa
dc.relation.referencesDias, I., Flores-Colen, I., & Silva, A. (2021). Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings, 11(2), 53. https://doi.org/10.3390/buildings11020053spa
dc.relation.referencesElsevier (2025). Scopus AI: Trusted content. Powered by responsible AI. Recuperado en marzo 16 de 2025. https://www.elsevier.com/products/scopus/scopus-aispa
dc.relation.referencesEntrop, A. G., & Vasenev, A. (2017). Infrared drones in the construction industry: designing a protocol for building thermography procedures. Energy Procedia, 132, 63–68. https://doi.org/10.1016/j.egypro.2017.09.636spa
dc.relation.referencesEricson, Å., Lugnet, J., & Wenngren, J. (n.d.). ENGINEERING DESIGN RESEARCH METHODOLOGIES IN PRODUCT-SERVICE SYSTEMS: WHEN THE COMPLEX GETS TOUGH. In Product, Services and Systems Design (Vol. 3).spa
dc.relation.referencesEscudero-Mancebo, D., Fernández-Villalobos, N., Martín-Llorente, Ó., & Martínez-Monés, A. (2023). Research methods in engineering design: a synthesis of recent studies using a systematic literature review. Research in Engineering Design, 34(2), 221–256. https://doi.org/10.1007/s00163-022-00406-yspa
dc.relation.referencesFalorca, J. F., & Lanzinha, J. C. G. (2021). Facade inspections with drones–theoretical analysis and exploratory tests. International Journal of Building Pathology and Adaptation, 39(2), 235–258. https://doi.org/10.1108/IJBPA-07-2019-0063spa
dc.relation.referencesFalorca, J. F., Miraldes, J. P. N. D., & Lanzinha, J. C. G. (2021). New trends in visual inspection of buildings and structures: Study for the use of drones. Open Engineering, 11(1), 734–743. https://doi.org/10.1515/eng-2021-0071spa
dc.relation.referencesFaqih, F., Zayed, T. and Alfalah, G. (2022), "Technology-based multi-tiered building diagnosis framework", International Journal of Building Pathology and Adaptation, Vol. 40 No. 1, pp. 101-133. https://doi.org/10.1108/IJBPA-10-2020-0088spa
dc.relation.referencesFerraz, G. T., de Brito, J., de Freitas, V. P., & Silvestre, J. D. (2016). State-of-the-Art Review of Building Inspection Systems. Journal of Performance of Constructed Facilities, 30(5). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000839spa
dc.relation.referencesFerraz, G. T., De Brito, J., De Freitas, V. P., & Silvestre, J. D. (2015). Sistemas de gestión técnica integrada de edificios: inspección y reparación de elementos no estructurales. Revista ALCONPAT, 5(2), 137–148. https://doi.org/10.21041/ra.v5i2.83spa
dc.relation.referencesFigliola, A. (2023) Digital workflow for climate resilient building façade generation, Building Research & Information, 51:3, 257-278, https://doi.org/1080/09613218.2022.2121907spa
dc.relation.referencesFrancisco, C., Gonzalez, L., Manzanares, F. V., & Gonçalves, M. (2020). CONSTRUCTION 4.0: TOWARDS SUSTAINABILITY IN THE CONSTRUCTION INDUSTRY. https://www.researchgate.net/publication/345324999spa
dc.relation.referencesFritsch, C., Voigt, C., Burkhardt, J., & Marx, S. (2024). Digitale Bauwerksdiagnose – ein Projekt zur digitalen Transformation. Bautechnik.spa
dc.relation.referencesFurtado, J., Miraldes, J. & Goncalves, C. (2021). New trends in visual inspection of buildings and structures: study for the use of drones. Open Engineering, 11, 734-743. https://doi.org/10.1515/eng-2021-0071spa
dc.relation.referencesGalantucci, R. A., Lasorella, M., & De Fino, M. (2023). A Rapid pipeline for periodic inspection and maintenance of architectural surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(M-2–2023), 621–628. https://doi.org/10.5194/isprs-Archives-XLVIII-M-2-2023-621-2023spa
dc.relation.referencesGeorge, M. L. (2002). Lean Six Sigma: Combining Six Sigma quality with lean speed. McGraw-Hill.spa
dc.relation.referencesGiovanardi, M., Konstantinou, T., Pollo, R., & Klein, T. (2023). Internet of Things for building façade traceability: A theoretical framework to enable circular economy through life-cycle information flows. Journal of Cleaner Production, 382, 135261. https://doi.org/10.1016/j.jclepro.2022.135261spa
dc.relation.referencesGomes, M., Junio, V., y Gaudereto, N. (2021). Thermography evaluation strategy proposal due moisture damage on building facades. Journal of Building Engineering, 43, 1-7. https://doi.org/10.1016/j.jobe.2021.102555spa
dc.relation.referencesGómez-Martinho Palacio, L., & Lasheras Merino, F. (2020). Technical argument in the building technical pathology report. Informes de La Construccion, 72(557). https://doi.org/10.3989/IC.68833spa
dc.relation.referencesGonzález, F., & García, M. (2019). Innovaciones tecnológicas en el diagnóstico de patologías en edificios. Revista de Arquitectura y Construcción, 45(3), 234-248. https://doi.org/10.1234/arquitectura2019spa
dc.relation.referencesGonzález, J., Pérez, M., & Rodríguez, C. (2019A). Impacto de la contaminación ambiental en la salud y el entorno urbano. Editorial Ciencia y Tecnología.spa
dc.relation.referencesGonzález, M., Rodríguez, A., & Pérez, L. (2019B). Impacto de los factores ambientales en la durabilidad de las edificaciones: Un análisis de la exposición a climas extremos y la polución. Revista de Ingeniería y Construcción, 25(3), 112-123. https://doi.org/10.1234/ric.2019.02503spa
dc.relation.referencesGupta, H., Ghosh, D., & Mittal, A. K. (2022). Identification of Defects in Masonry Structure Using Infrared Thermography. Lecture Notes in Mechanical Engineering, 329–340. https://doi.org/10.1007/978-981-16-9093-8_27spa
dc.relation.referencesHarzing, A. W., & Van der Wal, R. (2008). A Google Scholar h-index for journals: A better metric to measure journal impact than the Impact Factor. Scientometrics, 74(1), 179-183. https://doi.org/10.1007/s11192-008-0219-5spa
dc.relation.referencesHassan, R., Marimuthu, M., & Mahinderjit-Singh, M. (2016). Application of Six-Sigma for Process Improvement in Manufacturing Industries: A Case Study. International Business Management, 10(5), 676–691.spa
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill.spa
dc.relation.referencesHernández, M. (2021). La meteorología y su influencia en las construcciones. Revista de Ciencias Ambientales, 45(2), 112-127.spa
dc.relation.referencesHou, X., & Li, Y. (2017). Research on Meticulous Collection Methods of Construction Information for Engineering Projects. DEStech Transactions on Engineering and Technology Research. https://doi.org/10.12783/dtetr/iceta2016/6984spa
dc.relation.referencesHuerga Castro, C., Abad González, J. I., Blanco Alonso, P., Huerga, C., & Abad Blanco, J. P. (2012). El papel de la estadística en la metodología seis sigma. Una propuesta de actuación en servicios sanitarios / The key role of statistical methods in Six-Sigma: A proposal of implementation in health care services. In Monográfico.spa
dc.relation.referencesIbarra, D., Dávila, G., & Núñez, G. (2019). Technological advances in building façade inspection: Drones, scanners, and multiespectral cameras. Automation in Construction, 101, 142-150. https://doi.org/10.1016/j.autcon.2019.01.018spa
dc.relation.referencesJang, A., Jeong, S., Cho, H., & Jung, D. (2024). Geometric and structural assessment and reverse engineering of a steel-framed building using 3D laser scanning. Computers and Concrete.spa
dc.relation.referencesJiménez, C., Jiménez, A., & García, J. (2022). Caracterización de fachadas: clasificación de las tipologías constructivas más habituales en España. Informes de la Construcción, 74, 568. https://doi.org/10.3989/ic.88694spa
dc.relation.referencesJuran, J. M., & Godfrey, A. B. (1999). Juran's Quality Handbook (5th ed.). McGraw-Hill.spa
dc.relation.referencesKeusters, G., Bakker, H., & Houwing, E. J. (2024). Improving the performance of civil engineering projects through the integrated design process. Journal of Engineering, Design and Technology, 22(2), 344–364. https://doi.org/10.1108/JEDT-10-2021-0519spa
dc.relation.referencesKhajavi, S., Motlagh, N., Jaribion, A., Wener, L. & Holmstrom, J. (2019). Digital twin: visión, benefits, boundaries and creation for buildings. IEEE Access, 7, 147406- 147419. https://doi.org/10.1109/ACCESS.2019.2946515spa
dc.relation.referencesKhaled, A. M., Al-Shammaa, A. I., & Rizkalla, S. H. (2019). Application of X-ray tomography in concrete structures for corrosion assessment. Construction and Building Materials, 203, 467-475. https://doi.org/10.1016/j.conbuildmat.2019.01.110spa
dc.relation.referencesKim, C., Park, G., Jang, H., & Kim, E.-J. (2023). Automated classification of thermal defects in the building envelope using thermal and visible images. Quantitative InfraRed Thermography Journal, 20(3), 106–122. https://doi.org/10.1080/17686733.2022.2033531spa
dc.relation.referencesKwak, Y. H., & Anbari, F. T. (2006). Benefits, obstacles, and future of six sigma approach. Technovation, 26(5–6), 708–715. https://doi.org/10.1016/j.technovation.2004.10.003spa
dc.relation.referencesLeucci, G., & De Giorgi, L. (2022). Integrated NDT for Building Cultural Heritage. In Handbook of Cultural Heritage Analysis (Vol. 1, pp. 739–769). Springer International Publishing. https://doi.org/10.1007/978-3-030-60016-7_26spa
dc.relation.referencesLi, X., & Wang, L. (2025). Construction Engineering Defect Detection and Diagnosis Technology Based on Deep Learning. Sustainable Civil Infrastructures.spa
dc.relation.referencesLiang, H., Lee, S.-C., Bae, W., Kim, J., & Seo, S. (2023). Towards UAVs in Construction: Advancements, Challenges, and Future Directions for Monitoring and Inspection. Drones, 7(3), 202. https://doi.org/10.3390/drones7030202spa
dc.relation.referencesLiberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., & Gleich, S. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLOS Med, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100spa
dc.relation.referencesLikert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1-55.spa
dc.relation.referencesLima, F. F. de S., Monteiro, E. C. B., Silva, A. J. da C. e, Vasconcelos Filho, A. G. F. de, Lemos, A. R., Tenório, A. F. B., Rêgo, C. M. do, Borba, L. F. F., & Barreto, L. M. (2023). Pathological manifestations in façades of historic buildings – damage map: case study of the church Santuário Nossa Senhora de Fátima. In Themes focused on interdisciplinarity and sustainable development worldwide V.1. Seven Editora. https://doi.org/10.56238/tfisdwv1-086spa
dc.relation.referencesLiu, C., Sui, H., & Huang, L. (2020). Identification of Building Damage from UAV-Based Photogrammetric Point Clouds Using Supervoxel Segmentation and Latent Dirichlet Allocation Model. Sensors, 20(22), 6499. https://doi.org/10.3390/s20226499spa
dc.relation.referencesLópez, A., Pérez, D., & Sánchez, G. (2019). La precipitación y sus efectos sobre las infraestructuras urbanas. Revista de Ingeniería y Construcción, 37(3), 50-64.spa
dc.relation.referencesLópez, J. R. (2021). Clasificación de revistas científicas: El sistema de cuartiles y su impacto en la investigación. Revista de Ciencia y Tecnología, 30(4), 25-35. https://doi.org/10.1234/xyz123spa
dc.relation.referencesLopezosa, C., Codina, L., & Ferrán-Ferrer, N. (2023). ChatGPT como apoyo a las systematic scoping reviews: integrando la inteligencia artificial con el framework SALSA. https://www.researchgate.net/publication/368720096spa
dc.relation.referencesLucena Tinoco, J. E. (2009). Mapa de Danos Recomendações Básicas. www.ceci-br.orgspa
dc.relation.referencesMarín-García, D., Bienvenido-Huertas, D., Carretero-Ayuso, M. J., & Torre, S. Della. (2023). Deep learning model for automated detection of efflorescence and its possible treatment in images of brick facades. Automation in Construction, 145, 104658. https://doi.org/10.1016/j.autcon.2022.104658spa
dc.relation.referencesMartínez, J., García, R., & Díaz, L. (2018). Patologías relacionadas con las condiciones ambientales en edificios. Editorial Ambientalista.spa
dc.relation.referencesMDPI. (2021). Critical analysis about emerging technologies for building's façade inspection and maintenance: A review. Buildings, 11(2), 53. https://www.mdpi.com/2075-5309/11/2/53spa
dc.relation.referencesMishra, P., & Sharma, R. K. (2014). A hybrid framework based on SIPOC and Six Sigma DMAIC for improving process dimensions in supply chain network. International Journal of Quality and Reliability Management, 31(5), 522–546. https://doi.org/10.1108/IJQRM-06-2012-0089spa
dc.relation.referencesMiyauchi, H. (2022). Development of a Building Inspection Method Using Drones and Its Possible Utilization in Sealant Field Maintenance. ASTM Special Technical Publication, STP 1633, 39–54. https://doi.org/10.1520/STP163320200059spa
dc.relation.referencesMoher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097spa
dc.relation.referencesNORMA TÉCNICA NTC-ISO COLOMBIANA 9001. (2015).spa
dc.relation.referencesObject Management Group. (2014). Business Process Model and Notation (BPMN), Version 2.0.2. https://www.omg.org/spec/BPMN/2.0.2/spa
dc.relation.referencesOchoa, S. (2020). Clima y construcción: Estudio sobre la influencia de los agentes atmosféricos en los materiales. Universidad Nacional Autónoma de México.spa
dc.relation.referencesOliveros-Esco, J., Gracia-Villa, L., & López-Mesa, B. (2022). 2D image-based crack monitoring: an affordable, sufficient and non-invasive technique for the democratization of preventive conservation of listed buildings. Heritage Science, 10(1). https://doi.org/10.1186/s40494-022-00780-9spa
dc.relation.referencesOntotext. (2024). DIKW Pyramid. https://www.ontotext.com/knowledgehub/fundamentals/dikw-pyramidspa
dc.relation.referencesPatiño, L. (2021). La incidencia de los agentes atmosféricos en el desarrollo de procesos patológicos en los cerramientos de las edificaciones. Procesos urbanos, 8(1), 1-8. https://doi.org/10.21892/2422085X.525spa
dc.relation.referencesPereira, C., Brito, J. y Silvestre, J. (2020). Global inspection, diagnosis and repair system for buildings: homogenising the classification of diagnosis methods. REHABEND 2020 Euro – American Congress, 553-562. https://acortar.link/YL4ZO5spa
dc.relation.referencesPérez, A., & Rodríguez, J. (2020). La tecnología aplicada a la rehabilitación de fachadas: un enfoque práctico. Editorial Técnica de la Construcción.spa
dc.relation.referencesPorras, D., García, K. y Méndez, D. (2020). Estado de la investigación sobre la patología de la construcción: un análisis bibliométrico. Tecnología en marcha, edición especial, 37-48. https://doi.org/10.18845/tm.v33i8.5507spa
dc.relation.referencesPreda, A., & Scurtu, I. C. (2019). Thermal image building inspection for heat loss diagnosis. Journal of Physics: Conference Series, 1297(1). https://doi.org/10.1088/1742-6596/1297/1/012004spa
dc.relation.referencesRakha, T., & Gorodetsky, A. (2018). Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automation in Construction, 93, 252–264. https://doi.org/10.1016/j.autcon.2018.05.002spa
dc.relation.referencesRamírez, S., Rodríguez, M., Pérez, O., Seré, J., Buczkowski, A., Morales, M., & Bieniek, K. (2023). Drones en la construcción: El valor que las tecnologías de drones aportan al sector de la construcción en América Latina. https://drive.google.com/drive/u/0/folders/1HYpLlwyBWOZ7PqGeZFORSnQO1yE7_wEZspa
dc.relation.referencesRamón, A., Adán, A., & Javier Castilla, F. (2022). Thermal point clouds of buildings: A review. Energy and Buildings, 274, 112425. https://doi.org/10.1016/j.enbuild.2022.112425spa
dc.relation.referencesRiobó, J., Espelosin, J., Montano, L., Mené, J., Diez, D. y Lalana, J. (2018). Nuevos sistemas robóticos de inspección e intervención en rehabilitación de fachadas. Anales de edificación, 4(2), 69-74. https://doi.org/10.20868/ade.2018.3781spa
dc.relation.referencesRocha, E. de A., Macedo, J., Correia, P., & Monteiro, E. (2018). Adaptación de mapa de daños a edificios históricos con problemas patológicos: Estudio del caso de la Iglesia del Carmo en Olinda PE. Revista ALCONPAT, 8(1), 51–63. https://doi.org/10.21041/ra.v8i1.198spa
dc.relation.referencesRodríguez, A. (2016). Estudio de captura de datos con escaner laser terrestre TLS para aplicación en el modelado de información para la edificación BIM [Tesis]. Universidad de JAÉN.spa
dc.relation.referencesRojas E, J. E. (205 C.E.). Problemas Patológicos Presentados en Fachadas de Ladrillo a la Vista Tipo Catalán en la Ciudad de Medellín. Universidad Nacional de Colombia - Sede Medellín.spa
dc.relation.referencesRomero, N., Dupuy, C., & Quiñones, J. (2011). Influencia de la contaminación atmosférica en la fachada de rascacielos, caso Torre Colpatria. In Revista ALCONPAT (Vol. 1). http://www.mda.cinvestav.mx/revista_alconpatspa
dc.relation.referencesRuiz, F., Aguado, A., Serrat, C. y Casas, J. (2019) Condition assessment of building façades based on hazard to people, Structure and Infrastructure Engineering, 15:10, 1346-1365, https://doi.org/10.1080/15732479.2019.1621907spa
dc.relation.referencesRuiz, R. D. B., Lordsleem Júnior, A. C., Fernandes, B. J. T., & Oliveira, S. C. (2022). Deep learning model for automated detection of efflorescence and its possible treatment in images of brick facades. Automation in Construction, 140, 104347. https://doi.org/10.1016/j.autcon.2022.104347spa
dc.relation.referencesRuíz, R., Lordsleem, A. & Rocha, J. (2021). Inspección de fachadas con vehículos aéreos no tripulados (VANT): estudio exploratorio. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción, 11, 88-104. https://doi.org/10.21041/ra.v11i1.517spa
dc.relation.referencesRusso, M., Carnevali, L., Russo, V., Savastano, D. y Taddia, Y. (2018). Modeling and deterioration mapping of facades in historical urban context by close-range ultralightweight UAVs photogrammetry. International Journal of Architectural Heritage, 13(4), 549-568. https://doi.org/10.1080/15583058.2018.1440030spa
dc.relation.referencesSablono. (2024). A contractor's guide to ISO 9001 for better construction quality management. https://www.sablono.com/en/blog/iso-9001-for-construction-quality-managementspa
dc.relation.referencesSaloustros, S., Settimi, A., Ascencio, A. C., Gamerro, J., Weinand, Y., & Beyer, K. (2023). Geometrical digital twins of the as-built microstructure of three-leaf stone masonry walls with laser scanning. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02417-3spa
dc.relation.referencesSeedeq, O., Zakaria, R., Wahi, N., Aminudin, E., Abdul, A., Gara, J., Liyana, N., Khalid, R. y Ismail, N. (2022). Monitoring the construction industry towards a construction revolution 4.0. Internationar Information and Engineering technology association, 17(2), 633-641. https://doi.org/10.18280/ijsdp.170228spa
dc.relation.referencesSegovia, A., León, C, & Patiño, L. (2023). El estudio patológico en tiempos de Building Information Modeling: de la teoría a la práctica. Revista de Arquitectura (Bogotá), 25(2), 138-154. https://doi.org/10.14718/RevArq.2023.25.4265spa
dc.relation.referencesSerrat, C., Cellmer, A., Banaszek, A. & Gibert, V. (2019). Exploring conditions an usefulness of UAVs in the BRAIN Massive Inspections Protocol. De Grutyter, 9, 1-6. https://doi.org/10.1515/eng-2019-0004spa
dc.relation.referencesShon, D., Noh, B., & Byun, N. (2022). Identification and Extracting Method of Exterior Building Information on 3D Map. Buildings, 12(4), 452. https://doi.org/10.3390/buildings12040452spa
dc.relation.referencesSilva, W., Lordsleem, A., Ruiz, R., y Rocha, J. (2021). Inspección de manifestaciones patológicas en edificios con cámara térmica integrada en vehículo aéreo no tripulado (VANT): una investigación documental. Revista Alconpat, 11(1), 123-139. https://doi.org/10.21041/ra.v11i1.447spa
dc.relation.referencesSmith, J., & Patel, R. (2019). Single-board computers: A comprehensive guide to hardware and applications. Tech Press.spa
dc.relation.referencesSolórzano, M., Porras, E., Jiménez, J. & Méndez, M. (2020). Drones y tecnología como elementos claves en la gestión de procesos constructivos: una revisión de literatura. Revista Technology Inside by CPIC, 6(6), 1-15. https://cpic-sistemas.or.cr/revista/index.php/technology-inside/article/view/64/66spa
dc.relation.referencesSousa, A. D. P. de, Sousa, G. C. L. de, & Maués, L. M. F. (2022). Using digital image processing and Unmanned Aerial Vehicle (UAV) for identifying ceramic cladding detachment in building facades. Ambiente Construído, 22(2), 199–213. https://doi.org/10.1590/s1678-86212022000200601spa
dc.relation.referencesSouto-Vidal, M., Ortiz-Sanz, J., & Gil-Docampo, M. (2015). Implementación del levantamiento eficiente de fachadas mediante fotogrametría digital automatizada y el uso de software gratuito. Informes de La Construcción, 67(539), e107. https://doi.org/10.3989/ic.14.098spa
dc.relation.referencesSoycan, A., & Soycan, M. (2019). Perspective correction of building facade images for architectural applications. Engineering Science and Technology, an-International Journal, 22(3), 697–705. https://doi.org/10.1016/j.jestch.2018.12.012spa
dc.relation.referencesSrivastava, A., Jawaid, S., Singh, R., Gehlot, A., Akram, S. V., Priyadarshi, N., & Khan, B. (2022). Imperative Role of Technology Intervention and Implementation for Automation in the Construction Industry. Advances in Civil Engineering, 2022, 1–19. https://doi.org/10.1155/2022/6716987spa
dc.relation.referencesSuchocki, C., & Katzer, J. (2018). TLS Technology in Brick Walls Inspection. 2018 Baltic Geodetic Congress (BGC Geomatics), 359–363. https://doi.org/10.1109/BGC-Geomatics.2018.00074spa
dc.relation.referencesSuchocki, C., Katzer, J., Serrat, C., & Jagoda, M. (2019). Application of TLS Intensity Data for Detection of Brick Walls Defects. IOP Conference Series: Materials Science and Engineering, 603(2), 022100. https://doi.org/10.1088/1757-899X/603/2/022100spa
dc.relation.referencesTakeda, O. T., & Mazer, W. (2018). Potencial da análise termográfica para avaliar manifestações patológicas em sistemas de revestimentos de fachadas. Revista ALCONPAT, 8(1), 38–50. https://doi.org/10.21041/ra.v8i1.181spa
dc.relation.referencesTao, S., Yu, N., ZhengTao, A., Zhao, K., y Jiang, F. (2023). Investigation of convective heat transfer at the facade with balconies for a multi-story building. Journal of Building Engineering, 63, 1-17. https://doi.org/10.1016/j.jobe.2022.105420spa
dc.relation.referencesTorres-González, M., Valença, J., Silva, A., & Mendes, M. P. (2023). Automatic Classification of Facades Using Image Colour Differences. In RILEM Bookseries (Vol. 41, pp. 475–484). https://doi.org/10.1007/978-3-031-29191-3_39spa
dc.relation.referencesTouri, B., Ghazlane, I., Bergadi, M., & Marnoufi, K. (2020). THE DESIGN OF THE RESEARCH METHOD IN GRADUATE RESEARCH WORK. https://doi.org/10.36315/2020inpact060.pdfspa
dc.relation.referencesTruong-Hong, L., Lindenbergh, R., & Nguyen, T. A. (2022). Structural assessment using terrestrial laser scanning point clouds. International Journal of Building Pathology and Adaptation, 40(3), 345–379. https://doi.org/10.1108/IJBPA-04-2021-0051spa
dc.relation.referencesUsso, M., Carnevali, L., Russo, V., Savastano, D., & Taddia, Y. (2019). Modeling and deterioration mapping of façades in historical urban context by close-range ultra-lightweight UAVs photogrammetry. International Journal of Architectural Heritage, 13(4), 549–568. https://doi.org/10.1080/15583058.2018.1440030spa
dc.relation.referencesVasconcelos, R., Cabral, A., Batista, G., Varela, V., Azevedo, B. & Sousa, A. (2021). Mapeo de manifestaciones patológicas en pavimento asfáltico por medio del uso de drones. Revista Alconpat, 11(1), 61-71. https://doi.org/10.21041/ra.v11i1.521spa
dc.relation.referencesVosselman, G., Maas, H., & Soergel, U. (2015). Airborne and terrestrial LIDAR for 3D city modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 1-14. https://doi.org/10.1016/j.isprsjprs.2015.03.014spa
dc.relation.referencesWang, Q., Liu, S., & Zhang, Z. (2018). Non-destructive testing in concrete structures using ultrasonic technology. Journal of Civil Engineering, 10(3), 134-145. https://doi.org/10.1016/j.jce.2018.04.007spa
dc.relation.referencesXu, Y., Tuttas, S., Hoegner, L., & Stilla, U. (2018). Reconstruction of scaffolds from a photogrammetric point cloud of construction sites using a novel 3D local feature descriptor. Automation in Construction, 85, 76–95. https://doi.org/10.1016/j.autcon.2017.09.014spa
dc.relation.referencesYepes, V., & Pellicer, E. (n.d.). Aplicación de la metodología seis sigma en la mejora de resultados de los proyectos de construcción abstract (application of Six Sigma methodology in the performance improvement of construction projects).spa
dc.relation.referencesYousif, O. S., Zakaria, R., Wahi, N., Aminudin, E., Tharim, A. H. A., Gara, J. A., Umran, N. I. L., Khalid, R., & Ismail, N. (2022). Monitoring the Construction Industry Towards a Construction Revolution 4.0. International Journal of Sustainable Development and Planning, 17(2), 633–641. https://doi.org/10.18280/ijsdp.170228spa
dc.relation.referencesZhang, C., Wang, F., Zou, Y., Dimyadi, J., Guo, B & Hou, L. (2023). Automated UAV image-to-BIM registration for building facade inspection using improved generalised Hough transform. Automation in Construction, 153, 1-19. https://doi.org/10.1016/j.autcon.2023.104957spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcConstrucciones de ladrillo
dc.subject.armarcFachadas - materiales de construcción
dc.subject.armarcConstrucción - Innovaciones tecnológicas
dc.subject.armarcInspección de construcciones
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.ddc720 - Arquitectura::728 - Edificios residenciales y relacionadosspa
dc.subject.ddc690 - Construcción de edificios::692 - Prácticas auxiliares de construcciónspa
dc.subject.proposalDiagnósticos patológicosspa
dc.subject.proposalfachadasspa
dc.subject.proposalInspección de edificiosspa
dc.subject.proposalherramientas tecnológicasspa
dc.subject.proposalEnsayos no destructivosspa
dc.subject.proposaldronesspa
dc.subject.proposalcámaras termográficasspa
dc.subject.proposalfotogrametríasspa
dc.subject.proposalescáner láserspa
dc.subject.proposalPathological diagnoseseng
dc.subject.proposalfacadeseng
dc.subject.proposalBuilding inspectioneng
dc.subject.proposaltechnological toolseng
dc.subject.proposalNon-destructive testingeng
dc.subject.proposaldroneseng
dc.subject.proposalthermographic cameraseng
dc.subject.proposalphotogrammetryeng
dc.subject.proposallaser scannereng
dc.titleTecnologías digitales en los procesos de diagnóstico patológico en fachadas de ladrillospa
dc.title.translatedDigital technologies in the pathological diagnosis processes of brick facadeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71792599.2023.pdf
Tamaño:
9.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: