Tecnologías digitales en los procesos de diagnóstico patológico en fachadas de ladrillo
dc.contributor.advisor | Rúa Machado, Carlos Andrés | |
dc.contributor.author | Urrego Higuita, Andrés Fernando | |
dc.contributor.orcid | Urrego Higuita, Andrés Fernando [0000-0002-7793-2573] | spa |
dc.contributor.researchgroup | IGC - Innovación y Gestión de la Construcción | spa |
dc.date.accessioned | 2025-07-30T16:49:24Z | |
dc.date.available | 2025-07-30T16:49:24Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | Los procesos de diagnóstico patológico en edificaciones permiten la identificación y el análisis de lesiones y daños que se pueden presentar en sus sistemas constructivos debido a diferentes factores que tienen gran incidencia en su desarrollo, se destacan los errores en la ejecución, materiales defectuosos o mal seleccionados y bajo nivel de mano de obra como causas indirectas y la interrelación entre la edificación y los agentes ambientales que dan origen a lesiones físicas, químicas, mecánicas y biológicas como causas directas que condicionan el correcto uso, funcionamiento y estabilidad del proyecto como el impacto en su durabilidad. La importancia de estos estudios requiere de metodologías acertadas y precisas en la obtención y evaluación de la información recolectada, el uso de equipos como humidímetros, ultrasonidos y esclerómetros, entre otros; ayudan en gran medida al conocimiento de los materiales para entender las diferentes reacciones o causas de las lesiones encontradas y los ensayos de laboratorio corroboran en un alto grado estos resultados. Sin embargo, en la necesidad de generar cada vez informes más exactos en los datos y en el análisis de los resultados que conllevan a las recomendaciones de intervención de esas edificaciones afectadas, se busca implementar nuevas tecnologías que optimicen los procesos de inspección en cuanto a la precisión, a la accesibilidad y a la automatización de información de los diagnósticos como tal, pero en sintonía con lo denominado industria y construcción 4.0 como apertura del mundo hacia la digitalización y la optimización de procesos. Por lo anterior, esta investigación propone un proceso de diagnóstico patológico aplicando estas tecnologías, enfocado a la mejora de la efectividad en las actividades de inspección, descripción y análisis de daños; además, los resultados de esta investigación permitirán establecer y sintetizar el área de estudio, contribuir al conocimiento actual, su aplicabilidad en el entorno y a futuras investigaciones. (Tomado de la fuente) | spa |
dc.description.abstract | The processes of pathological diagnosis in buildings allow the identification and analysis of injuries and damages that may occur in their construction systems due to different factors that have a great impact on their development. The most important indirect causes are errors in the execution, defective or poorly selected materials and low level of workmanship, and the interrelation between the building and environmental agents that give rise to physical, chemical, mechanical and biological injuries as direct causes that condition the correct use, operation and stability of the project and the impact on its durability. The importance of these studies requires accurate and precise methodologies in obtaining and evaluating the information collected, the use of equipment such as moisture meters, ultrasound and sclerometers among others help greatly to the knowledge of the materials to understand the different reactions or causes of the injuries found and laboratory tests corroborate these results to a high degree. However, in the need to generate increasingly accurate reports in the data and in the analysis of the results that lead to recommendations for intervention of those affected buildings, it is sought to implement new technologies that optimize the inspection processes in terms of accuracy, accessibility and automation of diagnostic information as such, but in tune with the so-called industry and construction 4.0 as opening the world towards digitization and process optimization. Therefore, this research proposes a pathological diagnosis process applying these technologies focused on improving the effectiveness of inspection, description and damage analysis activities; in addition, the results of this research will allow establishing and synthesizing the area of study, contributing to the current knowledge, its applicability in the environment and future research. | eng |
dc.description.curriculararea | Construcción Y Hábitat.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Construcción | spa |
dc.description.researcharea | Optimización de Procesos | spa |
dc.format.extent | 216 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88402 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Arquitectura | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Arquitectura - Maestría en Construcción | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Advisera. (2024). ISO 9001 vs. Six Sigma: The similarities and differences. https://advisera.com/9001academy/knowledgebase/iso-9001-vs-six-sigma-how-they-compare-and-how-they-are-different/ | spa |
dc.relation.references | Alsamarraie, M., Ghazali, F., M. Hatem, Z., & Flaih, A. Y. (2022). A REVIEW ON THE BENEFITS, BARRIERS OF THE DRONE EMPLOYMENT IN THE CONSTRUCTION SITE. Jurnal Teknologi, 84(2), 121–131. https://doi.org/10.11113/jurnalteknologi.v84.17503 | spa |
dc.relation.references | American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000 | spa |
dc.relation.references | Antony, J., Kumar, M., & Tiwari, M. K. (2005). An application of Six Sigma methodology to reduce the engine-overheating problem in an automotive company. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(8), 633–646. https://doi.org/10.1243/095440505X32418 | spa |
dc.relation.references | Arango L, J. F. (2023a). PATOLOGÍA DE LA CONSTRUCCIÓN: LESIONES GENERALES - TOMO I (Primera). | spa |
dc.relation.references | Arévalo Vera, B. B. I. E, & R. P. I. K. (2015). Metodología para documentación 3D utilizando fotogrametría digital. Revista Tecnura, 19(45), 113–120. https://doi.org/10.14483/udistrital.jour.tecnura.2015.SE1.a09 | spa |
dc.relation.references | Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440 | spa |
dc.relation.references | Barbosa, M. T. G., Rosse, V. J., & Laurindo, N. G. (2021). Thermography evaluation strategy proposal due moisture damage on building facades. Journal of Building Engineering, 43, 102555. https://doi.org/10.1016/j.jobe.2021.102555 | spa |
dc.relation.references | Berberan, A., Eliane, ;, Portela, A., Boavida, J., Digitalização, A., & Portugal, T. (n.d.). ENHANCING ON-SITE DAMS VISUAL INSPECTIONS. | spa |
dc.relation.references | Bogue, R. (2017). The digital transformation of construction: An industry at a crossroads. Industrial Robot: An International Journal, 44(3), 307-312. https://doi.org/10.1108/IR-02-2017-0047 | spa |
dc.relation.references | Broto, C. (2006). Enciclopedia Broto de patologías de la construcción. In Links International. https://higieneyseguridadlaboralcvs.files.wordpress.com/2012/07/enciclopedia_broto_de_patologias_de_la_construccion.pdf | spa |
dc.relation.references | Camacol. (2023). Análisis de la dinámica de los costos de la construcción Introducción. www.camacol.co | spa |
dc.relation.references | Cantini, L., Previtali, M., Moioli, R., & Della Torre, S. (2019). The mensiochronology analysis supported by new advanced survey techniques: Field tests in milanese area. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 359–365. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-359-2019 | spa |
dc.relation.references | Castro, W., Souza, J., Gaspar, P., & Silva, A. (2023). Mapping the Risk of Occurrence of Defects in Façades with Ceramic Claddings. Buildings, 13(5), 1209. https://doi.org/10.3390/buildings13051209 | spa |
dc.relation.references | Chávez Vega, E., & Álvarez Rodríguez, J. (2005b). Patología de la construcción: Diagnóstico y tratamiento de los defectos en la edificación (2ª ed.). Editorial McGraw-Hill. | spa |
dc.relation.references | Chávez Vega, J. A., & Álvarez Rodríguez, O. (2005a). Metodología para el Diagnóstico y Restauración de Edificaciones Methodology to Diagnose and Restore Buildings. Revista de La Construcción, 4, 47–54. | spa |
dc.relation.references | Chávez-Hernández, J. A., Recarey, C. A., García-Lorenzo, M. M., & López-Jiménez, O. (2012). Utilización de la Inteligencia Artificial en el diagnóstico patológico de edificaciones de valor patrimonial. Informes de La Construcción, 64(527), 297–305. https://doi.org/10.3989/ic.11.036 | spa |
dc.relation.references | Chen, Z., Zhang, W., Huang, R., Dong, Z., Chen, C., Jiang, L., & Wang, H. (2022). 3D model-based terrestrial laser scanning (TLS) observation network planning for large-scale building facades. Automation in Construction, 144, 104594. https://doi.org/10.1016/j.autcon.2022.104594 | spa |
dc.relation.references | Chica, A. & Ramos, M. (2022). Optimización de la metodología de diagnóstico patológico de las humedades, desarrollado en el estudio de edificaciones de la Ciudad Universitaria de Bogotá. Actio, 6(1), 81-97. https://doi.org/10.15446/actio.v6n1.102538 | spa |
dc.relation.references | Choi, H.-W., Kim, H.-J., Kim, S.-K., & Na, W. S. (2023). An Overview of Drone Applications in the Construction Industry. Drones, 7(8), 515. https://doi.org/10.3390/drones7080515 | spa |
dc.relation.references | Codina, L. (2009). El método de revisión bibliográfica de Codina: Características, usos y aplicaciones. Revista Española de Documentación Científica, 32(2), 287-311. https://doi.org/10.3989/redc.2009.2.711 | spa |
dc.relation.references | Colantonio, A. (n.d.). Detection of Moisture and Water Intrusion Within Building Envelopes By Means of Infrared Thermographic Inspections. | spa |
dc.relation.references | Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications. | spa |
dc.relation.references | Damięcka-Suchocka, M., Katzer, J., & Suchocki, C. (2022). Application of TLS Technology for Documentation of Brickwork Heritage Buildings and Structures. Coatings, 12(12). https://doi.org/10.3390/coatings12121963 | spa |
dc.relation.references | Daniels, D. J. (2004). Ground penetrating radar. The Institution of Engineering and Technology. https://doi.org/10.1049/PBCE057E | spa |
dc.relation.references | DataCamp. (2024). The Data, Information, Knowledge, Wisdom Pyramid. https://www.datacamp.com/cheat-sheet/the-data-information-knowledge-wisdom-pyramid | spa |
dc.relation.references | De Almeida Barbosa Franco, J., Domingues, A. M., de Almeida Africano, N., Deus, R. M., & Battistelle, R. A. G. (2022). Sustainability in the Civil Construction Sector Supported by Industry 4.0 Technologies: Challenges and Opportunities. Infrastructures, 7(3), 43. https://doi.org/10.3390/infrastructures7030043 | spa |
dc.relation.references | De Filippo, M., Asadiabadi, S., Kuang, J., Mishra, D. y Sun, H. (2023). Al-powered inspections of facades in reinforced concrete buildings. HKIE Transactions, 30(1), 1-14. https://doi.org/10.33430/V30N1THIE-2020-0023 | spa |
dc.relation.references | De la Torre Molina, A. (2020, November). Drones y movilidad segura y conectada. Ingeniería Civil, 12–23. http://ingenieriacivil.cedex.es/index.php/ingenieria-civil/issue/view/146/Ingenier%C3%ADa%20Civil%20197 | spa |
dc.relation.references | Dehghani, Z. (2020). Data mesh: Delivering data-driven value at scale. ThoughtWorks. https://martinfowler.com/articles/data-monolith-to-mesh.html | spa |
dc.relation.references | Del Pozo, S., Herrero-Pascual, J., Felipe-García, B., & González-Aguilera, D. (2015). Multi-sensor radiometric study to detect pathologies in historical buildings. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. | spa |
dc.relation.references | Dias, I., Flores-Colen, I., & Silva, A. (2021). Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings, 11(2), 53. https://doi.org/10.3390/buildings11020053 | spa |
dc.relation.references | Elsevier (2025). Scopus AI: Trusted content. Powered by responsible AI. Recuperado en marzo 16 de 2025. https://www.elsevier.com/products/scopus/scopus-ai | spa |
dc.relation.references | Entrop, A. G., & Vasenev, A. (2017). Infrared drones in the construction industry: designing a protocol for building thermography procedures. Energy Procedia, 132, 63–68. https://doi.org/10.1016/j.egypro.2017.09.636 | spa |
dc.relation.references | Ericson, Å., Lugnet, J., & Wenngren, J. (n.d.). ENGINEERING DESIGN RESEARCH METHODOLOGIES IN PRODUCT-SERVICE SYSTEMS: WHEN THE COMPLEX GETS TOUGH. In Product, Services and Systems Design (Vol. 3). | spa |
dc.relation.references | Escudero-Mancebo, D., Fernández-Villalobos, N., Martín-Llorente, Ó., & Martínez-Monés, A. (2023). Research methods in engineering design: a synthesis of recent studies using a systematic literature review. Research in Engineering Design, 34(2), 221–256. https://doi.org/10.1007/s00163-022-00406-y | spa |
dc.relation.references | Falorca, J. F., & Lanzinha, J. C. G. (2021). Facade inspections with drones–theoretical analysis and exploratory tests. International Journal of Building Pathology and Adaptation, 39(2), 235–258. https://doi.org/10.1108/IJBPA-07-2019-0063 | spa |
dc.relation.references | Falorca, J. F., Miraldes, J. P. N. D., & Lanzinha, J. C. G. (2021). New trends in visual inspection of buildings and structures: Study for the use of drones. Open Engineering, 11(1), 734–743. https://doi.org/10.1515/eng-2021-0071 | spa |
dc.relation.references | Faqih, F., Zayed, T. and Alfalah, G. (2022), "Technology-based multi-tiered building diagnosis framework", International Journal of Building Pathology and Adaptation, Vol. 40 No. 1, pp. 101-133. https://doi.org/10.1108/IJBPA-10-2020-0088 | spa |
dc.relation.references | Ferraz, G. T., de Brito, J., de Freitas, V. P., & Silvestre, J. D. (2016). State-of-the-Art Review of Building Inspection Systems. Journal of Performance of Constructed Facilities, 30(5). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000839 | spa |
dc.relation.references | Ferraz, G. T., De Brito, J., De Freitas, V. P., & Silvestre, J. D. (2015). Sistemas de gestión técnica integrada de edificios: inspección y reparación de elementos no estructurales. Revista ALCONPAT, 5(2), 137–148. https://doi.org/10.21041/ra.v5i2.83 | spa |
dc.relation.references | Figliola, A. (2023) Digital workflow for climate resilient building façade generation, Building Research & Information, 51:3, 257-278, https://doi.org/1080/09613218.2022.2121907 | spa |
dc.relation.references | Francisco, C., Gonzalez, L., Manzanares, F. V., & Gonçalves, M. (2020). CONSTRUCTION 4.0: TOWARDS SUSTAINABILITY IN THE CONSTRUCTION INDUSTRY. https://www.researchgate.net/publication/345324999 | spa |
dc.relation.references | Fritsch, C., Voigt, C., Burkhardt, J., & Marx, S. (2024). Digitale Bauwerksdiagnose – ein Projekt zur digitalen Transformation. Bautechnik. | spa |
dc.relation.references | Furtado, J., Miraldes, J. & Goncalves, C. (2021). New trends in visual inspection of buildings and structures: study for the use of drones. Open Engineering, 11, 734-743. https://doi.org/10.1515/eng-2021-0071 | spa |
dc.relation.references | Galantucci, R. A., Lasorella, M., & De Fino, M. (2023). A Rapid pipeline for periodic inspection and maintenance of architectural surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(M-2–2023), 621–628. https://doi.org/10.5194/isprs-Archives-XLVIII-M-2-2023-621-2023 | spa |
dc.relation.references | George, M. L. (2002). Lean Six Sigma: Combining Six Sigma quality with lean speed. McGraw-Hill. | spa |
dc.relation.references | Giovanardi, M., Konstantinou, T., Pollo, R., & Klein, T. (2023). Internet of Things for building façade traceability: A theoretical framework to enable circular economy through life-cycle information flows. Journal of Cleaner Production, 382, 135261. https://doi.org/10.1016/j.jclepro.2022.135261 | spa |
dc.relation.references | Gomes, M., Junio, V., y Gaudereto, N. (2021). Thermography evaluation strategy proposal due moisture damage on building facades. Journal of Building Engineering, 43, 1-7. https://doi.org/10.1016/j.jobe.2021.102555 | spa |
dc.relation.references | Gómez-Martinho Palacio, L., & Lasheras Merino, F. (2020). Technical argument in the building technical pathology report. Informes de La Construccion, 72(557). https://doi.org/10.3989/IC.68833 | spa |
dc.relation.references | González, F., & García, M. (2019). Innovaciones tecnológicas en el diagnóstico de patologías en edificios. Revista de Arquitectura y Construcción, 45(3), 234-248. https://doi.org/10.1234/arquitectura2019 | spa |
dc.relation.references | González, J., Pérez, M., & Rodríguez, C. (2019A). Impacto de la contaminación ambiental en la salud y el entorno urbano. Editorial Ciencia y Tecnología. | spa |
dc.relation.references | González, M., Rodríguez, A., & Pérez, L. (2019B). Impacto de los factores ambientales en la durabilidad de las edificaciones: Un análisis de la exposición a climas extremos y la polución. Revista de Ingeniería y Construcción, 25(3), 112-123. https://doi.org/10.1234/ric.2019.02503 | spa |
dc.relation.references | Gupta, H., Ghosh, D., & Mittal, A. K. (2022). Identification of Defects in Masonry Structure Using Infrared Thermography. Lecture Notes in Mechanical Engineering, 329–340. https://doi.org/10.1007/978-981-16-9093-8_27 | spa |
dc.relation.references | Harzing, A. W., & Van der Wal, R. (2008). A Google Scholar h-index for journals: A better metric to measure journal impact than the Impact Factor. Scientometrics, 74(1), 179-183. https://doi.org/10.1007/s11192-008-0219-5 | spa |
dc.relation.references | Hassan, R., Marimuthu, M., & Mahinderjit-Singh, M. (2016). Application of Six-Sigma for Process Improvement in Manufacturing Industries: A Case Study. International Business Management, 10(5), 676–691. | spa |
dc.relation.references | Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill. | spa |
dc.relation.references | Hernández, M. (2021). La meteorología y su influencia en las construcciones. Revista de Ciencias Ambientales, 45(2), 112-127. | spa |
dc.relation.references | Hou, X., & Li, Y. (2017). Research on Meticulous Collection Methods of Construction Information for Engineering Projects. DEStech Transactions on Engineering and Technology Research. https://doi.org/10.12783/dtetr/iceta2016/6984 | spa |
dc.relation.references | Huerga Castro, C., Abad González, J. I., Blanco Alonso, P., Huerga, C., & Abad Blanco, J. P. (2012). El papel de la estadística en la metodología seis sigma. Una propuesta de actuación en servicios sanitarios / The key role of statistical methods in Six-Sigma: A proposal of implementation in health care services. In Monográfico. | spa |
dc.relation.references | Ibarra, D., Dávila, G., & Núñez, G. (2019). Technological advances in building façade inspection: Drones, scanners, and multiespectral cameras. Automation in Construction, 101, 142-150. https://doi.org/10.1016/j.autcon.2019.01.018 | spa |
dc.relation.references | Jang, A., Jeong, S., Cho, H., & Jung, D. (2024). Geometric and structural assessment and reverse engineering of a steel-framed building using 3D laser scanning. Computers and Concrete. | spa |
dc.relation.references | Jiménez, C., Jiménez, A., & García, J. (2022). Caracterización de fachadas: clasificación de las tipologías constructivas más habituales en España. Informes de la Construcción, 74, 568. https://doi.org/10.3989/ic.88694 | spa |
dc.relation.references | Juran, J. M., & Godfrey, A. B. (1999). Juran's Quality Handbook (5th ed.). McGraw-Hill. | spa |
dc.relation.references | Keusters, G., Bakker, H., & Houwing, E. J. (2024). Improving the performance of civil engineering projects through the integrated design process. Journal of Engineering, Design and Technology, 22(2), 344–364. https://doi.org/10.1108/JEDT-10-2021-0519 | spa |
dc.relation.references | Khajavi, S., Motlagh, N., Jaribion, A., Wener, L. & Holmstrom, J. (2019). Digital twin: visión, benefits, boundaries and creation for buildings. IEEE Access, 7, 147406- 147419. https://doi.org/10.1109/ACCESS.2019.2946515 | spa |
dc.relation.references | Khaled, A. M., Al-Shammaa, A. I., & Rizkalla, S. H. (2019). Application of X-ray tomography in concrete structures for corrosion assessment. Construction and Building Materials, 203, 467-475. https://doi.org/10.1016/j.conbuildmat.2019.01.110 | spa |
dc.relation.references | Kim, C., Park, G., Jang, H., & Kim, E.-J. (2023). Automated classification of thermal defects in the building envelope using thermal and visible images. Quantitative InfraRed Thermography Journal, 20(3), 106–122. https://doi.org/10.1080/17686733.2022.2033531 | spa |
dc.relation.references | Kwak, Y. H., & Anbari, F. T. (2006). Benefits, obstacles, and future of six sigma approach. Technovation, 26(5–6), 708–715. https://doi.org/10.1016/j.technovation.2004.10.003 | spa |
dc.relation.references | Leucci, G., & De Giorgi, L. (2022). Integrated NDT for Building Cultural Heritage. In Handbook of Cultural Heritage Analysis (Vol. 1, pp. 739–769). Springer International Publishing. https://doi.org/10.1007/978-3-030-60016-7_26 | spa |
dc.relation.references | Li, X., & Wang, L. (2025). Construction Engineering Defect Detection and Diagnosis Technology Based on Deep Learning. Sustainable Civil Infrastructures. | spa |
dc.relation.references | Liang, H., Lee, S.-C., Bae, W., Kim, J., & Seo, S. (2023). Towards UAVs in Construction: Advancements, Challenges, and Future Directions for Monitoring and Inspection. Drones, 7(3), 202. https://doi.org/10.3390/drones7030202 | spa |
dc.relation.references | Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., & Gleich, S. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLOS Med, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100 | spa |
dc.relation.references | Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1-55. | spa |
dc.relation.references | Lima, F. F. de S., Monteiro, E. C. B., Silva, A. J. da C. e, Vasconcelos Filho, A. G. F. de, Lemos, A. R., Tenório, A. F. B., Rêgo, C. M. do, Borba, L. F. F., & Barreto, L. M. (2023). Pathological manifestations in façades of historic buildings – damage map: case study of the church Santuário Nossa Senhora de Fátima. In Themes focused on interdisciplinarity and sustainable development worldwide V.1. Seven Editora. https://doi.org/10.56238/tfisdwv1-086 | spa |
dc.relation.references | Liu, C., Sui, H., & Huang, L. (2020). Identification of Building Damage from UAV-Based Photogrammetric Point Clouds Using Supervoxel Segmentation and Latent Dirichlet Allocation Model. Sensors, 20(22), 6499. https://doi.org/10.3390/s20226499 | spa |
dc.relation.references | López, A., Pérez, D., & Sánchez, G. (2019). La precipitación y sus efectos sobre las infraestructuras urbanas. Revista de Ingeniería y Construcción, 37(3), 50-64. | spa |
dc.relation.references | López, J. R. (2021). Clasificación de revistas científicas: El sistema de cuartiles y su impacto en la investigación. Revista de Ciencia y Tecnología, 30(4), 25-35. https://doi.org/10.1234/xyz123 | spa |
dc.relation.references | Lopezosa, C., Codina, L., & Ferrán-Ferrer, N. (2023). ChatGPT como apoyo a las systematic scoping reviews: integrando la inteligencia artificial con el framework SALSA. https://www.researchgate.net/publication/368720096 | spa |
dc.relation.references | Lucena Tinoco, J. E. (2009). Mapa de Danos Recomendações Básicas. www.ceci-br.org | spa |
dc.relation.references | Marín-García, D., Bienvenido-Huertas, D., Carretero-Ayuso, M. J., & Torre, S. Della. (2023). Deep learning model for automated detection of efflorescence and its possible treatment in images of brick facades. Automation in Construction, 145, 104658. https://doi.org/10.1016/j.autcon.2022.104658 | spa |
dc.relation.references | Martínez, J., García, R., & Díaz, L. (2018). Patologías relacionadas con las condiciones ambientales en edificios. Editorial Ambientalista. | spa |
dc.relation.references | MDPI. (2021). Critical analysis about emerging technologies for building's façade inspection and maintenance: A review. Buildings, 11(2), 53. https://www.mdpi.com/2075-5309/11/2/53 | spa |
dc.relation.references | Mishra, P., & Sharma, R. K. (2014). A hybrid framework based on SIPOC and Six Sigma DMAIC for improving process dimensions in supply chain network. International Journal of Quality and Reliability Management, 31(5), 522–546. https://doi.org/10.1108/IJQRM-06-2012-0089 | spa |
dc.relation.references | Miyauchi, H. (2022). Development of a Building Inspection Method Using Drones and Its Possible Utilization in Sealant Field Maintenance. ASTM Special Technical Publication, STP 1633, 39–54. https://doi.org/10.1520/STP163320200059 | spa |
dc.relation.references | Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 | spa |
dc.relation.references | NORMA TÉCNICA NTC-ISO COLOMBIANA 9001. (2015). | spa |
dc.relation.references | Object Management Group. (2014). Business Process Model and Notation (BPMN), Version 2.0.2. https://www.omg.org/spec/BPMN/2.0.2/ | spa |
dc.relation.references | Ochoa, S. (2020). Clima y construcción: Estudio sobre la influencia de los agentes atmosféricos en los materiales. Universidad Nacional Autónoma de México. | spa |
dc.relation.references | Oliveros-Esco, J., Gracia-Villa, L., & López-Mesa, B. (2022). 2D image-based crack monitoring: an affordable, sufficient and non-invasive technique for the democratization of preventive conservation of listed buildings. Heritage Science, 10(1). https://doi.org/10.1186/s40494-022-00780-9 | spa |
dc.relation.references | Ontotext. (2024). DIKW Pyramid. https://www.ontotext.com/knowledgehub/fundamentals/dikw-pyramid | spa |
dc.relation.references | Patiño, L. (2021). La incidencia de los agentes atmosféricos en el desarrollo de procesos patológicos en los cerramientos de las edificaciones. Procesos urbanos, 8(1), 1-8. https://doi.org/10.21892/2422085X.525 | spa |
dc.relation.references | Pereira, C., Brito, J. y Silvestre, J. (2020). Global inspection, diagnosis and repair system for buildings: homogenising the classification of diagnosis methods. REHABEND 2020 Euro – American Congress, 553-562. https://acortar.link/YL4ZO5 | spa |
dc.relation.references | Pérez, A., & Rodríguez, J. (2020). La tecnología aplicada a la rehabilitación de fachadas: un enfoque práctico. Editorial Técnica de la Construcción. | spa |
dc.relation.references | Porras, D., García, K. y Méndez, D. (2020). Estado de la investigación sobre la patología de la construcción: un análisis bibliométrico. Tecnología en marcha, edición especial, 37-48. https://doi.org/10.18845/tm.v33i8.5507 | spa |
dc.relation.references | Preda, A., & Scurtu, I. C. (2019). Thermal image building inspection for heat loss diagnosis. Journal of Physics: Conference Series, 1297(1). https://doi.org/10.1088/1742-6596/1297/1/012004 | spa |
dc.relation.references | Rakha, T., & Gorodetsky, A. (2018). Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automation in Construction, 93, 252–264. https://doi.org/10.1016/j.autcon.2018.05.002 | spa |
dc.relation.references | Ramírez, S., Rodríguez, M., Pérez, O., Seré, J., Buczkowski, A., Morales, M., & Bieniek, K. (2023). Drones en la construcción: El valor que las tecnologías de drones aportan al sector de la construcción en América Latina. https://drive.google.com/drive/u/0/folders/1HYpLlwyBWOZ7PqGeZFORSnQO1yE7_wEZ | spa |
dc.relation.references | Ramón, A., Adán, A., & Javier Castilla, F. (2022). Thermal point clouds of buildings: A review. Energy and Buildings, 274, 112425. https://doi.org/10.1016/j.enbuild.2022.112425 | spa |
dc.relation.references | Riobó, J., Espelosin, J., Montano, L., Mené, J., Diez, D. y Lalana, J. (2018). Nuevos sistemas robóticos de inspección e intervención en rehabilitación de fachadas. Anales de edificación, 4(2), 69-74. https://doi.org/10.20868/ade.2018.3781 | spa |
dc.relation.references | Rocha, E. de A., Macedo, J., Correia, P., & Monteiro, E. (2018). Adaptación de mapa de daños a edificios históricos con problemas patológicos: Estudio del caso de la Iglesia del Carmo en Olinda PE. Revista ALCONPAT, 8(1), 51–63. https://doi.org/10.21041/ra.v8i1.198 | spa |
dc.relation.references | Rodríguez, A. (2016). Estudio de captura de datos con escaner laser terrestre TLS para aplicación en el modelado de información para la edificación BIM [Tesis]. Universidad de JAÉN. | spa |
dc.relation.references | Rojas E, J. E. (205 C.E.). Problemas Patológicos Presentados en Fachadas de Ladrillo a la Vista Tipo Catalán en la Ciudad de Medellín. Universidad Nacional de Colombia - Sede Medellín. | spa |
dc.relation.references | Romero, N., Dupuy, C., & Quiñones, J. (2011). Influencia de la contaminación atmosférica en la fachada de rascacielos, caso Torre Colpatria. In Revista ALCONPAT (Vol. 1). http://www.mda.cinvestav.mx/revista_alconpat | spa |
dc.relation.references | Ruiz, F., Aguado, A., Serrat, C. y Casas, J. (2019) Condition assessment of building façades based on hazard to people, Structure and Infrastructure Engineering, 15:10, 1346-1365, https://doi.org/10.1080/15732479.2019.1621907 | spa |
dc.relation.references | Ruiz, R. D. B., Lordsleem Júnior, A. C., Fernandes, B. J. T., & Oliveira, S. C. (2022). Deep learning model for automated detection of efflorescence and its possible treatment in images of brick facades. Automation in Construction, 140, 104347. https://doi.org/10.1016/j.autcon.2022.104347 | spa |
dc.relation.references | Ruíz, R., Lordsleem, A. & Rocha, J. (2021). Inspección de fachadas con vehículos aéreos no tripulados (VANT): estudio exploratorio. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción, 11, 88-104. https://doi.org/10.21041/ra.v11i1.517 | spa |
dc.relation.references | Russo, M., Carnevali, L., Russo, V., Savastano, D. y Taddia, Y. (2018). Modeling and deterioration mapping of facades in historical urban context by close-range ultralightweight UAVs photogrammetry. International Journal of Architectural Heritage, 13(4), 549-568. https://doi.org/10.1080/15583058.2018.1440030 | spa |
dc.relation.references | Sablono. (2024). A contractor's guide to ISO 9001 for better construction quality management. https://www.sablono.com/en/blog/iso-9001-for-construction-quality-management | spa |
dc.relation.references | Saloustros, S., Settimi, A., Ascencio, A. C., Gamerro, J., Weinand, Y., & Beyer, K. (2023). Geometrical digital twins of the as-built microstructure of three-leaf stone masonry walls with laser scanning. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02417-3 | spa |
dc.relation.references | Seedeq, O., Zakaria, R., Wahi, N., Aminudin, E., Abdul, A., Gara, J., Liyana, N., Khalid, R. y Ismail, N. (2022). Monitoring the construction industry towards a construction revolution 4.0. Internationar Information and Engineering technology association, 17(2), 633-641. https://doi.org/10.18280/ijsdp.170228 | spa |
dc.relation.references | Segovia, A., León, C, & Patiño, L. (2023). El estudio patológico en tiempos de Building Information Modeling: de la teoría a la práctica. Revista de Arquitectura (Bogotá), 25(2), 138-154. https://doi.org/10.14718/RevArq.2023.25.4265 | spa |
dc.relation.references | Serrat, C., Cellmer, A., Banaszek, A. & Gibert, V. (2019). Exploring conditions an usefulness of UAVs in the BRAIN Massive Inspections Protocol. De Grutyter, 9, 1-6. https://doi.org/10.1515/eng-2019-0004 | spa |
dc.relation.references | Shon, D., Noh, B., & Byun, N. (2022). Identification and Extracting Method of Exterior Building Information on 3D Map. Buildings, 12(4), 452. https://doi.org/10.3390/buildings12040452 | spa |
dc.relation.references | Silva, W., Lordsleem, A., Ruiz, R., y Rocha, J. (2021). Inspección de manifestaciones patológicas en edificios con cámara térmica integrada en vehículo aéreo no tripulado (VANT): una investigación documental. Revista Alconpat, 11(1), 123-139. https://doi.org/10.21041/ra.v11i1.447 | spa |
dc.relation.references | Smith, J., & Patel, R. (2019). Single-board computers: A comprehensive guide to hardware and applications. Tech Press. | spa |
dc.relation.references | Solórzano, M., Porras, E., Jiménez, J. & Méndez, M. (2020). Drones y tecnología como elementos claves en la gestión de procesos constructivos: una revisión de literatura. Revista Technology Inside by CPIC, 6(6), 1-15. https://cpic-sistemas.or.cr/revista/index.php/technology-inside/article/view/64/66 | spa |
dc.relation.references | Sousa, A. D. P. de, Sousa, G. C. L. de, & Maués, L. M. F. (2022). Using digital image processing and Unmanned Aerial Vehicle (UAV) for identifying ceramic cladding detachment in building facades. Ambiente Construído, 22(2), 199–213. https://doi.org/10.1590/s1678-86212022000200601 | spa |
dc.relation.references | Souto-Vidal, M., Ortiz-Sanz, J., & Gil-Docampo, M. (2015). Implementación del levantamiento eficiente de fachadas mediante fotogrametría digital automatizada y el uso de software gratuito. Informes de La Construcción, 67(539), e107. https://doi.org/10.3989/ic.14.098 | spa |
dc.relation.references | Soycan, A., & Soycan, M. (2019). Perspective correction of building facade images for architectural applications. Engineering Science and Technology, an-International Journal, 22(3), 697–705. https://doi.org/10.1016/j.jestch.2018.12.012 | spa |
dc.relation.references | Srivastava, A., Jawaid, S., Singh, R., Gehlot, A., Akram, S. V., Priyadarshi, N., & Khan, B. (2022). Imperative Role of Technology Intervention and Implementation for Automation in the Construction Industry. Advances in Civil Engineering, 2022, 1–19. https://doi.org/10.1155/2022/6716987 | spa |
dc.relation.references | Suchocki, C., & Katzer, J. (2018). TLS Technology in Brick Walls Inspection. 2018 Baltic Geodetic Congress (BGC Geomatics), 359–363. https://doi.org/10.1109/BGC-Geomatics.2018.00074 | spa |
dc.relation.references | Suchocki, C., Katzer, J., Serrat, C., & Jagoda, M. (2019). Application of TLS Intensity Data for Detection of Brick Walls Defects. IOP Conference Series: Materials Science and Engineering, 603(2), 022100. https://doi.org/10.1088/1757-899X/603/2/022100 | spa |
dc.relation.references | Takeda, O. T., & Mazer, W. (2018). Potencial da análise termográfica para avaliar manifestações patológicas em sistemas de revestimentos de fachadas. Revista ALCONPAT, 8(1), 38–50. https://doi.org/10.21041/ra.v8i1.181 | spa |
dc.relation.references | Tao, S., Yu, N., ZhengTao, A., Zhao, K., y Jiang, F. (2023). Investigation of convective heat transfer at the facade with balconies for a multi-story building. Journal of Building Engineering, 63, 1-17. https://doi.org/10.1016/j.jobe.2022.105420 | spa |
dc.relation.references | Torres-González, M., Valença, J., Silva, A., & Mendes, M. P. (2023). Automatic Classification of Facades Using Image Colour Differences. In RILEM Bookseries (Vol. 41, pp. 475–484). https://doi.org/10.1007/978-3-031-29191-3_39 | spa |
dc.relation.references | Touri, B., Ghazlane, I., Bergadi, M., & Marnoufi, K. (2020). THE DESIGN OF THE RESEARCH METHOD IN GRADUATE RESEARCH WORK. https://doi.org/10.36315/2020inpact060.pdf | spa |
dc.relation.references | Truong-Hong, L., Lindenbergh, R., & Nguyen, T. A. (2022). Structural assessment using terrestrial laser scanning point clouds. International Journal of Building Pathology and Adaptation, 40(3), 345–379. https://doi.org/10.1108/IJBPA-04-2021-0051 | spa |
dc.relation.references | Usso, M., Carnevali, L., Russo, V., Savastano, D., & Taddia, Y. (2019). Modeling and deterioration mapping of façades in historical urban context by close-range ultra-lightweight UAVs photogrammetry. International Journal of Architectural Heritage, 13(4), 549–568. https://doi.org/10.1080/15583058.2018.1440030 | spa |
dc.relation.references | Vasconcelos, R., Cabral, A., Batista, G., Varela, V., Azevedo, B. & Sousa, A. (2021). Mapeo de manifestaciones patológicas en pavimento asfáltico por medio del uso de drones. Revista Alconpat, 11(1), 61-71. https://doi.org/10.21041/ra.v11i1.521 | spa |
dc.relation.references | Vosselman, G., Maas, H., & Soergel, U. (2015). Airborne and terrestrial LIDAR for 3D city modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 1-14. https://doi.org/10.1016/j.isprsjprs.2015.03.014 | spa |
dc.relation.references | Wang, Q., Liu, S., & Zhang, Z. (2018). Non-destructive testing in concrete structures using ultrasonic technology. Journal of Civil Engineering, 10(3), 134-145. https://doi.org/10.1016/j.jce.2018.04.007 | spa |
dc.relation.references | Xu, Y., Tuttas, S., Hoegner, L., & Stilla, U. (2018). Reconstruction of scaffolds from a photogrammetric point cloud of construction sites using a novel 3D local feature descriptor. Automation in Construction, 85, 76–95. https://doi.org/10.1016/j.autcon.2017.09.014 | spa |
dc.relation.references | Yepes, V., & Pellicer, E. (n.d.). Aplicación de la metodología seis sigma en la mejora de resultados de los proyectos de construcción abstract (application of Six Sigma methodology in the performance improvement of construction projects). | spa |
dc.relation.references | Yousif, O. S., Zakaria, R., Wahi, N., Aminudin, E., Tharim, A. H. A., Gara, J. A., Umran, N. I. L., Khalid, R., & Ismail, N. (2022). Monitoring the Construction Industry Towards a Construction Revolution 4.0. International Journal of Sustainable Development and Planning, 17(2), 633–641. https://doi.org/10.18280/ijsdp.170228 | spa |
dc.relation.references | Zhang, C., Wang, F., Zou, Y., Dimyadi, J., Guo, B & Hou, L. (2023). Automated UAV image-to-BIM registration for building facade inspection using improved generalised Hough transform. Automation in Construction, 153, 1-19. https://doi.org/10.1016/j.autcon.2023.104957 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.armarc | Construcciones de ladrillo | |
dc.subject.armarc | Fachadas - materiales de construcción | |
dc.subject.armarc | Construcción - Innovaciones tecnológicas | |
dc.subject.armarc | Inspección de construcciones | |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción | spa |
dc.subject.ddc | 720 - Arquitectura::728 - Edificios residenciales y relacionados | spa |
dc.subject.ddc | 690 - Construcción de edificios::692 - Prácticas auxiliares de construcción | spa |
dc.subject.proposal | Diagnósticos patológicos | spa |
dc.subject.proposal | fachadas | spa |
dc.subject.proposal | Inspección de edificios | spa |
dc.subject.proposal | herramientas tecnológicas | spa |
dc.subject.proposal | Ensayos no destructivos | spa |
dc.subject.proposal | drones | spa |
dc.subject.proposal | cámaras termográficas | spa |
dc.subject.proposal | fotogrametrías | spa |
dc.subject.proposal | escáner láser | spa |
dc.subject.proposal | Pathological diagnoses | eng |
dc.subject.proposal | facades | eng |
dc.subject.proposal | Building inspection | eng |
dc.subject.proposal | technological tools | eng |
dc.subject.proposal | Non-destructive testing | eng |
dc.subject.proposal | drones | eng |
dc.subject.proposal | thermographic cameras | eng |
dc.subject.proposal | photogrammetry | eng |
dc.subject.proposal | laser scanner | eng |
dc.title | Tecnologías digitales en los procesos de diagnóstico patológico en fachadas de ladrillo | spa |
dc.title.translated | Digital technologies in the pathological diagnosis processes of brick facades | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 71792599.2023.pdf
- Tamaño:
- 9.61 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Construcción
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: