Desarrollo e implementación de un método de funciones gaussianas explícitamente correlacionadas bajo el esquema de orbitales moleculares para cualquier partícula, APMO

dc.contributor.advisorReyes Velasco, Andrésspa
dc.contributor.authorCharry Martinez, Jorge Alfonsospa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Rjq20HEAAAAJ
dc.contributor.orcidCharry Martínez, Jorge Alfonso [0000-0003-3069-2522]
dc.contributor.researchgroupQuímica Cuántica y Computacionalspa
dc.date.accessioned2026-01-21T18:53:20Z
dc.date.available2026-01-21T18:53:20Z
dc.date.issued2015
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este trabajo se presenta el desarrollo teórico del método de funciones gaussianas explícitamente correlacionadas bajo el esquema del orbital molecular para cualquier partícula (ECGAPMO). Esta metodología es una extensión del método explicitly correlated gaussians and nuclear orbital plus molecular orbital (ECG-NOMO) para estudiar sistemas con más de una especie de partículas cuánticas. Este método fue implementado en el programa computacional LOWDIN. Se estudiaron sistemas atómicos regulares y exóticos. Los resultados obtenidos muestran que este método provee una muy buena descripción de la correlación entre partículas de diferente especie cuántica. Adicionalmente se empleó la metodología APMO para estudiar las energías de enlace de positrón (PBEs) para los veinte aminoácidos estándar en las formas mínimo global, puente de hidrógeno y zwitterion. El estudio revela que en general a nivel de teoría de propagadores de segundo orden (APMO/P2) se obtienen PBEs más altos a una fracción del costo computacional de MP2, siendo una opción conveniente para un análisis cualitativo y semi-cuantitativo del enlace de positrón en sistemas poliatómicos. (Texto tomado de la fuente).spa
dc.description.abstractThis work presents the theoretical development of the explicitly correlated gaussian method under the any particle molecular approach (ECG-APMO). This methodology is an extension of the explicitly correlated gaussians and nuclear orbital plus molecular orbital (ECGNOMO) to study systems comprising more than one species of quantum particles. This method was implemented in the computational software LOWDIN. The regular and exotic atomic systems were studied. The results obtained show that the method provides a very good description of the interparticle correlation between different quantum species. Additionally the APMO methodology was employed to study the positron binding energies (PBEs) for the twenty standard amino acids in the global minimum, hydrogen-bonded and zwitterionic forms. The study revealed that generally the second order propagator theory (APMO/P2) provides higher PBEs than MP2 with only a fraction of the computational cost, becoming a convenient option for a qualitative or semiquantitative analysis of positron binding in polyatomic systems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentxiv, 62 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89284
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] T. D. Crawford, S. S. Wesolowski, E. F. Valeev, R. A. King, M. L. Leininger, and Henry F. Schaefer III. The Past, Present, and Future of Quantum Chemistry. Wiley- VCH Verlag GmbH, 2007.
dc.relation.references[2] M. Born and J. R. Oppenheimer. Ann. Physik., 84:457, 1927.
dc.relation.references[3] L. Kong, F. A. Bischoff, and E. F. Valeev. Explicitly correlated r12/f12 methods for electronic structure. Chemical Reviews, 112(1):75–107, 2012.
dc.relation.references[4] K. Raghavachari and J. B. Anderson. Electron correlation effects in molecules. The Journal of Physical Chemistry, 100(31):12960–12973, 1996.
dc.relation.references[5] Y.C. Jean, P.E. Mallon, and D.M. Schrader. Principles and Applications of Positron & Positronium Chemistry. World Scientific, 2003.
dc.relation.references[6] R W Siegel. Positron annihilation spectroscopy. Annual Review of Materials Science, 10(1):393–425, 1980.
dc.relation.references[7] K. Nagamine. Introductory Muon Science. Cambridge University Press, 2003.
dc.relation.references[8] H. Nakai. Nuclear orbital plus molecular orbital theory: Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation. Int. J. Quantum Chem., 107(14):2849–2869, 2007.
dc.relation.references[9] Webb. S.P., T. Iordanov, and S. Hammes-Schiffer. Multiconfigurational nuclear- electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations. J. Chem. Phys., 117:4106, 2002.
dc.relation.references[10] T. Kreibich and E. K. U. Gross. Multicomponent density-functional theory for electrons and nuclei. Phys. Rev. Lett., 86(14):2984–2987, Apr 2001.
dc.relation.references[11] M. Cafiero, S. Bubin, and L. Adamowicz. Non-Born–Oppenheimer calculations of atoms and molecules. Phys. Chem. Chem. Phys., 5(8):1491–1501, 2003.
dc.relation.references[12] T. Udagawa and M. Tachikawa. Multi-Component Molecular Orbital Theory. Nova Science Publishers, New York, 2009.
dc.relation.references[13] K. Strasburger and H. Chojnacki. Quantum chemical study of simple positronic systems using explicitly correlated gaussian functions – psh and psli[sup +]. J. Chem. Phys., 108(8):3218–3221, 1998.
dc.relation.references[14] M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi. An extension of ab initio molecular orbital theory to nuclear motion. Chem. Phys. Lett., 290(4-6):437–442, 1998.
dc.relation.references[15] H. Nakai. Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation: Ab initio NO+ MO/HF theory. Int. J. Quantum Chem., 86(6):511–517, 2002.
dc.relation.references[16] S. A. González, N. F. Aguirre, and A. Reyes. Theoretical investigation of isotope effects: The any-particle molecular orbital code. Int. J. Quantum Chem., 108(10):1742–1749, 2008.
dc.relation.references[17] C. Swalina, M.V. Pak, A. Chakraborty, and S. Hammes-Schiffer. Explicit Dynamical Electron- Proton Correlation in the Nuclear- Electronic Orbital Framework. J. Phys. Chem. A, 110(33):9983–9987, 2006.
dc.relation.references[18] G. F. Gribakin, J. A. Young, and C. M. Surko. Positron-molecule interactions: Resonant attachment, annihilation, and bound states. Rev. Mod. Phys., 82:2557–2607, Sep 2010.
dc.relation.references[19] H. Nakai and K. Sodeyama. Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions: Ab initio NOMO- MBPT and CC methods. J. Chem. Phys., 118:1119, 2003.
dc.relation.references[20] C. Swalina, M.V. Pak, and S. Hammes-Schiffer. Alternative formulation of many-body perturbation theory for electron-proton correlation. Chem. Phys. Lett., 404(4-6):394– 399, 2005.
dc.relation.references[21] S. A. González and A. Reyes. Nuclear quantum effects on the He2H+ complex with the nuclear molecular orbital approach. Int. J. Quantum Chem., 110(3):689–696, 2010.
dc.relation.references[22] M. Tachikawa and Y. Osamura. Simultaneous optimization of exponents, centers of Gaussian-type basis functions, and geometry with full-configuration interaction wave function: Application to the ground and excited states of hydrogen molecule. J. Chem. Phys., 113:4942, 2000.
dc.relation.references[23] M. Tachikawa. Multi-component molecular orbital theory for electrons and nuclei including many-body effect with full configuration interaction treatment: isotope effects on hydrogen molecules. Chem. Phys. Lett., 360(5-6):494–500, 2002.
dc.relation.references[24] W. Klopper, F. R. Manby, S. Ten-No, and E. F. Valeev. R12 methods in explicitly correlated molecular electronic structure theory. International Reviews in Physical Chemistry, 25(3):427–468, 2006.
dc.relation.references[25] M. K. Pawel and A. Ludwik. An effective method for generating nonadiabatic many- body wave function using explicitly correlated gaussian-type functions. J. Chem. Phys., 95(9):6681–6698, 1991.
dc.relation.references[26] B. Sergiy, A. Ludwik, and M. Marcin. An accurate non-born–oppenheimer calculation of the first purely vibrational transition in lih molecule. J. Chem. Phys., 123(13):134310, 2005.
dc.relation.references[27] M. Hoshino, H. Nishizawa, and H. Nakai. Rigorous non-born-oppenheimer theory: Combination of explicitly correlated gaussian method and nuclear orbital plus mole- cular orbital theory. J. Chem. Phys., 135(2):024111, 2011.
dc.relation.references[28] S. A. González, N. F. Aguirre, and A. Reyes. APMO: Un programa computacional para el estudio de efectos cuánticos nucleares mediante la teorı́a del orbital molecular electrónico y no electrónic. Revista Colombiana de Quı́mica, 37:93 – 103, 04 2008.
dc.relation.references[29] R. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Dı́az-Tinoco, S. A. González, N. F. Aguirre, and A. Reyes. Lowdin: The any particle molecular orbital code. International Journal of Quantum Chemistry, 114(1):50–56, 2014
dc.relation.references[30] F. Moncada, D. Cruz, and A. Reyes. Muonic alchemy: Transmuting elements with the inclusion of negative muons. Chemical Physics Letters, 539-540(0):209 – 213, 2012.
dc.relation.references[31] J. Charry, J. Romero, M. T. do N. Varella, and A. Reyes. Calculation of positron binding energies of amino acids with the any-particle molecular-orbital approach. Phys. Rev. A, 89:052709, May 2014.
dc.relation.references[32] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, New York, 1996.
dc.relation.references[33] In the physicist notation of quantum chemistry. <ab | cd > = \int phi^*_a (1) phi^*_b (2) phi_c (1) phi_d (2) r^-1_12 dr1 dr2
dc.relation.references[34] J. Romero, E. F. Posada, R. Flores-Moreno, and A Reyes. A generalized any particle propagator theory: Assessment of nuclear quantum effects on electron propagator calculations. J. Chem. Phys., 137:074105, 2012.
dc.relation.references[35] J. Romero, J. A. Charry, R. Flores-Moreno, M. T. do N. Varella, and A. Reyes. Calculation of positron binding energies using the generalized any particle propagator theory. The Journal of Chemical Physics, 141(11):114103, 2014.
dc.relation.references[36] L. Per-Olov. Quantum theory of many-particle systems. iii. extension of the hartree- fock scheme to include degenerate systems and correlation effects. Phys. Rev., 97:1509– 1520, Mar 1955.
dc.relation.references[37] W. Klopper and D. P. Tew. Electron correlation: The many-body problem at the heart of chemistry. C4 Tutorial, Zürich, Universität Karlsruhe, 2006.
dc.relation.references[38] H. F. King. The electron correlation cusp. Theoretica chimica acta, 94(6):345–381, 1996.
dc.relation.references[39] S. F. Boys. The integral formulae for the variational solution of the molecular many- electron wave equations in terms of gaussian functions with direct electronic correla- tion. Proc. Roy. Soc. A, 258(1294):402–411, 1960.
dc.relation.references[40] K. Singer. The use of gaussian (exponential quadratic) wave functions in molecular problems. i. general formulae for the evaluation of integrals. Proc. Roy. Soc. A, 258(1294):412–420, 1960.
dc.relation.references[41] A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer. Inclusion of explicit electron- proton correlation in the nuclear-electronic orbital approach using gaussian-type ge- minal functions. J. Chem. Phys., 129(1):014101, 2008.
dc.relation.references[42] C. C. Marston and G. G Balint-Kurti. The fourier grid hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys., 91(6):3571–3576, 1989.
dc.relation.references[43] H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai. Development of the explicitly correlated gaussian nuclear orbital plus molecular orbital theory: Incorporation of electron-electron correlation. Chemical Physics Letters, 533(0):100 – 105, 2012.
dc.relation.references[44] H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai. Evaluation of electron repulsion integral of the explicitly correlated gaussian-nuclear orbital plus molecular orbital theory. Chemical Physics Letters, 521(0):142 – 149, 2012.
dc.relation.references[45] Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., Champaign, Illinois, version 8.0 edition, 2010.
dc.relation.references[46] K. Sodeyama, K. Miyamoto, and H. Nakai. Non-born–oppenheimer effects predicted by translation-free nuclear orbital plus molecular orbital method. Chemical physics letters, 421(1):72–76, 2006.
dc.relation.references[47] NIST Computational Chemistry Comparison and Benchmark Database, 2010.
dc.relation.references[48] A. Szabó and N.S. Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, 1996.
dc.relation.references[49] H. Nakai. Conference presentation. Waseda University, Tokyo, 05 2013.
dc.relation.references[50] A. M. Frolov. Properties and hyperfine structure of helium-muonic atoms. Phys. Rev. A, 61:022509, Jan 2000.
dc.relation.references[51] E. Posada, F. Moncada, and A. Reyes. Negative muon chemistry: The quantum muon effect and the finite nuclear mass effect. The Journal of Physical Chemistry A, 118(40):9491–9499, 2014. PMID: 25188920.
dc.relation.references[52] M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer. Calculation of the positron annihilation rate in psh with the positronic extension of the explicitly correlated nuclear- electronic orbital method . The Journal of Physical Chemistry A, 113(16):4004–4008, 2009.
dc.relation.references[53] J. Mitroy. Energy and expectation values of the psh system. Phys. Rev. A, 73:054502, May 2006.
dc.relation.references[54] P. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes- Schiffer. Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method. J. Phys. Chem. A, 112(6):1346–1351, 2008.
dc.relation.references[55] C. M. Surko. Atomic physics: A whiff of antimatter soup (vol 449, pg 153, 2007). Nature, 449(7162):555–555, 2007.
dc.relation.references[56] J. R. Danielson, T. R. Weber, and C. M. Surko. New plasma tools for antimatter science. In AIP Conference Proceedings, volume 1037, page 84, 2008.
dc.relation.references[57] G. F. Gribakin, J. A. Young, and C. M. Surko. Positron-molecule interactions: Resonant attachment, annihilation, and bound states. Rev. Mod. Phys., 82(3):2557, 2010.
dc.relation.references[58] M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C. L. Cesar, M. Charlton, M. J. T. Collier, M. Doser, et al. Production and detection of cold antihydrogen atoms. Nature, 419(6906):456–459, 2002.
dc.relation.references[59] D. B Cassidy and A. P. Mills. The production of molecular positronium. Nature, 449(7159):195–197, 2007.
dc.relation.references[60] S. Armitage, D. E. Leslie, J. Beale, and G. Laricchia. Collisions involving positronium. Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At, 247(1):98–104, 2006.
dc.relation.references[61] H. R. J. Walters, S. Sahoo, and S. Gilmore. Atomic collisions involving positrons. Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At, 233(1):78–87, 2005.
dc.relation.references[62] J. R. Danielson, J. J. Gosselin, and C. M. Surko. Dipole enhancement of positron binding to molecules. Phys. Rev. Lett, 104:233201, 2010.
dc.relation.references[63] P. M. Kozlowski and L. Adamowicz. Lifetime of positronium molecule. study with boys’ explicitly correlated gaussians. J. Chem. Phys., 100(15):6266–6271, 1996.
dc.relation.references[64] K. Strasburger and H. Chojnacki. Quantum chemical study of simple positronic systems using explicitly correlated gaussian functions–psh and psli. J. Chem. Phys., 108:3218, 1998.
dc.relation.references[65] G. G. Ryzhikh, J. Mitroy, and K. Varga. The structure of exotic atoms containing positrons and positronium. J. Phys. B: At., Mol. Opt. Phys., 31(17):3965, 1998.
dc.relation.references[66] K. Strasburger. Binding energy, structure, and annihilation properties of the positron- lih molecule complex, studied with explicitly correlated gaussian functions. J. Chem. Phys., 111:10555, 1999.
dc.relation.references[67] D. M. Schrader, T. Yoshida, and K. Iguchi. Binding energy of positronium chloride: A quantum monte carlo calculation. Phys. Rev. Lett., 68:3281–3283, 1992.
dc.relation.references[68] T. Yoshida and G. Miyako. Diffusion quantum monte carlo calculations of positronium hydride and positron lithium. Phys. Rev. A., 54(5):4571, 1996.
dc.relation.references[69] D. Bressanini, M. Mella, and G. Morosi. Positronium chemistry by quantum monte carlo. i. positronium-first row atom complexes. J. Chem. Phys., 108:4756, 1998.
dc.relation.references[70] M. W. J. Bromley, J. Mitroy, and G. G. Ryzhikh. Configuration interaction calculations of positronic atoms and ions. Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At, 171(1):47–59, 2000.
dc.relation.references[71] M. Tachikawa. Simultaneous optimization of gaussian type function exponents for electron and positron with full-ci wavefunction–application to ground and excited states of positronic compounds with multi-component molecular orbital approach. Chem. Phys. Lett., 350(3):269–276, 2001.
dc.relation.references[72] J. Mitroy and M. W. J. Bromley. Second bound state of psh. Phys. Rev. Lett., 98(6):063401, 2007.
dc.relation.references[73] M. W. J. Bromley and J. Mitroy. Excited states of positronic atoms. Phys. Rev. A, 75(4):042506, 2007.
dc.relation.references[74] M. W. J. Bromley, J. Mitroy, and K. Varga. Positron attachment to the he doubly excited states. Phys. Rev. Lett., 109(6):063201, 2012.
dc.relation.references[75] K. Strasburger and M. Wolcyrz. Adiabatic method for positronic atoms and molecules. Mol. Phys., 105(4):467–476, 2007.
dc.relation.references[76] K. Strasburger and M. Wolcyrz. Acta Phys. Pol A, 113:1553, 2008.
dc.relation.references[77] J. Mitroy and J. Y. Zhang. Phys. Rev. A, 83(6):064701, 2011.
dc.relation.references[78] R. J Buenker, H. P. Liebermann, V. Melnikov, M. Tachikawa, L. Pichl, and M. Kimura. Positron binding energies for alkali hydrides. J. Phys. Chem. A, 109(26):5956–5964, 2005.
dc.relation.references[79] M. Tachikawa, Y. Kita, and R. J. Buenker. Bound states of the positron with nitrile species with a configuration interaction multi-component molecular orbital approach. Phys. Chem. Chem. Phys., 13(7):2701–2705, 2011.
dc.relation.references[80] Y. Kita, R. Maezono, M. Tachikawa, M. D. Towler, and R. J. Needs. Ab initio quantum monte carlo study of the binding of a positron to alkali-metal hydrides. J. Chem. Phys., 135:054108, 2011.
dc.relation.references[81] H. Chojnacki and K. Strasburger. Configuration interaction study of the positronic hydrogen cyanide molecule. Mol. Phys., 104(13-14):2273–2276, 2006.
dc.relation.references[82] C. Makochekanwa, A. Bankovic, W. Tattersall, A. Jones, P. Caradonna, D. S. Slaughter, K. Nixon, M. J. Brunger, Z. Petrovic, J. P. Sullivan, et al. Total and positronium formation cross sections for positron scattering from h2o and hcooh. New Journal of Physics, 11(10):103036, 2009.
dc.relation.references[83] A. Zecca, E. Trainotti, L. Chiari, G. Garcı́a, F. Blanco, M. H. F. Bettega, M. T. do N. Varella, M. A. P. Lima, and M. J. Brunger. An experimental and theoretical investigation into positron and electron scattering from formaldehyde. J. Phys. B: At., Mol. Opt. Phys., 44(19):195202, 2011.
dc.relation.references[84] A. Zecca, E. Trainotti, L. Chiari, M. H. F. Bettega, S. d’A. Sanchez, M. T. do N. Varella, M. A. P. Lima, and M. J. Brunger. Positron scattering from the cyclic ethers oxirane, 1, 4-dioxane, and tetrahydropyran. J. Chem. Phys., 136:124305, 2012.
dc.relation.references[85] M. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi. Full variational molecular orbital method: Application to the positron-molecule complexes. Int. J. Quantum Chem., 70(3):491–501, 1998.
dc.relation.references[86] M. Ishida, M. Tachikawa, H. Tokiwa, K. Mori, and A. Ishii. First principles calculation for hydrogen/positronium os a Si (111) surface using the dynamical extended molecular orbital method. Surf. Sci., 438:47–57, 1999.
dc.relation.references[87] M. Tachikawa, Robert J. B., and M. Kimura. Bound states of positron with urea and acetone molecules using configuration interaction ab initio molecular orbital approach. J. Chem. Phys., 119:5005, 2003.
dc.relation.references[88] K. Koyanagi, Y. Kita, and M. Tachikawa. Systematic theoretical investigation of a positron binding to amino acid molecules using the ab initio multi-component molecular orbital approach. Eur. Phys. J. D, 66:1–7, 2012.
dc.relation.references[89] M. Kaneko, T. Udagawa, and M. Tachikawa. Geometric isotope effect on low barrier hydrogen-bonding systems of acetic acid dimer, formic acid dimer, and their anionic clusters by using the multi-component molecular orbital method. Journal of Computer Chemistry, Japan, 9(1):21–28, 2010.
dc.relation.references[90] L. Menichetti, L. Cionini, W. A. Sauerwein, S. Altieri, O. Solin, H. Minn, and P. A. Salvadori. Positron emission tomography: A perspective application to assess tumour extraction of boron in bnct. Appl. Radiat. Isot., 67(7):S351– S354, 2009.
dc.relation.references[91] P. E. Valk. Positron emission tomography: basic sciences. Springer, 2003.
dc.relation.references[92] D. L. Donohue, L. D. Hulett, B. A. Eckenrode, S. A. McLuckey, and G. L. Glish. Positron ionization mass spectrometry: Ionization of organic molecules by positronium formation. Chem. Phys. Lett., 168(1):37–40, 1990.
dc.relation.references[93] L.D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish. Mass spectrometry studies of the ionization of organic molecules by low-energy positrons. Chem. Phys. Lett., 216(1):236–240, 1993.
dc.relation.references[94] P. K. Chattaraj. Chemical reactivity theory: a density functional view. CRC Press, 2009.
dc.relation.references[95] J. Tomasi, B. Mennucci, and R. Cammi. Quantum mechanical continuum solvation models. Chem Rev, 105(8):2999–3094, 2005.
dc.relation.references[96] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S.J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery. J. Comput. Chem., 14:1347–1363, 1993.
dc.relation.references[97] C. M. Breneman and K. B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J. Comput. Chem., 11(3):361–373, 1990.
dc.relation.references[98] O. H. Crawford. Bound states of a charged particle in a dipole field. Proceedings of the Physical Society, 91(2):279, 1967.
dc.relation.references[99] H. Abdoul-Carime and C. Desfrançois. Electrons weakly bound to molecules by dipolar, quadrupolar or polarization forces. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2(2):149–156, 1998.
dc.relation.references[100] J. K Pearson, P. MW Gill, Jesus M. U., and Russell J. Boyd. Can correlation bring electrons closer together? Mol. Phys., 107(8-12):1089–1093, 2009.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalCorrelaciónspa
dc.subject.proposalGaussianas explícitamente correlacionadasspa
dc.subject.proposalÁtomos exóticosspa
dc.subject.proposalPositronesspa
dc.subject.proposalEnergías de enlace aminoácidosspa
dc.subject.proposalPropagadoresspa
dc.subject.proposalCorrelationeng
dc.subject.proposalExplicitly correlated gaussianseng
dc.subject.proposalExotic atomseng
dc.subject.proposalBinding energieseng
dc.subject.proposalAmino acidseng
dc.subject.proposalPositronseng
dc.subject.proposalPropagatorseng
dc.subject.unescoTeoría cuánticaspa
dc.subject.unescoQuantum theoryeng
dc.subject.unescoFísica nuclearspa
dc.subject.unescoNuclear physicseng
dc.subject.unescoElectroquímicaspa
dc.subject.unescoElectrochemistryeng
dc.titleDesarrollo e implementación de un método de funciones gaussianas explícitamente correlacionadas bajo el esquema de orbitales moleculares para cualquier partícula, APMOspa
dc.title.translatedDevelopment and implementation of an explicitly correlated Gaussian function method under the molecular orbital scheme for any particle, APMOeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMSc_JorgeCharry.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: