Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos

dc.contributor.advisorMartínez Cordón, María José
dc.contributor.authorAbella Gamba, Johanna Paola
dc.contributor.researcherAhumada Forigua, Diego Alejandro
dc.contributor.researchgroupGrupo de Investigación en Metrología Química y Bioanálisis del Instituto Nacional de Metrología de Colombiaspa
dc.contributor.researchgroupResidualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolasspa
dc.date.accessioned2024-01-12T16:25:52Z
dc.date.available2024-01-12T16:25:52Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías, gráficas, tablasspa
dc.description.abstractEn el presente documento, se presentan los resultados obtenidos en el desarrollo de dos herramientas metrológicas relacionadas con la medición de hierro, cobre, azufre y fósforo disponible en suelos. La primera herramienta correspondió a un material de referencia, para lo cual inicialmente se desarrollaron y validaron diferentes métodos para la medición de estos mensurandos por ICP-MS, cromatografía iónica y espectrofotometría UV-Vis. Estos métodos demostraron ser adecuados para evaluar la homogeneidad y estabilidad de materiales de referencia. Posteriormente, se presentan los resultados obtenidos en los estudios de preparación, homogeneidad y estabilidad de los materiales de referencia; los cuales permitieron soportar la obtención de materiales de referencia adecuados para su uso. Para el desarrollo de una segunda herramienta metrológica, se llevó a cabo un estudio preliminar del establecimiento de equivalencias entre el uso de diferentes técnicas analíticas para la medición de hierro, cobre, azufre y fósforo disponible en suelos; este estudio mostró que (i) existen diferencias en las mediciones obtenidas por diferentes técnicas analíticas y métodos de cuantificación; (ii) en algunos casos, como hierro, cobre y fósforo, estas diferencias podrían estar asociadas a la influencia de algunas propiedades de los suelos como la conductividad electrolítica, el contenido de manganeso y el pH. Finalmente, se proponen tres modelos multivariados que permiten mejorar la equivalencia entre las técnicas y reducir el error hasta en un 80%. (Texto tomado de la fuente)spa
dc.description.abstractThis document presents the results of the development of two metrological tools for measuring available iron, copper, sulfur, and phosphorus in soils. The first tool is a reference material. For its development, different measurement methods were validated using ICP-MS, ion chromatography, and UV-Vis spectrophotometry. These methods proved to be suitable for evaluating the homogeneity and stability of reference materials. The results obtained in the preparation, homogeneity, and stability studies of the reference materials are presented below, which supported that reference materials were obtained with uncertainties due to homogeneity and stability suitable for their use. For the development of a second metrological tool, a preliminary study was carried out to establish equivalences between different analytical techniques for measuring available iron, copper, sulfur, and phosphorus in soils. This study showed that (i) there are differences in the measurements obtained by different analytical techniques and quantification methods; (ii) in some cases, such as iron, copper, and phosphorus, these differences could be associated with the influence of some soil properties such as electrolytic conductivity, manganese content, and pH. Finally, three multivariate models are proposed that allow improving the equivalence between techniques and reducing error by up to 80%.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica analítica / Metrología Química / Química del suelospa
dc.format.extentxxii, 170 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85244
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] N. Unidas, “La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe,” 2030. [Online]. Available: www.issuu.com/publicacionescepal/stacksspa
dc.relation.references[2] FAO, “Estrategias en Materia de Fertilizantes,” p. 122, 2000, [Online]. Available: http://www.fao.org/tempref/agl/agll/docs/fertstrs.pdfspa
dc.relation.references[3] A. A. Correndo, M. Boxler, and F. O. García, “Análisis económico del manejo de la fertilización con enfoque en el largo plazo,” Ciencia del Suelo, vol. 33, no. 2, pp. 197–212, 2015.spa
dc.relation.references[4] P. Quevauviller, “Operationally-defined extraction procedures for soil and sediment analysis. Part 3: New CRMs for trace-element extractable contents,” TrAC - Trends in Analytical Chemistry, vol. 21, no. 11, pp. 774–785, 2002, doi: 10.1016/S0165-9936(02)01105-6.spa
dc.relation.references[5] S. A. Ben Mussa, H. S. Elferjani, F. A. Haroun, and F. F. Abdelnabi, “Determination of available nitrate, phosphate and sulfate in soil samples,” Int J Pharmtech Res, vol. 1, no. 3, pp. 598–604, 2009.spa
dc.relation.references[6] K. T. Osman, Soils: Principles, properties and management. Springer Science + Business, 2013. doi: 10.1007/978-94-007-5663-2.spa
dc.relation.references[7] D. A. Horneck, D. M. Sullivan, J. S. Owen, and J. M. Hart, “Soil Test Interpretation Guide,” 2011. [Online]. Available: http://extension.oregonstate.spa
dc.relation.references[8] C. Dimkpa, P. Bindraban, J. E. McLean, L. Gatere, U. Singh, and D. Hellums, Methods for Rapid Testing of Plant and Soil Nutrients. USA: Springer International Publishing, 2017. doi: 10.1007/978-3-319-58679-3_1.spa
dc.relation.references[9] S. Sadeghian Khalajabadi, “Fertilizad del suelo y nutricion del cafe en Colombia,” Cenicafé, vol. 32, 2008.spa
dc.relation.references[10] C. Dimkpa, P. Bindraban, J. E. McLean, L. Gatere, U. Singh, and D. Hellums, “Methods for Rapid Testing of Plant and Soil Nutrients,” USA: Springer International Publishing, 2017, pp. 1–43. doi: 10.1007/978-3-319-58679-3_1.spa
dc.relation.references[11] M. R. Motsara and R. N. Roy, Guide to laboratory establishment for plant nutrient analysis. Rome, Italy: Food and Agriculture Organization of the United Nations, 2008.spa
dc.relation.references[12] J. B. Jones, “Universal Soil Extractants: Their Composition and Use,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1091–1101, 1990, doi: 10.1080/00103629009368292.spa
dc.relation.references[13] “ISO 17034:2016 - General requirements for the competence of reference material producers.” https://www.iso.org/standard/29357.html (accessed Jul. 19, 2023).spa
dc.relation.references[14] T. Document et al., “DRAFT ISO GUIDE ISO / GUIDE 35 Reference materials — Guidance for the characterization and the assessment of the homogeneity and stability of the material,” vol. 2015, 2016.spa
dc.relation.references[15] R. J. C. Brown and H. Andres, “How should metrology bodies treat method-defined measurands?,” Accreditation and Quality Assurance, vol. 25, no. 2, pp. 161–166, Apr. 2020, doi: 10.1007/s00769-020-01424-w.spa
dc.relation.references[16] H. Andres et al., “Report from the CCQM Task Group on Method-defined measurands,” 2019. Accessed: Jul. 19, 2023. [Online]. Available: https://www.bipm.org/documents/20126/28432509/working-document-ID-11268/6eae4b21-bb0a-db3e-372a-86398d0f107aspa
dc.relation.references[17] V. J. Barwick, Ed., Eurachem Guide: Terminology in Analytical Measurement - Introduction to VIM 3, Second edition. 2023. [Online]. Available: www.eurachem.org.spa
dc.relation.references[18] Eurolab España. and PP Morillas y colaboradores, Eds., Guía Eurachem: La Adecuación al Uso de los Métodos Analíticos - Una guía de laboratorio para la validación de métodos y temes relacionados, Primera edición. 2016. Accessed: Jan. 19, 2023. [Online]. Available: www.eurachem.orgspa
dc.relation.references[19] Eurachem Method Validation Working Group, The fitness for purpose of analytical methods : a laboratory guide to method validation and related topics. 2014. Accessed: Jul. 19, 2023. [Online]. Available: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdfspa
dc.relation.references[20] D. Ahumada, C. Paredes, J. Abella, and I. González, Validación de Métodos en Análisis Químico Cuantitativo. Instituto Nacional de Metrología, 2023. Accessed: Feb. 21, 2023. [Online]. Available: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdfspa
dc.relation.references[21] JCGM, “International Vocabulary of Metrology Fourth edition,” Joint Committee for Guides in Metrology, no. January, pp. 1–55, 2021.spa
dc.relation.references[22] H. Kipphardt, R. Matschat, and U. Panne, “Metrology in chemistry - A rocky road,” Microchimica Acta, vol. 162, no. 1–2, pp. 35–41, 2008, doi: 10.1007/s00604-007-0909-6.spa
dc.relation.references[23] G. Dube, “Metrology in chemistry - A public task,” Accreditation and Quality Assurance, vol. 6, no. 1, pp. 3–7, 2001, doi: 10.1007/PL00010431.spa
dc.relation.references[24] R. Kaarls, “Metrology in chemistry: Rapid developments in the global metrological infrastructure, the CIPM MRA and its economic and social impact,” Accreditation and Quality Assurance, vol. 11, no. 4, pp. 162–171, 2006, doi: 10.1007/s00769-006-0104-1.spa
dc.relation.references[25] “Decreto_Ley_4175_de_2011 por el cual se escinden unas funciones de la Superintendencia de Industria, y Comercio, se crea el Instituto Nacional de Metrología y se establece su objetivo y estructura.” 2011. Accessed: Jul. 19, 2023. [Online]. Available: https://www.suin-juriscol.gov.co/viewDocument.asp?id=1543264spa
dc.relation.references[26] L. R. O. Geaquinto, V. Souza, E. C. P. Rego, M. L. Silva, and L. B. L. Balottin, “The importance of metrological tools to implementation of alternative method OECD TG 428,” Toxicology in Vitro, vol. 84, no. June, 2022, doi: 10.1016/j.tiv.2022.105425.spa
dc.relation.references[27] A. Durazzo, E. B. Souto, G. Lombardi-Boccia, A. Santini, and M. Lucarini, “Metrology, agriculture and food: Literature quantitative analysis,” Agriculture (Switzerland), vol. 11, no. 9, Sep. 2021, doi: 10.3390/agriculture11090889.spa
dc.relation.references[28] C. R. Beauchamp et al., “Metrological tools for the reference materials and reference instruments of the NIST material measurement laboratory,” Gaithersburg, MD, Jul. 2020. doi: 10.6028/NIST.SP.260-136-2020.spa
dc.relation.references[29] M. Thompson, S. L. R. Ellison, and R. Wood, “The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories: (IUPAC technical report),” Pure and Applied Chemistry, vol. 78, no. 1, pp. 145–196, 2006, doi: 10.1351/pac200678010145.spa
dc.relation.references[30] D. Tholen, “Metrology in service of society: The role of proficiency testing,” Accreditation and Quality Assurance, vol. 16, no. 12, pp. 603–605, 2011, doi: 10.1007/s00769-011-0836-4.spa
dc.relation.references[31] W. G. Miller, G. R. D. Jones, G. L. Horowitz, and C. Weykamp, “Proficiency testing/external quality assessment: Current challenges and future directions,” Clin Chem, vol. 57, no. 12, pp. 1670–1680, 2011, doi: 10.1373/clinchem.2011.168641.spa
dc.relation.references[32] M. Ramsey and S. Ellison, “Quality in Measurement and Testing,” … of Metrology and Testing, pp. 39–141, 2011, Accessed: Jan. 22, 2015. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-642-16641-9_3spa
dc.relation.references[33] S. A. Wise, “What is novel about certified reference materials?,” Anal Bioanal Chem, vol. 410, no. 8, pp. 2045–2049, 2018, doi: 10.1007/s00216-018-0916-y.spa
dc.relation.references[34] Fda, Cfsan, Ors, DBC, and CHCB, “Elemental Analysis Manual - Section 3.5 Version 3.0 (December 2021).” [Online]. Available: https://www.fda.gov/food/laboratory-methods-food/elemental-analysis-manual-eam-food-and-related-productsspa
dc.relation.references[35] ISO, “UNE-EN ISO 17034 Requisitos generales para la competencia de los productores de materiales de referencia,” 2017, [Online]. Available: www.une.orgspa
dc.relation.references[36] H. Emons, A. Fajgelj, A. M. H. van der Veen, and R. Watters, “New definitions on reference materials,” Accreditation and Quality Assurance, vol. 10, no. 10, pp. 576–578, Feb. 2006, doi: 10.1007/s00769-006-0089-9.spa
dc.relation.references[37] P. de Bièvre, “On the difference between a ‘reference material’ and a ‘material reference,’” Accreditation and Quality Assurance, vol. 16, no. 8. pp. 391–392, Aug. 2011. doi: 10.1007/s00769-011-0800-3.spa
dc.relation.references[38] H. W. Vesper, W. G. Miller, and G. L. Myers, “Reference materials and commutability.,” Clin Biochem Rev, vol. 28, no. 4, pp. 139–47, 2007, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/18392124%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2282402spa
dc.relation.references[39] M. Ochsenkuhn-petropoulou and M. Koenig, “Elements in Soil UME EnvCRM 03,” pp. 1–84, 2018.spa
dc.relation.references[40] K. Kupiec, P. Konieczka, and J. Namieśnik, “Prospects for the production, research and utilization of reference materials,” Crit Rev Anal Chem, vol. 39, no. 4, pp. 311–322, Oct. 2009, doi: 10.1080/10408340903253182.spa
dc.relation.references[41] A. Botha, S. Ellison, T. Linsinger, and A. van der Veen, “Outline for the revision of ISO Guide 35,” Accreditation and Quality Assurance, vol. 18, no. 2, pp. 115–118, Dec. 2012, doi: 10.1007/s00769-012-0940-0.spa
dc.relation.references[42] S. L. R. Ellison and A. Botha, “Principles for the assessment of homogeneity and stability in the new ISO Guide 35:2017,” Accreditation and Quality Assurance, vol. 23, no. 1, pp. 47–51, Feb. 2018, doi: 10.1007/s00769-017-1293-5. [43]spa
dc.relation.references[43] S. L. R. Ellison, “Homogeneity studies and ISO Guide 35:2006,” Accreditation and Quality Assurance, vol. 20, no. 6, pp. 519–528, Dec. 2015, doi: 10.1007/s00769-015-1162-z.spa
dc.relation.references[44] S. A. Abdul-Wahab, C. S. Bakheit, and S. M. Al-Alawi, “Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations,” Environmental Modelling and Software, vol. 20, no. 10, pp. 1263–1271, 2005, doi: 10.1016/j.envsoft.2004.09.001.spa
dc.relation.references[45] D. Montgomery, E. Peck, and G. Vining, “Introducción al análisis de regresión lineal,” 2006. https://www.academia.edu/34899097/Montgomery_y_Runger_Probabilidad_y_Estadistica_Aplicada_a_La_Ingenieria (accessed Jul. 19, 2023).spa
dc.relation.references[46] N. R. Draper and J. A. John, “Influential observations and outliers in regression,” Technometrics, vol. 23, no. 1, pp. 21–26, 1981, doi: 10.1080/00401706.1981.10486232.spa
dc.relation.references[47] M. Ringnér, “What is principal component analysis?,” 2008. [Online]. Available: http://www.nature.com/naturebiotechnologyspa
dc.relation.references[48] S. M. Holland, “PRINCIPAL COMPONENTS A N ALYSI S (PCA),” 2019. Accessed: Jul. 19, 2023. [Online]. Available: http://strata.uga.edu/software/pdf/pcaTutorial.pdfspa
dc.relation.references[49] J. Jones, “Soil test methods: Past, present, and future use of soil extractants,” Commun Soil Sci Plant Anal, vol. 29, no. 11–14, pp. 1543–1552, 1998, doi: 10.1080/00103629809370048.spa
dc.relation.references[50] ICONTEC, “NTC-5526 Calidad del suelo. Determinación de micronutrientes disponibles: Cobre, zinc hierro y manganeso,” 2007.spa
dc.relation.references[51] A. Mehlich, “New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and Zinc1,” Commun Soil Sci Plant Anal, vol. 9, no. 6, pp. 477–492, 1978, doi: 10.1080/00103627809366824.spa
dc.relation.references[52] A. Mehlich, Communications in Soil Science and Plant Analysis Mehlich 3 soil test extractant : A modification of Mehlich 2 extractant,”, pp. 37–41, 1984, doi: 10.1167/iovs.11-7364.spa
dc.relation.references[53] J. J. Wang, D. L. Harrell, R. E. Henderson, and P. F. Bell, “Comparison of Soil-Test Extractants for Phosphorus, Potassium, Calcium, Magnesium, Sodium, Zinc, Copper, Manganese, and Iron in Louisiana Soils,” Commun Soil Sci Plant Anal, vol. 35, no. 1–2, pp. 145–160, 2004, doi: 10.1081/CSS-120027640.spa
dc.relation.references[54] E. A. Hanlon and G. V. Johnson, “Bray/kurtz, mehlich III, AB/D and ammonium acetate extractions of p, k and mg in four oklahoma soils,” Commun Soil Sci Plant Anal, vol. 15, no. 3, pp. 277–294, 1984, doi: 10.1080/00103628409367475.spa
dc.relation.references[55] A. K. Alva, “Comparison of Mehlich 3, Mehlich 1, Ammonium Bicarbonate-DTPA, 1.0m Ammonium Acetate, and 0.2m Ammonium Chloride for extraction of Calcium, Magnesium, Phosphorus, and Potassium for a wide range of soils,” Commun Soil Sci Plant Anal, vol. 24, no. 7–8, pp. 603–612, 1993, doi: 10.1080/00103629309368826.spa
dc.relation.references[56] J. Matula and J. Matula, “A relationship between multi-nutrient soil tests (Mehlich 3, ammonium acetate, and water extraction) and bioavailability of nutrients from soils for barley,” Plant Soil Environ, vol. 55, no. 4, pp. 173–180, 2009, doi: 10.17221/29/2009-pse.spa
dc.relation.references[57] G. J. Michaelson, C. L. Ping, and G. A. Mitchell, “Correlation of Mehlich 3, Bray 1, and ammonium acetate extractable P, K, Ca, and Mg for alaska agricultural soils,” Commun Soil Sci Plant Anal, vol. 18, no. 9, pp. 1003–1015, 1987, doi: 10.1080/00103628709367877.spa
dc.relation.references[58] L. M. Shuman and R. R. Duncan, “Soil Exchangeable Cations and Aluminum Measured by Ammonium Chloride, Potassium Chloride, and Ammonium Acetate,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1217–1228, 1990, doi: 10.1080/00103629009368300.spa
dc.relation.references[59] P. N. Soltanpour and A. P. Schwab, “A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils,” Commun Soil Sci Plant Anal, vol. 8, no. 3, pp. 195–207, 1977, doi: 10.1080/00103627709366714.spa
dc.relation.references[60] A. Schöning and G. W. Brümmer, “Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride,” Journal of Plant Nutrition and Soil Science, vol. 171, no. 3, pp. 392–398, 2008, doi: 10.1002/jpln.200625169.spa
dc.relation.references[61] V. J. G. Houba, E. J. M. Temminghoff, G. A. Gaikhorst, and W. van Vark, “Soil analysis procedures using 0.01 M calcium chloride as extraction reagent,” Commun Soil Sci Plant Anal, vol. 31, no. 9–10, pp. 1299–1396, 2000, doi: 10.1080/00103620009370514.spa
dc.relation.references[62] J. Sarkadi and J. Loch, “Experiences with 0.01m calcium chloride as an extraction reagent for use as a soil testing procedure in hungary,” Commun Soil Sci Plant Anal, vol. 25, no. 9–10, pp. 1771–1777, 1994, doi: 10.1080/00103629409369151.spa
dc.relation.references[63] G. C. J. Irving and M. J. McLaughlin, “A Rapid and Simple Field Test for Phosphorus in Olsen and Bray No. 1 Extracts of Soil1,” Commun Soil Sci Plant Anal, vol. 21, no. 19–20, pp. 2245–2255, 1990, doi: 10.1080/00103629009368377.spa
dc.relation.references[64] A. M. Wolf and D. E. Baker, “Comparisons of soil test phosphorus by olsen, bray pl, mehlich i and mehlich iii methods,” Commun Soil Sci Plant Anal, vol. 16, no. 5, pp. 467–484, 1985, doi: 10.1080/00103628509367620.spa
dc.relation.references[65] M. D. A. Bolland and R. J. Gilkes, “Evaluation of the Bray 1, calcium acetate lactate (CAL), Truog and Colwell soil tests as predictors of triticale grain production on soil fertilized with superphosphate and rock phosphate,” Fertilizer Research, vol. 31, no. 3, pp. 363–372, 1992, doi: 10.1007/BF01051288.spa
dc.relation.references[66] L. D. Hylander, T. Makino, and N. Ae, “Bray-2 phosphorus as influenced by soil fineness and filtration time,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 947–955, 1999, doi: 10.1080/00103629909370259.spa
dc.relation.references[67] M. Do Carmo Horta and J. Torrent, “Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils,” Soil Sci, vol. 172, no. 8, pp. 631–638, 2007, doi: 10.1097/ss.0b013e3180577270.spa
dc.relation.references[68] L. Arce, A. Ríos, and M. Valcárcel, “Direct multiparametric determination of anions in soil samples by integrating on-line automated extraction/filtering with capillary electrophoresis,” Fresenius J Anal Chem, vol. 360, no. 6, pp. 697–701, 1998, doi: 10.1007/s002160050784.spa
dc.relation.references[69] F. J. Sikora, P. S. Howe, L. E. Hill, D. C. Reid, and D. E. Harover, “Comparison of colorimetric and ICP determination of phosphorus in Mehlich3 soil extracts,” Commun Soil Sci Plant Anal, vol. 36, no. 7–8, pp. 875–887, 2005, doi: 10.1081/CSS-200049468.spa
dc.relation.references[70] O. O. Adesanwo, D. V. Ige, L. Thibault, D. Flaten, and W. Akinremi, “Comparison of Colorimetric and ICP Methods of Phosphorus Determination in Soil Extracts,” Commun Soil Sci Plant Anal, vol. 44, no. 21, pp. 3061–3075, 2013, doi: 10.1080/00103624.2013.832771.spa
dc.relation.references[71] R. N. Sah and P. H. Brown, “Boron determination - A review of analytical methods,” Microchemical Journal, vol. 56, no. 3, pp. 285–304, 1997, doi: 10.1006/mchj.1997.1428.spa
dc.relation.references[72] A. P. Mallarino, “Field Calibration for Corn of the Mehlich-3 Soil Phosphorus Test with Colorimetric and Inductively Coupled Plasma Emission Spectroscopy Determination Methods,” Soil Science Society of America Journal, vol. 67, no. 6, pp. 1928–1934, 2003, doi: 10.2136/sssaj2003.1928.spa
dc.relation.references[73] J. J. Pittman, H. Zhang, J. L. Schroder, and M. E. Payton, “Differences of phosphorus in Mehlich 3 extracts determined by colorimetric and spectroscopic methods,” Commun Soil Sci Plant Anal, vol. 36, no. 11–12, pp. 1641–1659, 2005, doi: 10.1081/CSS-200059112.spa
dc.relation.references[74] R. McDowell, A. Sharpley, P. Brookes, and P. Poulton, “Relationship between soil test phosphorus and phosphorus release to solution,” Soil Sci, vol. 166, no. 2, pp. 137–149, 2001, doi: 10.1097/00010694-200102000-00007.spa
dc.relation.references[75] O. M. Kachurina, H. Zhang, W. R. Raun, and E. G. Krenzer, “Simultaneous determination of soil aluminum, ammonium- and nitrate- nitrogen using 1 M potassium chloride,” Commun Soil Sci Plant Anal, vol. 31, no. 7–8, pp. 893–903, 2000, doi: 10.1080/00103620009370485.spa
dc.relation.references[76] D. A. Tel and C. Heseltine, “The Analyses of Kcl Soil Extracts For Nitrate, Nitrite And Ammonium Using a Traacs 800 Analyzer,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1681–1688, 1990, doi: 10.1080/00103629009368331.spa
dc.relation.references[77] K. Malekani and M. S. Cresser, “Comparison of three methods for determining boron in soils, plants, and water samples,” Commun Soil Sci Plant Anal, vol. 29, no. 3–4, pp. 285–304, 1998, doi: 10.1080/00103629809369946.spa
dc.relation.references[78] C. A. De Abreu, M. F. De Abreu, B. van Raij, O. C. Bataglia, and J. C. De Andrade, “Extraction of boron from soil by microwave heating for icp-aes determination,” Commun Soil Sci Plant Anal, vol. 25, no. 19–20, pp. 3321–3333, 1994, doi: 10.1080/00103629409369267.spa
dc.relation.references[79] E. D. Rhine, R. L. Mulvaney, E. J. Pratt, and G. K. Sims, “Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water,” Soil Science Society of America Journal, vol. 62, no. 2, p. 473, 1998, doi: 10.2136/sssaj1998.03615995006200020026x.spa
dc.relation.references[80] D. Bartelett and J. R. Neller, “Turbidimetric determination of sulfate sulfur in soil extracts,” University of Florida Agricultural Experiment Station, pp. 201–204, 1960.spa
dc.relation.references[81] D. ; G. B. Russi F.H.; Prystupa, P.; Rubio, G., “Comparación de mediciones turbidimétricas de sulfatos utilizando distintos extractantes y tratamientos del extracto,” XXII Congreso Argentino de la Ciencia del suelo. El Suelo: pilar de la agroindustria en la pampa argentina, p. 29, 2010.spa
dc.relation.references[82] H. A. Ajwa and M. A. Tabatabai, “Comparison of Some Methods for Determination of Sulfate in Soils,” Commun Soil Sci Plant Anal, vol. 24, no. 15–16, pp. 1817–1832, Sep. 1993, doi: 10.1080/00103629309368920.spa
dc.relation.references[83] J. Coutinho, “Automated method for sulphate determination in soil-plant extracts and waters,” Commun Soil Sci Plant Anal, vol. 27, no. 3–4, pp. 727–740, 1996, doi: 10.1080/00103629609369590.spa
dc.relation.references[84] R. J. Wright and T. Stuczynski, “Atomic Absorption and Flame Emission Spectrometry Chapter 4,” 1996.spa
dc.relation.references[85] M. Tüzen, “Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry,” Microchemical Journal, vol. 74, no. 3, pp. 289–297, 2003, doi: 10.1016/S0026-265X(03)00035-3.spa
dc.relation.references[86] Y. Zhang, J. N. Moore, and W. T. Frankenberger, “Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry,” Environ Sci Technol, vol. 33, no. 10, pp. 1652–1656, 1999, doi: 10.1021/es9808649.spa
dc.relation.references[87] L. Elçi, Z. Arslan, and J. F. Tyson, “Flow injection solid phase extraction with Chromosorb 102: determination of lead in soil and waters by flame atomic absorption spectrometry,” Spectrochim Acta Part B At Spectrosc, vol. 55, no. 7, pp. 1109–1116, 2000, doi: 10.1016/S0584-8547(00)00195-6.spa
dc.relation.references[88] K. W. Jackson and A. P. Newman, “Determination of lead in soil by graphite furnace atomic-absorption spectrometry with the direct introduction of slurries,” Analyst, vol. 108, no. 1283, pp. 261–264, 1983, doi: 10.1039/an9830800261.spa
dc.relation.references[89] D. J. David, “The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry,” Analyst, vol. 85, no. 1012, pp. 495–503, 1960, doi: 10.1039/AN9608500495.spa
dc.relation.references[90] D. J. Eckert and M. E. Watson, “Integrating the Mehlich-3 extractant into existing soil test interpretation schemes,” Commun Soil Sci Plant Anal, vol. 27, no. 5–8, pp. 1237–1249, 1996, doi: 10.1080/00103629609369629.spa
dc.relation.references[91] B. J. A. Haring, W. van Delft, and C. M. Bom, “Determination of arsenic and antimony in water and soil by hydride generation and atomic absorption spectroscopy,” Fresenius’ Zeitschrift für Analytische Chemie, vol. 310, no. 3–4, pp. 217–223, 1982, doi: 10.1007/BF00484035.spa
dc.relation.references[92] K. S. Patel, P. C. Sharma, and P. Hoffmann, “Graphite furnace-atomic absorption spectrophotometric determination of palladium in soil,” Fresenius J Anal Chem, vol. 367, no. 8, pp. 738–741, 2000, doi: 10.1007/s002160000483.spa
dc.relation.references[93] M. D. Ho and G. J. Evans, “Operational Speciation of Cadmium, Copper, Lead and Zinc in the NIST Standard Reference Materials 2710 and 2711 (Montana Soil) by the BCR Sequential Extraction Procedure and Flame Atomic Absorption Spectrometry,” Analytical Communications, vol. 34, no. 11, pp. 363–364, 1997, doi: 10.1039/a706954e.spa
dc.relation.references[94] Ş. Tokalioǧlu and Ş. Kartal, “Relationship Between Vegetable Metal and Soil-Extractable Metal Contents by the BCR Sequential Extraction Procedure: Chemometrical Interpretation of the Data,” Int J Environ Anal Chem, vol. 83, no. 11, pp. 935–952, 2003, doi: 10.1080/03067310310001608740.spa
dc.relation.references[95] T. L. Yuan and H. L. Breland, “Evaluation of Atomic Absoprtion Methods for Determinations of Aluminium, Iron, and Silicon in Clay and Soil Extracts,” Journal Series Paper No. 3094, pp. 868–872, 1969.spa
dc.relation.references[96] V. Andreu and E. Gimeno-García, “Total content and extractable fraction of cadmium, cobalt, copper, nickel, lead, and zinc in calcareous orchard soils,” Commun Soil Sci Plant Anal, vol. 27, no. 13–14, pp. 2633–2648, 1996, doi: 10.1080/00103629609369728.spa
dc.relation.references[97] S. G. Dolar and D. R. Keeney, “Availability of Cu, Zn and Mn in soils: I.—Influence of soil pH, organic matter, and extractable phosphorus,” J Sci Food Agric, vol. 22, no. 6, pp. 273–278, 1971, doi: 10.1002/jsfa.2740220602.spa
dc.relation.references[98] B. E. Yusiharni, H. Ziadi, and R. J. Gilkes, “A laboratory and glasshouse evaluation of chicken litter ash, wood ash, and iron smelting slag as liming agents and P fertilisers,” Australian Journal of Soil Research, vol. 45, no. 5, pp. 374–389, 2007, doi: 10.1071/SR06136.spa
dc.relation.references[99] W. L. Lindsay and W. A. Norvell, “Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper,” Soil Science Society of America Journal, vol. 42, no. 3, pp. 421–428, 1978, doi: 10.2136/sssaj1978.03615995004200030009x.spa
dc.relation.references[100] R. Garcia and E. Millán, “Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain),” Chemosphere, vol. 37, no. 8, pp. 1615–1625, 1998, doi: 10.1016/S0045-6535(98)00152-0.spa
dc.relation.references[101] B. D. Tembo, K. Sichilongo, and J. Cernak, “Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia,” Chemosphere, vol. 63, no. 3, pp. 497–501, 2006, doi: 10.1016/j.chemosphere.2005.08.002.spa
dc.relation.references[102] C. Mico, L. Recatala, M. Peris, and Juan. Sanchez, “A comparison of two digestion methods for the analysis of heavy metals by flame atomic absorption spectroscopy.,” Spectroscopy Europe, vol. 19, no. 1, pp. 23–26, 2007.spa
dc.relation.references[103] M. Ghaedi, M. R. Fathi, A. Shokrollahi, and F. Shajarat, “Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy,” Anal Lett, vol. 39, no. 6, pp. 1171–1185, 2006, doi: 10.1080/00032710600622167.spa
dc.relation.references[104] C. Monterroso and F. Macías, “Evaluation of the Test-Mineral Method for Studying Minesoil Geochemistry,” Soil Science Society of America Journal, vol. 62, no. 6, pp. 1741–1748, 1998, doi: 10.2136/sssaj1998.03615995006200060036x.spa
dc.relation.references[105] P. N. Soltanpour, F. Collins, and R. O. Miller, “Inductively Coupled Plasma Emission Spectrometry and Inductively Coupled,” Methods of soil analysis. Part 3 - chemical methods., no. 5, pp. 91–139, 1996.spa
dc.relation.references[106] H. Kawaguchi, “Inductively coupled plasma mass spectrometry. A review.,” Analytical Sciences, vol. 4, no. 4, pp. 339–345, 1988, doi: 10.2116/analsci.4.339.spa
dc.relation.references[107] J. Feuerstein, S. F. Boulyga, P. Galler, G. Stingeder, and T. Prohaska, “Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS),” J Environ Radioact, vol. 99, no. 11, pp. 1764–1769, 2008, doi: 10.1016/j.jenvrad.2008.07.002.spa
dc.relation.references[108] L. Arroyo, T. Trejos, T. Hosick, S. Machemer, J. R. Almirall, and P. R. Gardinali, “Analysis of soils and sediments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): An innovative tool for environmental forensics,” Environ Forensics, vol. 11, no. 4, pp. 315–327, 2010, doi: 10.1080/15275922.2010.494949.spa
dc.relation.references[109] S. F. Boulyga and J. S. Becker, “Determination of uranium isotopic composition and236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry,” Fresenius J Anal Chem, vol. 370, no. 5, pp. 612–617, 2001, doi: 10.1007/s002160100838.spa
dc.relation.references[110] M. Hollenbach, J. Grohs, S. Mamich, M. Kroft, and E. R. Denoyer, “Determination of Technetium-99, Thorium-230 and Uranium-234 in Soils,” vol. 9, no. September, 1994.spa
dc.relation.references[111] J. B. Jones, “Elemental analysis of soil extracts and plant tissue ash by plasma emission spectroscopy,” Commun Soil Sci Plant Anal, vol. 8, no. 4, pp. 349–365, 1977, doi: 10.1080/00103627709366727.spa
dc.relation.references[112] H. Performance and C. Electrophoresis, “Capillary Electrophoresis Capillary electrophoresis,” Food Toxicants Analysis: Techniques, Strategies and Developments, vol. 1997, no. 2, pp. 561–597, 2014, doi: 10.1021/acs.analchem.5b04125.spa
dc.relation.references[113] B. Westergaard, H. C. B. Hansen, and O. K. Borggaard, “Determination of anions in soil solutions by capillary zone electrophoresis.”spa
dc.relation.references[114] A. Göttlein, “Determination of free Al3+ in soil solutions by capillary electrophoresis,” Eur J Soil Sci, vol. 49, no. 1, pp. 107–112, 1998, doi: 10.1046/j.1365-2389.1998.00133.x.spa
dc.relation.references[115] G. Dinelli, A. Vicari, and V. Brandolini, “Detection and quantitation of sulfonylurea herbicides in soil at the ppb level by capillary electrophoresis,” J Chromatogr A, vol. 700, no. 1–2, pp. 201–207, 1995, doi: 10.1016/0021-9673(95)00099-9.spa
dc.relation.references[116] H. J. Menne, K. Janowitz, and B. M. Berger, “Comparison of capillary electrophoresis and liquid chromatography for determination of sulfonylurea herbicides in soil,” J AOAC Int, vol. 82, no. 6, pp. 1534–1541, 1999, doi: 10.1093/jaoac/82.6.1534.spa
dc.relation.references[117] J. Hernández-Borges, F. J. García-Montelongo, A. Cifuentes, and M. Á. Rodríguez-Delgado, “Analysis of triazolopyrimidine herbicides in soils using field-enhanced sample injection-coelectroosmotic capillary electrophoresis combined with solid-phase extraction,” J Chromatogr A, vol. 1100, no. 2, pp. 236–242, 2005, doi: 10.1016/j.chroma.2005.09.053.spa
dc.relation.references[118] C. Casiot, M. C. B. Alonso, J. Boisson, O. F. X. Donard, and M. Potin-Gautier, “Simultaneous speciation of arsenic, selenium, antimony and tellurium species in waters and soil extracts by capillary electrophoresis and UV detection,” Analyst, vol. 123, no. 12, pp. 2887–2893, 1998, doi: 10.1039/a805954c.spa
dc.relation.references[119] R. Naidu, J. Smith, R. G. Mclaren, D. P. Stevens, M. E. Sumner, and P. E. Jackson, “Application of Capillary Electrophoresis to Anion Speciation in Soil Water Extracts: II. Arsenic,” Soil Sci. Soc. Am. J., vol. 64, pp. 122–128, 2000.spa
dc.relation.references[120] B. L. Chu, B. Y. Guo, Z. Peng, Z. Wang, G. Guo, and J. M. Lin, “Studies on degradation of imazalil enantiomers in soil using capillary electrophoresis,” J Sep Sci, vol. 30, no. 6, pp. 923–929, 2007, doi: 10.1002/jssc.200600447.spa
dc.relation.references[121] C. R. Warren, “Rapid and sensitive quantification of amino acids in soil extracts by capillary electrophoresis with laser-induced fluorescence,” Soil Biol Biochem, vol. 40, no. 4, pp. 916–923, 2008, doi: 10.1016/j.soilbio.2007.11.011.spa
dc.relation.references[122] R. Jagadish and V. A. Shanmugaselvan, “Quantification of Inorganic Anions in Tea (Camellia Sinensis (L) O. Kuntze) Tissues and Soil Using Ion Chromatography Coupled with Conductivity Detector,” Commun Soil Sci Plant Anal, vol. 49, no. 8, pp. 875–888, 2018, doi: 10.1080/00103624.2018.1448404.spa
dc.relation.references[123] M. B. Turrión, J. F. Gallardo, and M. I. González, “Extraction of soil-available phosphate, nitrate, and sulphate ions using ion exchange membranes and determination by ion exchange chromatography,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 1137–1152, 1999, doi: 10.1080/00103629909370274.spa
dc.relation.references[124] A. C. Scheinost, R. Kretzschmar, S. Pfister, and D. R. Roberts, “Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil,” Environ Sci Technol, vol. 36, no. 23, pp. 5021–5028, Dec. 2002, doi: 10.1021/es025669f.spa
dc.relation.references[125] I. J. Pickering, N. E. Brown, and T. K. Tokunaga, “Quantitative Speciation of Selenium in Soils Usiny X-ray Absorption Spectroscopy,” Environ Sci Technol, vol. 29, no. 9, pp. 2456–2459, 1995.spa
dc.relation.references[126] S. Gaudino et al., “The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results,” Accreditation and Quality Assurance, vol. 12, no. 2, pp. 84–93, Feb. 2007, doi: 10.1007/s00769-006-0238-1.spa
dc.relation.references[127] Soil Analysis: Recent Trends and Applications. Springer Singapore, 2020. doi: 10.1007/978-981-15-2039-6.spa
dc.relation.references[128] LGC, “Analytical reference materials, standards and high purity solvents,” Lgcstandards.Com, p. 75, 2011, [Online]. Available: www.lgcstandards.comspa
dc.relation.references[129] “EPTIS | Home.” https://www.eptis.org/ (accessed Jul. 19, 2023).spa
dc.relation.references[130] “WEPAL-QUASIMEME - WEPAL.” https://www.wepal.nl/en/wepal.htm (accessed Jul. 19, 2023).spa
dc.relation.references[131] “Directorio Oficial de Acreditados - DOA | ONAC.” https://onac.org.co/directorio-de-acreditados/ (accessed Jul. 19, 2023).spa
dc.relation.references[132] “Sociedad Colombiana de la Ciencia del Suelo.” https://sccsuelos.org/ (accessed Jul. 19, 2023).spa
dc.relation.references[133] S. W. Culman et al., “Calibration of Mehlich-3 with Bray P1 and Ammonium Acetate in the Tri-State Region of Ohio, Indiana and Michigan,” Commun Soil Sci Plant Anal, vol. 51, no. 1, pp. 86–97, 2019, doi: 10.1080/00103624.2019.1695825.spa
dc.relation.references[134] J. Zbiral, “Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants,” Commun Soil Sci Plant Anal, vol. 31, no. 19–20, pp. 3037–3048, 2000, doi: 10.1080/00103620009370648.spa
dc.relation.references[135] A. D. C. Chilimba, S. K. Mughogho, and J. Wendt, “Mehlich 3 or Modified Olsen for soil testing in Malawi,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 1231–1250, 1999, doi: 10.1080/00103629909370280.spa
dc.relation.references[136] W. Hao et al., “Rapid classification of soils from different mining areas by laser-induced breakdown spectroscopy (LIBS) coupled with a PCA-based convolutional neural network,” J Anal At Spectrom, vol. 36, no. 11, pp. 2509–2518, Nov. 2021, doi: 10.1039/D1JA00078K.spa
dc.relation.references[137] Z. O. Alibrahim and C. D. Williams, “Assessment of bioavailability of some potential toxic metals in mining-affected soils using EDTA extraction and principle component analysis (PCA) approach, Derbyshire, UK,” Interdisciplinary Journal of Chemistry, vol. 1, no. 2, 2016, doi: 10.15761/IJC.1000110.spa
dc.relation.references[138] X. Wang, T. Guo, Y. Wang, Y. Xing, Y. Wang, and X. He, “Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA,” Agric Water Manag, vol. 237, Jul. 2020, doi: 10.1016/j.agwat.2020.106180.spa
dc.relation.references[139] S. Rodrigues et al., “The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal,” Environ Chem Lett, vol. 7, no. 2, pp. 141–148, 2009, doi: 10.1007/s10311-008-0149-y.spa
dc.relation.references[140] M. Ferde et al., “SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • Chemical characterization of the soils from black pepper (Piper nigrum L.) cultivation using principal component analysis (PCA) and Kohonen self-organizing map (KSOM)”, doi: 10.1007/s11368-021-02966-3/Published.spa
dc.relation.references[141] Comité 013 Calidad del suelo - ICONTEC.” https://econecta.icontec.org/cmtvw.aspx?ID=F3B2CDAC9DA30AD6 (accessed Jul. 19, 2023).spa
dc.relation.references[142] I. R. B. Olivares, G. B. Souza, A. R. A. Nogueira, G. T. K. Toledo, and D. C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices,” TrAC - Trends in Analytical Chemistry, vol. 100. Elsevier B.V., pp. 53–64, Mar. 01, 2018. doi: 10.1016/j.trac.2017.12.013.spa
dc.relation.references[143] I. Kuselman and A. Fajgelj, “IUPAC/CITAC Guide: Selection and use of proficiency testing schemes for a limited number of participants-chemical analytical laboratories (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 82, no. 5, pp. 1099–1135, 2010, doi: 10.1351/PAC-REP-09-08-15.spa
dc.relation.references[144] “Reference materials-Guidance for the characterization and the assessment of the homogeneity and stability of the material,” 2015, [Online]. Available: www.iso.orgspa
dc.relation.references[145] D. A. Ahumada-Forigua, L. L. Soto-Morales, L. V. Morales-Erazo, and J. P. Abella-Gamba, “Development of a certified reference material for elemental analysis of drinking water,” Revista Colombiana de Química, vol. 48, no. 3, pp. 36–44, Sep. 2019, doi: 10.15446/rev.colomb.quim.v48n3.78660.spa
dc.relation.references[146] R. Sánchez, J. Snell, A. Held, and H. Emons, “Development and validation of a method for mercury determination in seawater for the process control of a candidate certified reference material,” Anal Bioanal Chem, vol. 407, no. 21, pp. 6569–6574, 2015, doi: 10.1007/s00216-015-8833-9.spa
dc.relation.references[147] T. P. J. Linsinger et al., “Homogeneity and stability of reference materials,” Springer-Verlag, 2001.spa
dc.relation.references[148] L. Deprez et al., “Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material,” Biomol Detect Quantif, vol. 9, pp. 29–39, 2016, doi: 10.1016/j.bdq.2016.08.002.spa
dc.relation.references[149] “Norma Técnica Colombiana NTC 5402: Calidad del suelo. Determinación del ... - Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) - Google Libros.” https://books.google.com.co/books/about/Norma_T%C3%A9cnica_Colombiana_NTC_5402.html?id=tpodtAEACAAJ&redir_esc=y (accessed Jul. 19, 2023).spa
dc.relation.references[150] “Calidad del suelo. determinación de fósforo disponible.” https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-fosforo-disponible-ntc5350-2020.html (accessed Jul. 19, 2023).spa
dc.relation.references[151] “Calidad del suelo. Determinación de la humedad y del factor de corrección (Pw), expresados en base seca” https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-la-humedad-y-del-factor-de-correccion-pw-expresados-en-base-seca-ntc6230-2017.html (accessed Jul. 19, 2023).spa
dc.relation.references[152] Y. Zhu et al., “Applications and uncertainty estimation of single level standard addition method ICP-MS for elemental analysis in various matrix,” Analytical Sciences, vol. 34, no. 6, pp. 701–710, 2018, doi: 10.2116/analsci.18SBP09.spa
dc.relation.references[153] C. Uribe and E. Cosio, “Combination of single-point standard addition calibration and natural internal standardization for quantification of terpenes in Pisco samples,” Lwt, vol. 147, no. April, p. 111551, 2021, doi: 10.1016/j.lwt.2021.111551.spa
dc.relation.references[154] A. Hineman and C. Stephan, “Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality,” J Anal At Spectrom, vol. 29, no. 7, pp. 1252–1257, 2014, doi: 10.1039/c4ja00097h.spa
dc.relation.references[155] F. Vanhaecke, H. Vanhoe, R. Dams, and C. Vandecasteele, “The use of internal standards in ICP-MS,” Talanta, vol. 39, no. 7, pp. 737–742, 1992, doi: 10.1016/0039-9140(92)80088-U.spa
dc.relation.references[156] C. Xie, J. Xu, J. Tang, S. A. Baig, and X. Xu, “Comparison of Phosphorus Determination Methods by Ion Chromatography and Molybdenum Blue Methods,” Commun Soil Sci Plant Anal, vol. 44, no. 17, pp. 2535–2545, Sep. 2013, doi: 10.1080/00103624.2013.811518.spa
dc.relation.references[157] P. Masson, C. Morel, E. Martin, A. Oberson, and D. Friesen, “Comparison of soluble P in soil water extracts determined by ion chromatography, colorimetric, and inductively coupled plasma techniques in PPB range,” Commun Soil Sci Plant Anal, vol. 32, no. 13–14, pp. 2241–2253, 2001, doi: 10.1081/CSS-120000280.spa
dc.relation.references[158] P. N. Soltanpour, A. Khan, and W. L. Lindsay’, “Factors Affecting Dtpa-Extractable Zn, Fe, Mn, and Cu from Soils1,” Commun Soil Sci Plant Anal, vol. 7, no. 9, pp. 797–821, 1976, doi: 10.1080/00103627609366689.spa
dc.relation.references[159] M. Thompson and S. L. R. Ellison, “A review of interference effects and their correction in chemical analysis with special reference to uncertainty,” Accreditation and Quality Assurance, vol. 10, no. 3, pp. 82–97, 2005, doi: 10.1007/s00769-004-0871-5.spa
dc.relation.references[160] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 919,” 2019.spa
dc.relation.references[161] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 890,” pp. 1–12, 2019.spa
dc.relation.references[162] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 850,” pp. 1–12, 2019.spa
dc.relation.references[163] C. Voica, A. Dehelean, A. Iordache, and I. Geana, “Method validation for determination of metals in soils by ICP-MS,” Rom Rep Phys, vol. 64, no. 1, pp. 221–231, 2012.spa
dc.relation.references[164] W. Horwitz and R. Albert, “The Horwitz ratio (HorRat): A useful index of method performance with respect to precision,” J AOAC Int, vol. 89, no. 4, pp. 1095–1109, 2006, doi: 10.1093/jaoac/89.4.1095.spa
dc.relation.references[165] A. Gustavo González and M. Ángeles Herrador, “A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles,” TrAC - Trends in Analytical Chemistry, vol. 26, no. 3, pp. 227–238, 2007, doi: 10.1016/j.trac.2007.01.009.spa
dc.relation.references[166] “CITAC / EURACHEM GUIDE Guide to Quality in Analytical Chemistry An Aid to Accreditation,” 2002. [Online]. Available: http://www.european-accreditation.org/publication/citac-eurachem-taspa
dc.relation.references[167] JCGM, “Evaluation of measurement data-Guide to the expression of uncertainty in measurement Évaluation des données de mesure-Guide pour l’expression de l’incertitude de mesure,” 2008. [Online]. Available: www.bipm.orgspa
dc.relation.references[168] FAO 2009, “La agricultura mundial en la perspectiva del año 2050,” Fao, p. 4, 2009, [Online]. Available: http://www.fao.org/fileadmin/templates/wsfs/docs/Ispa
dc.relation.references[169] K. Montiel and M. Ibrahim, “Manejo integrado de suelos para una agricultura resiliente al cambio climático.” [Online]. Available: http://www.iica.intspa
dc.relation.references[170] V. E. Vallejo-Quintero, “Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles,” Colombia Forestal, vol. 16, no. 1, pp. 83–99, 2013, Accessed: Jul. 19, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-07392013000100006&lng=en&nrm=iso&tlng=esspa
dc.relation.references[171] G. De Dios, E. Ortega-jimenez, A. Guerrero, C. J. López, and E. Ortega, “Importancia de la fertilización en praderas tropicales,” Agroproductividad, vol. 11, no. 5, pp. 130–133, May 2019.spa
dc.relation.references[172] B. King, “The selection and use of reference materials - a basic guide for laboratories and accreditation bodies,” Accreditation and Quality Assurance, vol. 8, no. 9, pp. 429–433, Sep. 2003, doi: 10.1007/s00769-003-0601-4.spa
dc.relation.references[173] E. V. Vanchikova et al., “Comparative assessment of the methods for exchangeable acidity measuring,” Eurasian Soil Science, vol. 49, no. 5, pp. 512–518, 2016, doi: 10.1134/S1064229316050136.spa
dc.relation.references[174] LGC, “Reference Materials Catalogue,” 2022. [Online]. Available: https://ec.europa.eu/jrcspa
dc.relation.references[175] P. M. Chetty and D. Van Dijk, “The establishment and use of a reference material as a control sample,” Commun Soil Sci Plant Anal, vol. 33, no. 15–18, pp. 2653–2659, 2002, doi: 10.1081/CSS-120014470.spa
dc.relation.references[176] “North American Proficiency Testing | NAPT.” https://www.naptprogram.org/ (accessed Jul. 19, 2023).spa
dc.relation.references[177] “Nutrients in Soil | CRM, PT, QR, Soil | ERA.” https://www.eraqc.com/nutrients-in-soil-soil-era000128 (accessed Jul. 19, 2023).spa
dc.relation.references[178] A. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016, doi: 10.1002/jrsm.1164.spa
dc.relation.references[179] R. DerSimonian and N. Laird, “Meta-analysis in clinical trials revisited,” Contemp Clin Trials, vol. 45, pp. 139–145, Jun. 2015, doi: 10.1016/j.cct.2015.09.002.spa
dc.relation.references[180] S. Ariel, R. Ovelar, and H. Causarano, “Heterogeneidad del suelo en un campo experimental y su efecto sobre el sesamo (Sesamum indicum l.),” Investigación Agraria, vol. 4, no. 1, pp. 13–16.spa
dc.relation.references[181] R. Fernández and N. Trillo, “La textura del suelo como fuente de heterogeneidad; sus efectos sobre la oferta de agua para las plantas,” pp. 171–192, 2017, Accessed: Jul. 19, 2023. [Online]. Available: https://www.researchgate.net/publication/319872937_La_textura_del_suelo_como_fuente_de_heterogeneidad_sus_efectos_sobre_la_oferta_de_agua_para_las_plantasspa
dc.relation.references[182] V. M. Mayor-Durán, M. Blair, and J. E. Muñoz, “Metodología para estimar el coeficiente de heterogeneidad del suelo, el número de repeticiones y el tamaño de parcela en investigaciones con frijol (Phaseolus vulgaris L.),” Acta Agron, vol. 61, no. 1, pp. 32–39, 2012, Accessed: Jul. 19, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28122012000100005&lng=en&nrm=iso&tlng=esspa
dc.relation.references[183] A. M. Idris and A. A. El-Zahhar, “Indicative properties measurements by SEM, SEM-EDX and XRD for initial homogeneity tests of new certified reference materials,” Microchemical Journal, vol. 146, pp. 429–433, May 2019, doi: 10.1016/j.microc.2019.01.032.spa
dc.relation.references[184] A. Sahuquillo, A. Rigol, and G. Rauret, “Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments,” TrAC - Trends in Analytical Chemistry, vol. 22, no. 3. Elsevier, pp. 152–159, Mar. 01, 2003. doi: 10.1016/S0165-9936(03)00303-0.spa
dc.relation.references[185] E. A. Mackey et al., “Certification of Three NIST Renewal Soil Standard Reference Materials for Element Content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II.”spa
dc.relation.references[186] M. A. Taboada, R. S. Lavado, and Universidad de Buenos Aires. Facultad de Agronomia., Alteraciones de la fertilidad de los suelos : El halomorfismo, la acidez, el hidromorfismo y las inundaciones.spa
dc.relation.references[187] F. Pereyra, Suelos de la Argentina Geografía de suelos, factores y procesos formadores. Buenos Aires, Argentina, 2011.spa
dc.relation.references[188] ICONTEC, “NTC 5264 Calidad Del Suelo. Determinación de pH.” [Online]. Available: https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-del-ph-ntc5264-2018.html (accessed Jul. 19, 2023).spa
dc.relation.references[189] L. Soto, F. Niño, D. Garzón, and D. Ahumada, “Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment,” 17th IMEKO TC 10 and EUROLAB Virtual Conference“Global Trends in Testing, Diagnostics & Inspection for 2030” , pp. 123–128, 2020, Accessed: Jul. 19, 2023. [Online]. Available: https://www.imeko.org/publications/tc10-2020/IMEKO-TC10-2020-014.pdfspa
dc.relation.references[190] ISO, “ISO 13528:2022 Statistical methods for use in proficiency testing by interlaboratory comparison.” https://es.scribd.com/document/529604884/ISO-13528-SP (accessed Jul. 19, 2023).spa
dc.relation.references[191] C. De Kreij and G. Wever, “Proficiency testing of growing media, soil improvers, soils, and nutrient solutions,” Commun Soil Sci Plant Anal, vol. 36, no. 1–3, pp. 81–88, 2005, doi: 10.1081/CSS-200042971.spa
dc.relation.references[192] P. Quevauviller et al., “Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soil (CRM 600),” Fresenius J Anal Chem, vol. 360, no. 5, pp. 505–511, 1998, doi: 10.1007/s002160050750.spa
dc.relation.references[193] A. M. Idris, A. O. Alnajjar, T. S. Alkhuraiji, and K. F. Fawy, “Long-term stability test of elemental content in new environmental certified reference material candidates using ICP OES and ICP-SFMS,” Toxin Rev, vol. 40, no. 4, pp. 645–653, 2021, doi: 10.1080/15569543.2019.1617315.spa
dc.relation.references[194] R. Magari, “Assessing Shelf Life Using Real-Time and Accelerated Stability Tests,” Biopharm Int, pp. 36–47, Nov. 2003, Accessed: Jul. 19, 2023. [Online]. Available: https://www.researchgate.net/publication/289381233_Assessing_Shelf_Life_Using_Real-Time_and_Accelerated_Stability_Testsspa
dc.relation.references[195] G. W. Thomas, “Soil pH and Soil Acidity,” Methods of Soil Analysis, Part 3: Chemical Methods, pp. 475–490, Jan. 2018, doi: 10.2136/SSSABOOKSER5.3.C16.spa
dc.relation.references[196] E. Amézketa, “Soil Aggregate Stability: A Review,” Journal of Sustainable Agriculture, vol. 14, no. 2–3, pp. 83–151, Jul. 1999, doi: 10.1300/J064V14N02_08.spa
dc.relation.references[197] B. D. Kay, “Soil Structure and Organic Carbon: A Review,” Soil Processes and the Carbon Cycle, pp. 169–197, Feb. 2018, doi: 10.1201/9780203739273-13.spa
dc.relation.references[198] C. A. Lucho-Constantino, M. Álvarez-Suárez, R. I. Beltrán-Hernández, F. Prieto-García, and H. M. Poggi-Varaldo, “A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater,” Environ Int, vol. 31, no. 3, pp. 313–323, Apr. 2005, doi: 10.1016/J.ENVINT.2004.08.002.spa
dc.relation.references[199] R. P. Matos, V. M. P. Lima, C. C. Windmöller, and C. C. Nascentes, “Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil,” J Geochem Explor, vol. 172, pp. 195–202, Jan. 2017, doi: 10.1016/J.GEXPLO.2016.11.001.spa
dc.relation.references[200] M. F. Alarcón-Jiménez, J. H. Camacho-Tamayo, and J. H. Bernal, “Management zones based on corn yield and soil physical attributes,” Agron Colomb, vol. 33, no. 3, pp. 373–382, 2015, doi: 10.15446/AGRON.COLOMB.V33N3.53760.spa
dc.relation.references[201] D. Borsboom, “Latent Variable Theory,” Measurement: Interdisciplinary Research & Perspective, vol. 6, no. 1–2, pp. 25–53, May 2008, doi: 10.1080/15366360802035497.spa
dc.relation.references[202] D. Borsboom, G. J. Mellenbergh, and J. Van Heerden, “The Theoretical Status of Latent Variables,” Psychological Review, vol. 110, no. 2. pp. 203–219, Apr. 2003. doi: 10.1037/0033-295X.110.2.203.spa
dc.relation.references[203] S. L. R. Ellison and M. Thompson, “Standard additions: Myth and reality,” Analyst, vol. 133, no. 8. Royal Society of Chemistry, pp. 992–997, 2008. doi: 10.1039/b717660k.spa
dc.relation.references[204] N. C. Schwertman, M. A. Owens, and R. Adnan, “A simple more general boxplot method for identifying outliers,” Comput Stat Data Anal, vol. 47, no. 1, pp. 165–174, Aug. 2004, doi: 10.1016/J.CSDA.2003.10.012.spa
dc.relation.references[205] J. E. Cavanaugh and A. A. Neath, “The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements,” Wiley Interdiscip Rev Comput Stat, vol. 11, no. 3, p. e1460, May 2019, doi: 10.1002/WICS.1460.spa
dc.relation.references[206] H. Louie, M. Wu, P. Di, P. Snitch, and G. Chapple, “Direct determination of trace elements in sea-water using reaction cell inductively coupled plasma mass spectrometry,” J Anal At Spectrom, vol. 17, no. 6, pp. 587–591, 2002, doi: 10.1039/b109121m.spa
dc.relation.references[207] Q. Ketterings, C. Miyamoto, R. R. Mathur, K. Dietzel, and S. Gami, “A Comparison of Soil Sulfur Extraction Methods,” Soil Science Society of America Journal, vol. 75, no. 4, pp. 1578–1583, 2011, doi: 10.2136/sssaj2010.0407.spa
dc.relation.references[208] I. Povar and O. Spinu, “The role of hydroxy aluminium sulfate minerals in controlling Al 3+ concentration and speciation in acidic soils,” Central European Journal of Chemistry, vol. 12, no. 8, pp. 877–885, 2014, doi: 10.2478/s11532-014-0540-4.spa
dc.relation.references[209] C. Córdova et al., “Scientific Note. An alternative method to measure available sulphur by ion chromatograhy in volcanic soils,” Chilean J. Agric. Anim. Sci., ex Agro-Ciencia, vol. 33, no. 2, p. 118, 2017.spa
dc.relation.references[210] C. G. Kowalenko and D. Babuin, “Interference problems with phosphoantimonylmolybdenum colorimetric measurement of phosphorus in soil and plant materials,” Commun Soil Sci Plant Anal, vol. 38, no. 9–10, pp. 1299–1316, May 2007, doi: 10.1080/00103620701328594.spa
dc.relation.references[211] J. B. Rodriguez, J. R. Self, and P. N. Soltanpour, “Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method,” Soil. Sci. Soc. Am. J., vol. 58, no. May-June, pp. 867–870, 1994.spa
dc.relation.references[212] L. L. Wei, C. R. Chen, and Z. H. Xu, “The effect of low-molecular-weight organic acids and inorganic phosphorus concentration on the determination of soil phosphorus by the molybdenum blue reaction,” Biol Fertil Soils, vol. 45, no. 7, pp. 775–779, 2009, doi: 10.1007/s00374-009-0381-z.spa
dc.relation.references[213] E. A. Nagul, I. D. McKelvie, P. Worsfold, and S. D. Kolev, “The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box,” Anal Chim Acta, vol. 890, pp. 60–82, 2015, doi: 10.1016/j.aca.2015.07.030.spa
dc.relation.references[214] J. T. Sloop, D. A. Gonçalves, L. M. O’brien, J. A. Carter, B. T. Jones, and G. L. Donati, “Evaluation of different approaches to applying the standard additions calibration method,” Anal Bioanal Chem, vol. 413, pp. 1293–1302, 2021, doi: 10.1007/s00216-020-03092-8/Published.spa
dc.relation.references[215] A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, 2012, doi: 10.1007/s00769-011-0827-5.spa
dc.relation.references[216] G. Giannoulas, G. Z. Tsogas, and D. L. Giokas, “Single-point calibration and standard addition assays on calibrant-loaded paper-based analytical devices,” Talanta, vol. 201, pp. 149–155, Aug. 2019, doi: 10.1016/j.talanta.2019.04.008.spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocMetrologíaspa
dc.subject.agrovocmetrologyeng
dc.subject.agrovocCationesspa
dc.subject.agrovoccationseng
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.proposalSuelosspa
dc.subject.proposalMaterial de referenciaspa
dc.subject.proposalComparabilidadspa
dc.subject.proposalCorrelacionesspa
dc.subject.proposalElementos disponiblesspa
dc.subject.proposalSoilseng
dc.subject.proposalReference materialeng
dc.subject.proposalComparabilityeng
dc.subject.proposalCorrelationseng
dc.subject.proposalSoil available elementseng
dc.titleDesarrollo de herramientas metrológicas para la medición de aniones y cationes en suelosspa
dc.title.translatedDevelopment of metrological tools for the measurement of anions and cations in soilseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52964051.2023.pdf
Tamaño:
4.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: