Internal and external aspects of continuous logic and categorical logic for sheaves over quantales

dc.contributor.advisorMariano, Hugo Luiz
dc.contributor.advisorZambrano Ramírez, Pedro Hernán
dc.contributor.authorReyes Gaona, David
dc.contributor.researchgateReyes, Davidspa
dc.contributor.researchgroupInteracciones Entre Teoría de Modelos, Teoría de Conjuntos, Categorías, Análisis y Geometríaspa
dc.date.accessioned2023-11-30T14:23:58Z
dc.date.available2023-11-30T14:23:58Z
dc.date.issued2023
dc.description.abstractIn this text we explore and propose notions of sheaves over commutative, integral quantales, which are based on extensions of results of the theory of sheaves over locales: the interplay of sheaves as valued-sets and the analogy of sheaves as enriched categories. Over these proposals, we define logics that find semantics in these sheaf-like objects, on the one hand, a categorical logic that characterize the notion of sheaves associated to complete valued sets as a model of certain internal construction, and in contrast an externally defined logic whose nature is based on continuous logic for metric spaces which finds in the proposal of sheaves as enriched categories an structure for interpret the semantic. (Texto tomado de la fuente)eng
dc.description.abstractEn este texto exploramos y proponemos nociones de haces sobre cuantales conmutativos e integrales, basadas en extensiones de resultados de la teoría de haces sobre locales: la interacción de los haces como conjuntos valuados y la analogía de los haces como categorías enriquecidas. Sobre estas propuestas, definimos lógicas que encuentran su semántica en estos objetos tipo haz; por un lado, una lógica categórica que caracteriza la noción de haces asociada a conjuntos valuados completos como un modelo de cierta construcción interna, y en contraste, una lógica definida externamente cuya naturaleza se basa en la lógica continua para espacios métricos, la cual encuentra en la propuesta de haces como categorías enriquecidas una estructura para interpretar su semántica.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Matemáticasspa
dc.description.researchareaLógica matemáticaspa
dc.format.extentx, 112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85026
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesKopperman, R. (1988). All topologies come from generalized metrics. American Mathematical Monthly, 95(2), 89-97.spa
dc.relation.referencesWalters, R. F. C. (1981). "Sheaves and Cauchy-Complete categories." Cahiers de topologie et géométrie différentielle catégoriques, 22(3), 283-286.spa
dc.relation.referencesWalters, R. F. C. (1982). "Sheaves on sites as Cauchy-Complete categories." Journal of pure and applied Algebra, 24, 95-102.spa
dc.relation.referencesBenabou, J. (1973). "Les distributeurs." Inst. Math. Pure Appl Univ. Louvain-la-Neuve, 33, 161-189.spa
dc.relation.referencesLawvere, F. W. (1973). "Metric spaces, generalized logic, and closed categories." Rendiconti del seminario matématico e fisico de Milano, 43, 135-166.spa
dc.relation.referencesKopperman, R. (1981). "First order topological axioms." The Journal of Symbolic Logic, 46, 475-489.spa
dc.relation.referencesFlagg, R. (1992). "Completeness In Continuity Spaces." Canadian Mathematical Society, 13, 183-199.spa
dc.relation.referencesFlagg, R., & Kopperman, R. (1997). "Continuity spaces: Reconciling domains and metric spaces." Theoretical Computer Science, 177, 111-138.spa
dc.relation.referencesFlagg, R. (1997). "Quantales and continuity spaces." Algebra Universalis, 37, 257-276.spa
dc.relation.referencesStubbe, I. (2005). "Categorical structures enriched in a quantaloid: orders and ideals over a base quantaloid." Applied Categorical Structures, 13(3), 235-255.spa
dc.relation.referencesStubbe, I. (2005). "Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories." Cahiers de Topologie et Géométrie Différentielle Catégoriques, 46, 99-121.spa
dc.relation.referencesStubbe, I. (2005). "Categorical structures enriched in a quantaloid: categories, distributors and functors." Theory Appl. Categ, 14, 1-45.spa
dc.relation.referencesBorceux, F., van de Bossche (1986). "Quantales and their sheaves." Order, 3, 61-87.spa
dc.relation.referencesMiraglia, F., & Solitro, U. (1998). "Sheaves over right sided idempotent quantales." Logic Journal of IGPL, 6(4), 545-600.spa
dc.relation.referencesHöhle, U. (1998). "GL-quantales: Q-valued sets and their singletons." Studia logica, 61, 123-148.spa
dc.relation.referencesResende, P. (2011). "Grupoid sheaves as quantale sheaves." J. Pure Appl. Algebra, 216, 41-70.spa
dc.relation.referencesBénabou, J. (1967). "Introduction to bicategories." Lecture Notes in Math, 47, 1-77.spa
dc.relation.referencesMulvey, C. (1986). "J. 1986." Suppl. Rend. Circ. Mat. Palermo Ser, 2, 99-104.spa
dc.relation.referencesHyland, J., Johnstone, P., & Pitts, A. (1980). "Tripos Theory." Mathematical Proceedings of the Cambridge Philosophical Society, 88 (2), 205-232.spa
dc.relation.referencesPitts, A. M. (1999). "Tripos Theory in Retrospect." Electronic Notes in Theoretical Computer Science, 23, 111-127.spa
dc.relation.referencesWeiss, I. (2018). "Value semigroups, values quantales, and positivity domains." 27.spa
dc.relation.referencesLieberman, M., Rosicky, J., & Zambrano, P. (2018). "Tameness in generalized metric structures." 22. [Preprint]. https://arxiv.org/abs/1810.02317spa
dc.relation.referencesShulman, M. A. (2010). "Stack semantics and the comparison of material and structural set theories." [Preprint]. https://arxiv.org/abs/arXiv:1004.3802spa
dc.relation.referencesReyes, D., & Zambrano, P. (2021). "Co-quantale valued logics." [Preprint]. https://arxiv.org/abs/arXiv:2102.06067spa
dc.relation.referencesHofman, D., & Reis, C. (2017). "Convergence and quantale-enriched categories." [Preprint]. https://arxiv.org/abs/arXiv:1705.08671spa
dc.relation.referencesAlvim, J. G., Mendes, C. A., & Mariano, H. L. (2023). "{$Q$}-Sets and Friends: Categorical Constructions and Categorical Properties." [Preprint]. https://arxiv.org/abs/arXiv:2302.03123spa
dc.relation.referencesAlvim, J. G., Mendes, C. A., & Mariano, H. L. (2023). "{$Q$}-Sets and Friends: Regarding Singleton and Gluing Completeness." [Preprint]. https://arxiv.org/abs/arXiv:2302.03691spa
dc.relation.referencesTenório, A. L., Mendes, C. A., & Mariano, H. L. (2022). "Introducing sheaves over commutative semicartesian quantales." [Preprint]. https://arxiv.org/abs/arXiv:2204.08351spa
dc.relation.referencesBen-Yaacov, I., Berenstein, A., Henson, C. W., & Usvyatsov, A. (2008). "Model theory for metric structures." In Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (Eds.), Model Theory with Applications to Algebra and Analysis (Vol. 2, pp. 315–427). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511735219.011spa
dc.relation.referencesBell, J. (2005). "Set Theory: Boolean-Valued Models and Independence Proofs" (3rd ed.). Oxford: Oxford University Press.spa
dc.relation.referencesSchweizer, B., & Sklar, A. (1983). "Probabilistic Metric Spaces." Amsterdam: North Holland.spa
dc.relation.referencesBorceux, F. (1994). "Handbook of Categorical Algebra, Volume 3, Sheaf Theory." Cambridge: Cambridge University Press.spa
dc.relation.referencesMcLarty, C. (1992). "Elementary Categories, Elementary Toposes." Oxford: Clarendon Press.spa
dc.relation.referencesMac Lane, S., & Moerdijk, I. (1992). "Sheaves in Geometry and Logic: A First Introduction to Topos Theory." Springer.spa
dc.relation.referencesJohnstone, P. T. (2002). "Sketches of an Elephant: Topos Theory Compendium." Oxford: Oxford University Press.spa
dc.relation.referencesA. L. da Conceição Tenório, C. de Andrade Mendes, J. Goudet Alvim, H.L. Mariano. "Sheaves over quantales and Grothendieck L-topoi." Work in progress, Hugo Mariano students in IME-USP, 202X.spa
dc.relation.referencesde Andrade Mendes C., Mariano H.L. "Sheaf-like categories over semicartesian quantales and applications." PhD Thesis, Work in progress, Hugo Mariano student in IME-USP, 202X.spa
dc.relation.referencesMoncayo V. J. R., Zambrano P.H. "Constructible sets in lattice-valued models." Master Thesis, Pedro Zambrano student in UNAL (Bog), 2023.spa
dc.relation.referencesK.I. Rosenthal. "Quantales and Their Applications." Pitman Research Notes in Mathematics Series, Harlow, UK, 1990.spa
dc.relation.referencesM.P. Fourman, D.S. Scott. "Sheaves and Logic." Lectures Notes in Mathematics, Springer 753, 1979.spa
dc.relation.referencesL.M. Acosta. "Temas de teoría de retículos." Universidad Nacional De Colombia, Bogotá, Colombia, 2015.spa
dc.relation.referencesG.M. Kelly. "Basic Concepts of Enriched Category Theory." Theory and Applications of Categories, 2005.spa
dc.relation.referencesG. Gierz, K. H. Hofmann, K. K., J. Lawson, M. Mislove, D. Scott. "A Compendium of Continuous Lattices." Springer-Verlag Berlin Heidelberg, 1980.spa
dc.relation.referencesM. Goldstern, H. Judah. "The Incompleteness Phenomenon: A New Course in Mathematical Logic." A K Peters, 1998.spa
dc.relation.referencesC. C. Chang, H. J. Keisler. "Continuous Model Theory." Princeton University Press, 1966.spa
dc.relation.referencesHausdorff F. "Grundzüge der Mengenlehre." Cambridge University Press, Veit, Leipzig, 1914.spa
dc.relation.referencesHofmann D., Seal G., Tholen W. "Monoidal Topology: A Categorical Approach to Order, Metric and Topology." New York: Cambridge University Press, 2014.spa
dc.relation.referencesJohn L. Bell. "Set Theory: Boolean-valued Models and Independence Proofs." Oxford Logic Guides, Clarendon Press, volume 47, Oxford, United Kingdom, 2005.spa
dc.relation.referencesD. Scott. (1972). "Continuous lattices." Lecture Notes in Mathematics - Springer-verlag-, 274, 97-136. DOI: 10.1007/BFb0073967.spa
dc.relation.referencesJosé Goudet Alvim, Arthur Francisco Schwerz Cahali, Hugo Luiz Mariano. (2022). "Induced Morphisms between Heyting-valued Models." Journal of Applied Logics, 9, 5-40.spa
dc.relation.referencesnLab. (2023). "Hyperdoctrine." Recuperado de https://ncatlab.org/nlab/show/hyperdoctrine.spa
dc.relation.referencesnLab. (2023). "Karoubi envelope." Recuperado de https://ncatlab.org/nlab/show/Karoubi+envelope.spa
dc.relation.referencesIovino, J. (1995). Stable Banach Spaces and Banach Space Structures, I: Fundamentals. En C. Raymond (Ed.), Handbook of Metric Fixed Point Theory (pp. 329-386). Taylor & Francis. DOI: 10.1201/9780429332890-10spa
dc.relation.referencesHenson, C. W., & Iovino, J. (2003). Ultraproducts in Analysis. En Editores del libro (Eds.), Analysis and Logic (pp. xi-xiv). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781107360006.002spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::514 - Topologíaspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.ddc510 - Matemáticas::514 - Topologíaspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.lembAlgebra-métodos gráficosspa
dc.subject.lembAlgebra - Graphic methodseng
dc.subject.lembLógicaspa
dc.subject.lembLogiceng
dc.subject.proposalSheaveseng
dc.subject.proposalQuantaleseng
dc.subject.proposalEnriched categorieseng
dc.subject.proposalMetric spaceseng
dc.subject.proposalQuantale valued logiceng
dc.subject.proposalHacesspa
dc.subject.proposalCuantalesspa
dc.subject.proposalCategorías enriquecidasspa
dc.subject.proposalEspacios métricosspa
dc.subject.proposalLógica cuantal valuadaspa
dc.titleInternal and external aspects of continuous logic and categorical logic for sheaves over quantaleseng
dc.title.translatedAspectos internos y externos de lógica continua y lógica categórica para haces sobre cuantalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032492033.2023.pdf
Tamaño:
836.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: