Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
dc.contributor.advisor | Téllez Meneses, Jair Alexander | |
dc.contributor.advisor | Romero Calderón, Ibeth Cristina | |
dc.contributor.author | Chavarrio Cañas, Francy Milena | |
dc.contributor.researchgroup | Grupo de enfermedades infecciosas - Pontificia Universidad Javeriana | spa |
dc.contributor.researchgroup | Grupo Infecciones y Salud en el Trópico - Universidad Nacional de Colombia sede Bogotá | spa |
dc.contributor.researchgroup | Grupo Zajuna Jwa Samu “Semilla del conocimiento” del Cesar - Universidad Nacional de Colombia sede la Paz | spa |
dc.date.accessioned | 2023-12-11T15:24:10Z | |
dc.date.available | 2023-12-11T15:24:10Z | |
dc.date.issued | 2023-12 | |
dc.description.abstract | La enfermedad de Chagas (ECh), causada por el parasito protozoario Trypanosoma cruzi, es una enfermedad endémica y desatendida en las Américas. Debido a su compleja dinámica de transmisión, se ha convertido en un problema de salud pública en el mundo. Actualmente, se cuenta con dos medicamentos para su tratamiento, benznidazol (BNZ) y nifurtimox (NFX). Esos medicamentos distan de ser un tratamiento ideal debido a su baja eficacia durante la fase crónica, a los efectos secundarios severos que llevan a una alta tasa de abandono de la terapia, y la menor susceptibilidad que presentan algunas cepas del parásito a estos medicamentos. Esas dificultades en el tratamiento de la ECh, han llevado a la necesidad de buscar nuevas alternativas terapéuticas. En este sentido, la Cisteína sintasa de T. cruzi (TcCS) ha sido estudiada como potencial blanco terapéutico, sobre la cual, se han realizado análisis de biología computacional que han permitido la identificación de moléculas con una alta afinidad y estabilidad de unión al sitio activo de la TcCS, dentro de las cuales se encuentra el elbasvir (EBV) y el glecaprevir (GCV). La presente investigación tuvo como objetivo evaluar in vitro, la actividad tripanocida y el efecto inhibitorio de EBV y de GCV sobre la actividad de la enzima TcCS. El efecto tripanocida de los compuestos fue evaluado en los estadios tripomastigote y amastigote del parásito, la citotoxicidad en células Vero y el efecto sobre la actividad enzimática a partir de extractos de proteínas solubles del parásito. El compuesto EBV presentó actividad biológica contra T. cruzi con una CE50 de 24.22 μM sobre el estadio tripomastigotes y una CI50 de 7.59 μM sobre el amastigote; con un índice de selectividad (IS) estimado de al menos 2.06 en el estadio infectivo y de al menos 6.58 sobre el estadio intracelular. Por su parte, GCV no mostró actividad biológica contra T. cruzi, y su citotoxicidad fue intermedia (CC50: 134.4 μM). Los compuestos evaluados no presentaron una inhibición selectiva de la actividad enzimática de TcCS. En conclusión, EBV presenta una actividad biológica principalmente contra el estadio amastigote de T. cruzi, lo cual hace de éste un posible compuesto líder para el desarrollo de nuevos tratamientos contra la ECh. (Texto tomado de la fuente) | spa |
dc.description.abstract | Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is an endemic and neglected disease in the Americas. Due to its complex transmission dynamics, it has become a public health problem in the world. Currently, there are two medications for its treatment, benznidazole (BNZ) and nifurtimox (NFX). These medications are far from being an ideal treatment due to their low effectiveness during the chronic phase, severe side effects that lead to a high rate of abandonment of therapy, and the lower susceptibility of some strains of the parasite to these medications. These difficulties in the treatment of CD have led to the need to search for new therapeutic alternatives. In this sense, T. cruzi Cysteine synthase (TcCS) has been studied as a potential therapeutic target, on which computational biology analyzes have been conducted that have allowed the identification of molecules with high affinity and stability of binding to the TcCS active site, among which are elbasvir (EBV) and glecaprevir (GCV). The aim of this research was to evaluate in vitro, trypanocidal activity and inhibitory effect of EBV and GCV on the activity of the TcCS enzyme. The trypanocidal effect of the compounds was evaluated in trypomastigote and amastigote stages of the parasite, cytotoxicity in Vero cells and effect on the enzymatic activity from soluble protein extracts of the parasite. The EBV compound presented biological activity against T. cruzi with an EC50 of 24.22 μM on trypomastigote stage and an IC50 of 7.59 μM on amastigote; with an estimated selectivity index (SI) of at least 2.06 in the infective stage and at least 6.58 in the intracellular stage. For its part, GCV did not show biological activity against T. cruzi, and its cytotoxicity was intermediate (CC50: 134.4 μM). The compounds evaluated did not present a selective inhibition of the enzymatic activity of TcCS. In conclusion, EBV presents biological activity mainly against amastigote stage of T. cruzi, which makes it a possible lead compound for the development of new treatments against CD. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
dc.description.researcharea | Biotecnología en salud | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85063 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Aguilera, E., Varela, J., Serna, E., Torres, S., Yaluff, G., De Bilbao, N. V., Cerecetto, H., Alvarez, G., & González, M. (2018). Looking for combination of benznidazole and trypanosoma cruzitriosephosphate isomerase inhibitors for chagas disease treatment. Memorias Do Instituto Oswaldo Cruz, 113(3), 153–160. https://doi.org/10.1590/0074-02760170267 | spa |
dc.relation.references | Asselah, T., Pol, S., Hezode, C., Loustaud-Ratti, V., Leroy, V., Ahmed, S. N. S., Ozenne, V., Bronowicki, J. P., Larrey, D., Tran, A., Alric, L., Nguyen-Khac, E., Robertson, M. N., Hanna, G. J., Brown, D., Asante-Appiah, E., Su, F. H., Hwang, P., Hall, J. D., … Serfaty, L. (2020). Efficacy and safety of elbasvir/grazoprevir for 8 or 12 weeks for hepatitis C virus genotype 4 infection: A randomized study. Liver International, 40(5), 1042–1051. https://doi.org/10.1111/liv.14313 | spa |
dc.relation.references | Atwood, J. A., Weatherly, D. B., Minning, T. A., Bundy, B., Cavola, C., Opperdoes, F. R., Orlando, R., & Tarleton, R. L. (2005). Microbiology: The Trypanosoma cruzi proteome. Science, 309(5733), 473–476. https://doi.org/10.1126/science.1110289 | spa |
dc.relation.references | Bahia, M. T., De Figueiredo Diniz, L. D. F., & Mosqueira, V. C. F. (2014). Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opinion on Investigational Drugs, 23(9), 1225–1237. https://doi.org/10.1517/13543784.2014.922952 | spa |
dc.relation.references | Balasubramaniam, M., & Reis, R. J. S. (2020). Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv : The Preprint Server for Chemistry. https://doi.org/10.26434/chemrxiv.12084822 | spa |
dc.relation.references | Beaumier, C. M., Gillespie, P. M., Strych, U., Hayward, T., Hotez, P. J., & Bottazzi, M. E. (2016). Status of vaccine research and development of vaccines for Chagas disease. Vaccine, 34(26), 2996–3000. https://doi.org/10.1016/j.vaccine.2016.03.074 | spa |
dc.relation.references | Beer, M. F., Frank, F. M., Germán Elso, O., Ernesto Bivona, A., Cerny, N., Giberti, G., Luis Malchiodi, E., Susana Martino, V., Alonso, M. R., Patricia Sülsen, V., & Cazorla, S. I. (2016). Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharmaceutical Biology, 54(10), 2188–2195. https://doi.org/10.3109/13880209.2016.1150304 | spa |
dc.relation.references | Beltran-Hortelano, I., Alcolea, V., Font, M., & Pérez-Silanes, S. (2022). Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorganic & Medicinal Chemistry, 58, 116577. https://doi.org/10.1016/j.bmc.2021.116577 | spa |
dc.relation.references | Bern, C. (2011). Antitrypanosomal Therapy for Chronic Chagas’ Disease. New England Journal of Medicine, 365(13), 1258–1259. https://doi.org/10.1056/nejmc1108653 | spa |
dc.relation.references | Bern, C., Messenger, L. A., Whitman, J. D., & Maguire, J. H. (2019). Chagas disease in the united states: A public health approach. Clinical Microbiology Reviews, 33(1), 1–42. https://doi.org/10.1128/CMR.00023-19 | spa |
dc.relation.references | Berná, L., Chiribao, M. L., Greif, G., Rodriguez, M., Alvarez-Valin, F., & Robello, C. (2017). Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in trypanosoma cruzi. PeerJ, 2017(3), 1–32. https://doi.org/10.7717/peerj.3017 | spa |
dc.relation.references | Bero, J., Ganfon, H., Jonville, M. C., Frédérich, M., Gbaguidi, F., DeMol, P., Moudachirou, M., & Quetin-Leclercq, J. (2009). In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. Journal of Ethnopharmacology, 122(3), 439–444. https://doi.org/10.1016/j.jep.2009.02.004 | spa |
dc.relation.references | Bero, J., Hannaert, V., Chataigné, G., Hérent, M. F., & Quetin-Leclercq, J. (2011). In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. Journal of Ethnopharmacology, 137(2), 998–1002. https://doi.org/10.1016/j.jep.2011.07.022 | spa |
dc.relation.references | Breckenridge, A., & Jacob, R. (2019). Overcoming the legal and regulatory barriers to drug repurposing. Nature Reviews. Drug Discovery, 18(1), 1–2. https://doi.org/10.1038/nrd.2018.92 | spa |
dc.relation.references | Cada, D. J., Editor, F., & Kim, A. P. (2016). Elbasvir / Grazoprevir. 51(8), 665–686. https://doi.org/10.1310/hpj5108 | spa |
dc.relation.references | Campos, M. C. O., Castro-Pinto, D. B., Ribeiro, G. A., Berredo-Pinho, M. M., Gomes, L. H. F., Da Silva Bellieny, M. S., Goulart, C. M., Echevarria, Á., & Leon, L. L. (2013). P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitology Research, 112(6), 2341–2351. https://doi.org/10.1007/s00436-013-3398-z | spa |
dc.relation.references | Canepa, G. E., Bouvier, L. A., Miranda, M. R., Uttaro, A. D., & Pereira, C. A. (2009). Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiology Letters, 292(1), 27–32. https://doi.org/10.1111/j.1574-6968.2008.01467.x | spa |
dc.relation.references | CDC, C. of D. C. and P. (2019). Parasites - American Trypanosomiasis (also known as Chagas Disease). https://www.cdc.gov/parasites/chagas/ | spa |
dc.relation.references | Chatelain, E. (2015). Chagas disease drug discovery: Toward a new era. Journal of Biomolecular Screening, 20(1), 22–35. https://doi.org/10.1177/1087057114550585 | spa |
dc.relation.references | Chtita, S., Belhassan, A., Aouidate, A., Belaidi, S., Bouachrine, M., & Lakhlifi, T. (2021). Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening. Combinatorial Chemistry & High Throughput Screening, 24(3), 441–454. https://doi.org/10.2174/1386207323999200730205447 | spa |
dc.relation.references | Cook, S. E., Vogel, H., Castillo, D., Olsen, M., Pedersen, N., & Murphy, B. G. (2021). Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. Journal of Feline Medicine and Surgery, 24(10), 943–953. https://doi.org/10.1177/1098612X211048647 | spa |
dc.relation.references | Crespillo-Andújar, C., Chamorro-Tojeiro, S., Norman, F., Monge-Maillo, B., López-Vélez, R., & Pérez-Molina, J. A. (2018). Toxicity of nifurtimox as second-line treatment after benznidazole intolerance in patients with chronic Chagas disease: when available options fail. Clinical Microbiology and Infection, 24(12), 1344.e1-1344.e4. https://doi.org/10.1016/j.cmi.2018.06.006 | spa |
dc.relation.references | De Andrade, P., Galo, O. A., Carvalho, M. R., Lopes, C. D., Carneiro, Z. A., Sesti-Costa, R., De Melo, E. B., Silva, J. S., & Carvalho, I. (2015). 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 23(21), 6815–6826. https://doi.org/10.1016/j.bmc.2015.10.008 | spa |
dc.relation.references | de Oliveira, R. G., Cruz, L. R., Mollo, M. C., Dias, L. C., & Kratz, J. M. (2021). Chagas Disease Drug Discovery in Latin America—A Mini Review of Antiparasitic Agents Explored Between 2010 and 2021. Frontiers in Chemistry, 9(October), 1–7. https://doi.org/10.3389/fchem.2021.771143 | spa |
dc.relation.references | de Souza, W. (2009). Structural organization of Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 104(SUPPL. 1), 89–100. https://doi.org/10.1590/s0074-02762009000900014 | spa |
dc.relation.references | Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., Rijal, S., Dujardin, J. C., & Coombs, G. H. (2012). Molecular mechanisms of drug resistance in natural leishmania populations vary with genetic background. PLoS Neglected Tropical Diseases, 6(2). https://doi.org/10.1371/journal.pntd.0001514 | spa |
dc.relation.references | Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Crystal structure of O-Acetylserine sulfhydralase (OASS) isoform 3 from Entamoeba histolytica: Pharmacophore-based virtual screening and validation of novel inhibitors. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157 | spa |
dc.relation.references | Ekins, S., Williams, A. J., Krasowski, M. D., & Freundlich, J. S. (2011). In silico repositioning of approved drugs for rare and neglected diseases. Drug Discovery Today, 16(7–8), 298–310. https://doi.org/10.1016/j.drudis.2011.02.016 | spa |
dc.relation.references | El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., Anupama, A., Arner, E., Åslund, L., Attipoe, P., … Andersson, B. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease. Science, 309(5733). https://doi.org/10.1126/science.1112631 | spa |
dc.relation.references | European Medicines Agency. (2016). Zepatier: Assessment Report (Vol. 44, Issue May). https://www.ema.europa.eu/en/documents/assessment-report/zepatier-epar-public-assessment-report_en.pdf | spa |
dc.relation.references | Fyfe, P. K., Westrop, G. D., Ramos, T., Müller, S., Coombs, G. H., & Hunter, W. N. (2012). Structure of Leishmania major cysteine synthase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(7), 738–743. https://doi.org/10.1107/S1744309112019124 | spa |
dc.relation.references | Gammeltoft, K. A., Zhou, Y., Hernandez, C. R. D., Galli, A., Offersgaard, A., Costa, R., Pham, L. V., Fahnøe, U., Feng, S., Scheel, T. K. H., Ramirez, S., Bukh, J., & Gottwein, J. M. (2021). Hepatitis c virus protease inhibitors show differential efficacy and interactions with Remdesivir for treatment of SARS-CoV-2 in Vitro. Antimicrobial Agents and Chemotherapy, 65(9), 1–24. https://doi.org/10.1128/AAC.02680-20 | spa |
dc.relation.references | García-Huertas, P., Mejía-Jaramillo, A. M., González, L., & Triana-Chávez, O. (2017). Transcriptome and Functional Genomics Reveal the Participation of Adenine Phosphoribosyltransferase in Trypanosoma cruzi Resistance to Benznidazole. Journal of Cellular Biochemistry, 118(7), 1936–1945. https://doi.org/10.1002/jcb.25978 | spa |
dc.relation.references | García-Huertas, P., Mejía-Jaramillo, A. M., Machado, C. R., Guimarães, A. C., & Triana-Chávez, O. (2017). Prostaglandin F2α synthase in trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. Royal Society Open Science, 4(9). https://doi.org/10.1098/rsos.170773 | spa |
dc.relation.references | Ghosh, A. K., Samanta, I., Mondal, A., & Liu, W. R. (2019). Covalent Inhibition in Drug Discovery. ChemMedChem, 14(9), 889–906. https://doi.org/10.1002/cmdc.201900107 | spa |
dc.relation.references | González, L., García-Huertas, P., Triana-Chávez, O., García, G. A., Murta, S. M. F., & Mejía-Jaramillo, A. M. (2017). Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Molecular Microbiology, 106(5), 704–718. https://doi.org/10.1111/mmi.13830 | spa |
dc.relation.references | Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in escherichia coli. Protein Journal, 32(6), 419–425. https://doi.org/10.1007/s10930-013-9502-5 | spa |
dc.relation.references | Guarner, J. (2019). Chagas disease as example of a reemerging parasite. Seminars in Diagnostic Pathology, 36(3), 164–169. https://doi.org/10.1053/j.semdp.2019.04.008 | spa |
dc.relation.references | Hall, B. S., & Wilkinson, S. R. (2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, 56(1), 115–123. https://doi.org/10.1128/AAC.05135-11 | spa |
dc.relation.references | Horner, S. M., & Gale, M. (2013). Regulation of hepatic innate immunity by hepatitis C virus. Nature Medicine, 19(7), 879–888. https://doi.org/10.1038/nm.3253 | spa |
dc.relation.references | Huličiak, M., Vokřál, I., Holas, O., Martinec, O., Štaud, F., & Červený, L. (2022). Evaluation of the Potency of Anti-HIV and Anti-HCV Drugs to Inhibit P-Glycoprotein Mediated Efflux of Digoxin in Caco-2 Cell Line and Human Precision-Cut Intestinal Slices. Pharmaceuticals, 15(2). https://doi.org/10.3390/ph15020242 | spa |
dc.relation.references | Ibrahim, M. A. A., Abdeljawaad, K. A. A., Jaragh-Alhadad, L. A., Oraby, H. F., Atia, M. A. M., Alzahrani, O. R., Mekhemer, G. A. H., Moustafa, M. F., Shawky, A. M., Sidhom, P. A., & Abdelrahman, A. H. M. (2023). Potential drug candidates as P-glycoprotein inhibitors to reverse multidrug resistance in cancer: an in silico drug discovery study. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2176360 | spa |
dc.relation.references | INS, I. N. de S. (2023). Informe de evento: CHAGAS. https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspx | spa |
dc.relation.references | Isah, M. B., Ibrahim, M. A., Mohammed, A., Aliyu, A. B., Masola, B., & Coetzer, T. H. T. (2016). A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology, 143(10), 1219–1231. https://doi.org/10.1017/S0031182016000718 | spa |
dc.relation.references | Jackson, Y., Wyssa, B., & Chappuis, F. (2020). Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. Journal of Antimicrobial Chemotherapy, 75(3), 690–696. https://doi.org/10.1093/jac/dkz473 | spa |
dc.relation.references | Jean, V., Poyraz, Ö., Saxena, S., Schnell, R., Yogeeswari, P., Schneider, G., & Sriram, D. (2013). Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 23(5), 1182–1186. https://doi.org/10.1016/j.bmcl.2013.01.031 | spa |
dc.relation.references | Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/3663315 | spa |
dc.relation.references | Kosloski, M. P., Bow, D. A. J., Kikuchi, R., Wang, H., Kim, E. J., Marsh, K., Mensa, F., Kort, J., & Liu, W. (2019). Translation of in vitro transport inhibition studies to clinical drug-drug interactions for glecaprevir and pibrentasvirs. Journal of Pharmacology and Experimental Therapeutics, 370(2), 278–287. https://doi.org/10.1124/jpet.119.256966 | spa |
dc.relation.references | Kratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198(July). https://doi.org/10.1016/j.actatropica.2019.105107 | spa |
dc.relation.references | Lamb, Y. N. (2017). Glecaprevir/Pibrentasvir: First Global Approval. Drugs, 77(16), 1797–1804. https://doi.org/10.1007/s40265-017-0817-y | spa |
dc.relation.references | Lee, B. Y., Bacon, K. M., Bottazzi, M. E., & Hotez, P. J. (2013). Global economic burden of Chagas disease: a computational simulation model. The Lancet. Infectious Diseases, 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1 | spa |
dc.relation.references | Leite, D. I., Fontes, F. de V., Bastos, M. M., Hoelz, L. V. B., Bianco, M. da C. A. D., de Oliveira, A. P., da Silva, P. B., da Silva, C. F., Batista, D. da G. J., da Gama, A. N. S., Peres, R. B., Villar, J. D. F., Soeiro, M. de N. C., & Boechat, N. (2018). New 1,2,3-triazole-based analogues of benznidazole for use against Trypanosoma cruzi infection: In vitro and in vivo evaluations. Chemical Biology and Drug Design, 92(3), 1670–1682. https://doi.org/10.1111/cbdd.13333 | spa |
dc.relation.references | Li, Y., Shah-Simpson, S., Okrah, K., Belew, A. T., Choi, J., Caradonna, K. L., Padmanabhan, P., Ndegwa, D. M., Temanni, M. R., Corrada Bravo, H., El-Sayed, N. M., & Burleigh, B. A. (2016). Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathogens, 12(4), 1–30. https://doi.org/10.1371/journal.ppat.1005511 | spa |
dc.relation.references | Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., Messias-Reason, I. J., & Sandri, T. L. (2019). Chagas disease: From discovery to a worldwide health problem. Journal of Physical Oceanography, 49(6), 1–13. https://doi.org/10.3389/fpubh.2019.00166 | spa |
dc.relation.references | Lima, C. R., Carels, N., Guimaraes, A. C. R., Tufféry, P., & Derreumaux, P. (2016). In silico structural characterization of protein targets for drug development against Trypanosoma cruzi. Journal of Molecular Modeling, 22(10). https://doi.org/10.1007/s00894-016-3115-9 | spa |
dc.relation.references | Liu, R., Curry, S., McMonagle, P., Yeh, W. W., Ludmerer, S. W., Jumes, P. A., Marshall, W. L., Kong, S., Ingravallo, P., Black, S., Pak, I., DiNubile, M. J., & Howe, A. Y. M. (2015). Susceptibilities of genotype 1a, 1b, and 3 hepatitis C virus variants to the NS5A inhibitor elbasvir. Antimicrobial Agents and Chemotherapy, 59(11), 6922–6929. https://doi.org/10.1128/AAC.01390-15 | spa |
dc.relation.references | Mady, C., Ianni, B. M., & de Souza, J. L. (2008). Benznidazole and Chagas disease: Can an old drug be the answer to an old problem? Expert Opinion on Investigational Drugs, 17(10), 1427–1433. https://doi.org/10.1517/13543784.17.10.1427 | spa |
dc.relation.references | Magalhães, J., Franko, N., Annunziato, G., Welch, M., Dolan, S. K., Bruno, A., Mozzarelli, A., Armao, S., Jirgensons, A., Pieroni, M., Costantino, G., & Campanini, B. (2018). Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand–based drug design. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1444–1452. https://doi.org/10.1080/14756366.2018.1512596 | spa |
dc.relation.references | Malone, C. J., Nevis, I., Fernández, E., & Sanchez, A. (2021). A rapid review on the efficacy and safety of pharmacological treatments for chagas disease. Tropical Medicine and Infectious Disease, 6(3). https://doi.org/10.3390/tropicalmed6030128 | spa |
dc.relation.references | Marciano, D., Santana, M., & Nowicki, C. (2012). Functional characterization of enzymes involved in cysteine biosynthesis and H2S production in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 185(2), 114–120. https://doi.org/10.1016/j.molbiopara.2012.07.009 | spa |
dc.relation.references | Martín-Escolano, J., Medina-Carmona, E., & Martín-Escolano, R. (2020). Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infectious Diseases, 6(11), 2830–2843. https://doi.org/10.1021/acsinfecdis.0c00353 | spa |
dc.relation.references | Matsuo, A. L., Silva, L. S., Torrecilhas, A. C., Pascoalino, B. S., Ramos, T. C., Rodrigues, E. G., Schenkman, S., Caires, A. C. F., & Travassos, L. R. (2010). In vitro and in vivo trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for treatment of Chagas’ disease. Antimicrobial Agents and Chemotherapy, 54(8), 3318–3325. https://doi.org/10.1128/AAC.00323-10 | spa |
dc.relation.references | Maya, J. D., Cassels, B. K., Iturriaga-Vásquez, P., Ferreira, J., Faúndez, M., Galanti, N., Ferreira, A., & Morello, A. (2007). Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 146(4), 601–620. https://doi.org/10.1016/j.cbpa.2006.03.004 | spa |
dc.relation.references | MedChemExpress. (2023). Master of Bioactive Molecules. https://www.medchemexpress.com/ | spa |
dc.relation.references | Meira, C. S., Barbosa-Filho, J. M., Lanfredi-Rangel, A., Guimarães, E. T., Moreira, D. R. M., & Soares, M. B. P. (2016). Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Experimental Parasitology, 166, 108–115. https://doi.org/10.1016/j.exppara.2016.04.007 | spa |
dc.relation.references | Mejía-Jaramillo, A. M., Fernández, G. J., Palacio, L., & Triana-Chávez, O. (2011). Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benznidazole in Trypanosoma cruzi. Parasites and Vectors, 4(1), 1–12. https://doi.org/10.1186/1756-3305-4-169 | spa |
dc.relation.references | Mejia, A. M., Hall, B. S., Taylor, M. C., Gómez-Palacio, A., Wilkinson, S. R., Triana-Chávez, O., & Kelly, J. M. (2012). Benznidazole-resistance in trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. Journal of Infectious Diseases, 206(2), 220–228. https://doi.org/10.1093/infdis/jis331 | spa |
dc.relation.references | Merck Sharp & Dohme Corp. (2016). ZEPATIER- elbasvir and grazoprevir tablet, film coated. https://www.merck.com/product/usa/pi_circulars/z/zepatier/zepatier_pi.pdf | spa |
dc.relation.references | Milani, M., Donalisio, M., Bonotto, R. M., Schneider, E., Arduino, I., Boni, F., Lembo, D., Marcello, A., & Mastrangelo, E. (2021). Combined in silico and in vitro approaches identified the antipsychotic drug lurasidone and the antiviral drug elbasvir as SARS-CoV2 and HCoV-OC43 inhibitors. Antiviral Research, 189, 105055. https://doi.org/10.1016/j.antiviral.2021.105055 | spa |
dc.relation.references | Minning, T. A., Weatherly, D. B., Atwood, J., Orlando, R., & Tarleton, R. L. (2009). The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-370 | spa |
dc.relation.references | Moreno, É. M., Leal, S. M., Stashenko, E. E., & García, L. T. (2018). Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complementary and Alternative Medicine, 18(1), 1–16. https://doi.org/10.1186/s12906-018-2293-7 | spa |
dc.relation.references | Müller Kratz, J., Garcia Bournissen, F., Forsyth, C. J., & Sosa-Estani, S. (2018). Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. In Expert Review of Clinical Pharmacology (Vol. 11, Issue 10). Taylor & Francis. https://doi.org/10.1080/17512433.2018.1509704 | spa |
dc.relation.references | Ng, T., Tripathi, R., Dekhtyar, T., Krishnan, P., Schnell, G., Beyer, J., Mcdaniel, K. F., & Ma, J. (2018). In Vitro Antiviral Activity and Resistance Profile of the Next-Generation HCV NS3-4A Protease Inhibitor Glecaprevir. Antimicrobial Agents and Chemotherapy, 62(1), 1–16. | spa |
dc.relation.references | Nozaki, T., Ali, V., & Tokoro, M. (2005). Sulfur-containing amino acid metabolism in parasitic protozoa. In Advances in Parasitology (Vol. 60, Issue 05). Elsevier Masson SAS. https://doi.org/10.1016/S0065-308X(05)60001-2 | spa |
dc.relation.references | Nozaki, T., Shigeta, Y., Saito-Nakano, Y., Imada, M., & Kruger, W. D. (2001). Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi: Isolation and molecular characterization of cystathionine β-synthase and serine acetyltransferase from trypanosoma. Journal of Biological Chemistry, 276(9), 6516–6523. https://doi.org/10.1074/jbc.M009774200 | spa |
dc.relation.references | Nunes, M. C. P., Dones, W., Morillo, C. A., Encina, J. J., & Ribeiro, A. L. (2013). Chagas disease: An overview of clinical and epidemiological aspects. Journal of the American College of Cardiology, 62(9), 767–776. https://doi.org/10.1016/j.jacc.2013.05.046 | spa |
dc.relation.references | Núñez-Vergara, L. J., Squella, J. A., Aldunate, J., Letelier, M. E., Bollo, S., Repetto, Y., Morello, A., & Spencer, P. L. (1997). Nitro radical anion formation from nifurtimox. Part 1: Biological evidences in Trypanosoma cruzi. Bioelectrochemistry and Bioenergetics, 43(1), 151–155. https://doi.org/10.1016/S0302-4598(96)05188-4 | spa |
dc.relation.references | Nwaka, S., & Hudson, A. (2006). Innovative lead discovery strategies for tropical diseases. Nature Reviews Drug Discovery, 5(11), 941–955. https://doi.org/10.1038/nrd2144 | spa |
dc.relation.references | Olivera, M. J., & Buitrago, G. (2020). Economic costs of Chagas disease in Colombia in 2017: A social perspective. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 91, 196–201. https://doi.org/10.1016/j.ijid.2019.11.022 | spa |
dc.relation.references | Olivera, M. J., Cucunubá, Z. M., Valencia-Hernández, C. A., Herazo, R., Agreda-Rudenko, D., Flórez, C., Duque, S., & Nicholls, R. S. (2017). Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease. PLoS ONE, 12(9), 1–13. https://doi.org/10.1371/journal.pone.0185033 | spa |
dc.relation.references | OPS, O. P. de la S. (2022). Chagas disease. https://www.paho.org/en/documents/factsheet-chagas-disease-americas-public-health-workers | spa |
dc.relation.references | Pardo-rodriguez, D., Cifuentes-l, A., Bravo-espejo, J., Romero, I., Robles, J., Cuervo, C., Mej, S. M., & Tellez, J. (2023). Lupeol Acetate and α -Amyrin Terpenes Activity against Trypanosoma cruzi : Insights into Toxicity and Potential Mechanisms of Action. | spa |
dc.relation.references | Pardo-Rodriguez, D., Lasso, P., Mateus, J., Mendez, J., Puerta, C. J., Cuéllar, A., Robles, J., & Cuervo, C. (2022). A terpenoid-rich extract from Clethra fimbriata exhibits anti-Trypanosoma cruzi activity and induces T cell cytokine production. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09182 | spa |
dc.relation.references | Pavia, P. X., Thomas, M. C., López, M. C., & Puerta, C. J. (2012). Molecular characterization of the short interspersed repetitive element SIRE in the six discrete typing units (DTUs) of Trypanosoma cruzi. Experimental Parasitology, 132(2), 144–150. https://doi.org/10.1016/j.exppara.2012.06.007 | spa |
dc.relation.references | Pech-Canul, Á. D. L. C., Monteón, V., & Solís-Oviedo, R. L. (2017). A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. Journal of Parasitology Research, 2017. https://doi.org/10.1155/2017/3751403 | spa |
dc.relation.references | Pérez-Molina, J. A., Crespillo-Andújar, C., Bosch-Nicolau, P., & Molina, I. (2021). Trypanocidal treatment of Chagas disease. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 39(9), 458–470. https://doi.org/10.1016/j.eimce.2020.04.012 | spa |
dc.relation.references | Pijnenburg, D. W. M., van Seyen, M., Abbink, E. J., Colbers, A., Drenth, J. P. H., & Burger, D. M. (2020). Pharmacokinetic similarity demonstrated after crushing of the elbasvir/grazoprevir fixed-dose combination tablet for HCV infection. Journal of Antimicrobial Chemotherapy, 75(9), 2661–2665. https://doi.org/10.1093/jac/dkaa230 | spa |
dc.relation.references | Pink, R., Hudson, A., Mouriès, M. A., & Bendig, M. (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews Drug Discovery, 4(9), 727–740. https://doi.org/10.1038/nrd1824 | spa |
dc.relation.references | Portillo, S., Zepeda, B. G., Iniguez, E., Olivas, J. J., Karimi, N. H., Moreira, O. C., Marques, A. F., Michael, K., Maldonado, R. A., & Almeida, I. C. (2019). A prophylactic α-Gal-based glycovaccine effectively protects against murine acute Chagas disease. Npj Vaccines, 4(1). https://doi.org/10.1038/s41541-019-0107-7 | spa |
dc.relation.references | Prata, A. (2001). Clinical and epidemiological aspects of Chagas disease. Lancet Infectious Diseases, 1(2), 92–100. https://doi.org/10.1016/S1473-3099(01)00065-2 | spa |
dc.relation.references | Qiagen. (2011). QIA express ® Ni-NTA Fast Start Handbook For purification and detection of recombinant Sample & Assay Technologies QIAGEN Sample and Assay Technologies (Issue July). file:///C:/Users/fmile/Downloads/EN-QIAexpress-Ni-NTA-Fast-Start-Handbook (2).pdf | spa |
dc.relation.references | Ramírez, J. D., & Hernández, C. (2018). Trypanosoma cruzi I: Towards the need of genetic subdivision?, Part II. Acta Tropica, 184, 53–58. https://doi.org/10.1016/j.actatropica.2017.05.005 | spa |
dc.relation.references | Rassi, A., Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. The Lancet, 375(9723), 1388–1402. https://doi.org/10.1016/S0140-6736(10)60061-X | spa |
dc.relation.references | Ribeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 12(November 2019), 7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004 | spa |
dc.relation.references | Romanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022 | spa |
dc.relation.references | Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of cysteine synthase and cystathionine β-synthase contributes to Leishmania braziliensis survival under oxidative stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14 | spa |
dc.relation.references | Romero, I., Téllez, J., Yamanaka, L. E., Steindel, M., Romanha, A. J., & Grisard, E. C. (2014). Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites and Vectors, 7(1), 1–11. https://doi.org/10.1186/1756-3305-7-197 | spa |
dc.relation.references | Salassa, B. N., & Romano, P. S. (2019). Autophagy: A necessary process during the Trypanosoma cruzi life-cycle. Virulence, 10(1), 460–469. https://doi.org/10.1080/21505594.2018.1543517 | spa |
dc.relation.references | Sánchez-Valdéz, F. J., Padilla, A., Wang, W., Orr, D., & Tarleton, R. (2017). Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. BioRxiv, 1–20. https://doi.org/10.1101/235762 | spa |
dc.relation.references | Santoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Freire, J. M., & Soares, M. J. (2007). Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parasitology, 134(11), 1649–1656. https://doi.org/10.1017/S0031182007002958 | spa |
dc.relation.references | Santos, E. de S., Silva, D. K. C., Reis, B. P. Z. C. dos, Barreto, B. C., Cardoso, C. M. A., Ribeiro dos Santos, R., Meira, C. S., & Soares, M. B. P. (2021). Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Frontiers in Cellular and Infection Microbiology, 11(November), 1–12. https://doi.org/10.3389/fcimb.2021.765879 | spa |
dc.relation.references | Schnell, R., Sriram, D., & Schneider, G. (2015). Pyridoxal-phosphate dependent mycobacterial cysteine synthases: Structure, mechanism and potential as drug targets. Biochimica et Biophysica Acta - Proteins and Proteomics, 1854(9), 1175–1183. https://doi.org/10.1016/j.bbapap.2014.11.010 | spa |
dc.relation.references | Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database : The Journal of Biological Databases and Curation, 2020. https://doi.org/10.1093/database/baaa062 | spa |
dc.relation.references | Sereno, D., Holzmuller, P., & Lemesre, J. L. (2000). Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Tropica, 74(1), 25–31. https://doi.org/10.1016/S0001-706X(99)00048-0 | spa |
dc.relation.references | Silber, A. M., Tonelli, R. R., Lopes, C. G., Cunha-e-Silva, N., Torrecilhas, A. C. T., Schumacher, R. I., Colli, W., & Alves, M. J. M. (2009). Glucose uptake in the mammalian stages of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 168(1), 102–108. https://doi.org/10.1016/j.molbiopara.2009.07.006 | spa |
dc.relation.references | Singh, S., Sablok, G., Farmer, R., Singh, A. K., Gautam, B., & Kumar, S. (2013). Molecular dynamic simulation and inhibitor prediction of cysteine synthase structured model as a potential drug target for trichomoniasis. BioMed Research International, 2013. https://doi.org/10.1155/2013/390920 | spa |
dc.relation.references | Souza, R., Lima, F., Barros, R. M., Cortez, D. R., Santos, M. F., Cordero, E. M., Ruiz, J. C., Goldenberg, S., Teixeira, M. M. G., & da Silveira, J. F. (2011). Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0023042 | spa |
dc.relation.references | Sowerby, K., Freitag-Pohl, S., Murillo, A. M., Silber, A. M., & Pohl, E. (2023). Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallographica Section D Structural Biology, 79(6), 518–530. https://doi.org/10.1107/S2059798323003613 | spa |
dc.relation.references | Takagi, H., & Ohtsu, I. (2016). L -Cysteine Metabolism and Fermentation in Microorganisms. https://doi.org/10.1007/10 | spa |
dc.relation.references | Teixeira, A., Hecht, M., Guimaro, M., Sousa, A., & Nitz, N. (2011). Pathogenesis of chagas’ disease: Parasite persistence and autoimmunity. Clinical Microbiology Reviews, 24(3), 592–630. https://doi.org/10.1128/CMR.00063-10 | spa |
dc.relation.references | Teixeira, Benchimol, M., Crepaldi, P. H., & de Souza, W. (2012). Interactive Multimedia to Teach the Life Cycle of Trypanosoma cruzi, the Causative Agent of Chagas Disease. PLoS Neglected Tropical Diseases, 6(8), 1–13. https://doi.org/10.1371/journal.pntd.0001749 | spa |
dc.relation.references | Téllez, J., Amarillo, A., Suarez, C., Cardozo, C., Guerra, D., Ochoa, R., Muskus, C., & Romero, I. (2022). Prediction of potential cysteine synthase inhibitors of Leishmania braziliensis and Leishmania major parasites by computational screening. Acta Tropica, 225(October 2021). https://doi.org/10.1016/j.actatropica.2021.106182 | spa |
dc.relation.references | Téllez, J., Romero, I., Romanha, A. J., & Steindel, M. (2019). Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasites and Vectors, 12(1), 1–9. https://doi.org/10.1186/s13071-019-3485-9 | spa |
dc.relation.references | Thomas, D., & Surdin-Kerjan, Y. (1997). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 61(4), 503–532. https://doi.org/10.1128/mmbr.61.4.503-532.1997 | spa |
dc.relation.references | Tyers, M., & Wright, G. D. (2019). Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nature Reviews Microbiology, 17(3), 141–155. https://doi.org/10.1038/s41579-018-0141-x | spa |
dc.relation.references | Tyler, K., & Engman, D. (2001). The life cycle of Trypanosoma cruzi revisited. International Journal for Parasitology, 31(5–6), 472–481. https://doi.org/10.1016/S0020-7519(01)00153-9 | spa |
dc.relation.references | Valencia, L., Muñoz, D. L., Robledo, S. M., Echeverri, F., Arango, G. J., Vélez, I. D., & Triana, O. (2011). Trypanocidal and cytotoxic activity of extracts of Colombian plants. Biomedica, 31(4), 552–559. https://doi.org/10.7705/biomedica.v31i4.426 | spa |
dc.relation.references | Viotti, R., Vigliano, C., Lococo, B., Alvarez, M. G., Petti, M., Bertocchi, G., & Armenti, A. (2009). Side effects of benznidazole as treatment in chronic Chagas disease: Fears and realities. Expert Review of Anti-Infective Therapy, 7(2), 157–163. https://doi.org/10.1586/14787210.7.2.157 | spa |
dc.relation.references | Wang, S. J., Huang, C. F., & Yu, M. L. (2021). Elbasvir and grazoprevir for the treatment of hepatitis C. Expert Review of Anti-Infective Therapy, 19(9), 1071–1081. https://doi.org/10.1080/14787210.2021.1874351 | spa |
dc.relation.references | WHO, W. H. O. (2015). Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Relevé Épidémiologique Hebdomadaire / Section d’hygiène Du Secrétariat de La Société Des Nations = Weekly Epidemiological Record / Health Section of the Secretariat of the League of Nations, 90(6), 33–43. | spa |
dc.relation.references | WHO, W. H. O. (2021). Chagas disease (also known as American trypanosomiasis). 2021. https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)#:~:text=secondary thrombotic strokes.-,Treatment,the cases of congenital transmission. | spa |
dc.relation.references | Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5022–5027. https://doi.org/10.1073/pnas.0711014105 | spa |
dc.relation.references | Williams, R. A. M., Westrop, G. D., & Coombs, G. H. (2009). Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal, 420(3), 451–462. https://doi.org/10.1042/BJ20082441 | spa |
dc.relation.references | Xia, H., Lu, C., Wang, Y., Zaongo, S. D., Hu, Y., Wu, Y., Yan, Z., & Ma, P. (2020). Efficacy and Safety of Direct-Acting Antiviral Therapy in Patients With Chronic Hepatitis C Virus Infection: A Real-World Single-Center Experience in Tianjin, China. Frontiers in Pharmacology, 11(May), 1–8. https://doi.org/10.3389/fphar.2020.00710 | spa |
dc.relation.references | Zingales, B. (2018). Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Tropica, 184(April 2017), 38–52. https://doi.org/10.1016/j.actatropica.2017.09.017 | spa |
dc.relation.references | Zingales, Bianca, Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.decs | Parásitos | spa |
dc.subject.decs | Parasites | eng |
dc.subject.proposal | Trypanosoma cruzi | eng |
dc.subject.proposal | Enfermedad de Chagas | spa |
dc.subject.proposal | Cisteína sintasa | spa |
dc.subject.proposal | Efecto tripanocida | spa |
dc.subject.proposal | Blanco terapéutico | spa |
dc.subject.proposal | Inhibición enzimática | spa |
dc.subject.proposal | Elbasvir | |
dc.subject.proposal | Glecaprevir | |
dc.subject.proposal | Chagas disease | eng |
dc.subject.proposal | Cysteine synthase | eng |
dc.subject.proposal | Trypanocidal activity | eng |
dc.subject.proposal | Therapeutic target | eng |
dc.subject.proposal | Enzyme inhibition | eng |
dc.title | Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro | spa |
dc.title.translated | Evaluation of the trypanocidal activity of elbasvir and glecaprevir and the effect on the activity of the Trypanosoma cruzi cysteine synthase enzyme in vitro | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Identificación de compuestos inhibidores de la enzima Cisteína Sintasa de Trypanosoma cruzi con potencial actividad tripanocida para el desarrollo de una terapia selectiva contra este parásito | spa |
oaire.fundername | Pontificia Universidad Javeriana | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022981858.2023.pdf
- Tamaño:
- 1.14 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: