Valores normales de las pruebas MSOAC en población sana en Bogotá y comparación entre administración guiada y administración autónoma de las pruebas en el año 2019

dc.contributor.advisorPardo Turriago, Rodrigospa
dc.contributor.advisorLópez Reyes, Lorenaspa
dc.contributor.advisorCárdenas Robledo, Simónspa
dc.contributor.authorArenas Vargas, Laura Estefaníaspa
dc.date.accessioned2021-02-01T21:32:09Zspa
dc.date.available2021-02-01T21:32:09Zspa
dc.date.issued2019spa
dc.description.abstractIntroducción: El deterioro neurológico y las manifestaciones clínicas de la Esclerosis Múltiple (EM) varían entre cada paciente y con el tiempo, lo que dificulta la cuantificación de la condición de la enfermedad. Existen limitaciones en las escalas ampliamente utilizadas como el EDSS, por esta razón, el Consorcio de Evaluación de Resultados de Esclerosis Múltiple (MSOAC) estableció herramientas sensibles, prácticas, rentables, clínicamente significativas y reproducibles para medir los resultados en ensayos clínicos. Sin embargo, estas pruebas requieren valores de referencia de normalidad que deben ser individualizados en cada población. Asimismo, es necesario establecer la correlación de los resultados de estas pruebas entre la aplicación guiada y la aplicación autónoma de las mismas con el objetivo de desarrollar herramientas futuras con validez clínica y estadística para la evaluación ambulatoria del paciente desde el hogar o su lugar de trabajo. Este trabajo determina los valores de referencia de estas pruebas en personas sanas y evalúa la correlación entre dos formas de administración: autónoma y guiada. Materiales y métodos: Este es un estudio transversal descriptivo. Se incluyeron personas sanas, hombres y mujeres, entre 18 y 80 años. Ambas formas de administración de la prueba se aplicaron a cada participante. Los datos fueron recolectados en el software redcap y la base de datos fue analizada en el paquete estadístico STATA 13.0. Los valores de referencia se definieron por los percentiles 25 a 75. La correlación entre los resultados de ambos métodos de administración de las pruebas se evaluó a través de un valor Rho de Spearman. Resultados: Se evaluaron 43 personas sanas (20 hombres y 23 mujeres) entre las edades de 18 y 80 años. Con cada prueba se analizó la media, la desviación estándar, el valor mínimo y el valor máximo. La muestra fue analizada en subgrupos según la edad, la escolaridad y el índice masa corporal. Se determinaron los intervalos esperados para cada prueba en cada subgrupo por los percentiles 25 a 75. La correlación de las 3 pruebas fue significativa: T25FW (Rho 0.3), SMDT (Rho 0.54) y 9HPT (Rho 0.61 mano dominante y 0.65 mano no dominante). Discusión: Conocer los valores normales de estas pruebas será muy útil en la primera evaluación funcional de los pacientes con esclerosis múltiple. La determinación de correlación significativa entre los dos métodos de aplicación (guiada y autoadministrada) permite suponer que las pruebas pueden ser administradas ya sea de forma autónoma o de la mano de un guía experto.spa
dc.description.abstractBackground: Neurological impairment and clinical manifestations of Multiple Sclerosis (MS) vary between each patient and over time, making it difficult to quantify the assessment of the condition of the disease. There are limitations on widely used scales such as the EDSS and MSFC, for this reason, the Multiple Sclerosis Outcome Assessment Consortium (MSAOC) established sensitive, practical, cost-effective, clinically significant and reproducible tools for measuring outcomes in clinical trials. However, such tests require normality reference values that must be individualized in each population. Also, it is necessary to establish the correlation of the results of these tests between the guided application and the autonomous application of them with the aim of developing future tools with clinical and statistical validity for the outpatient evaluation of the patient from home or their workplace. Objective: this pioneering work seeks to determine the reference values of three of the four tests in healthy people, and to find a correlation between two ways of administration: autonomous and guided. Methods: This is a descriptive cross-sectional study. The inclusion criteria were healthy people, men and women, between 18 and 80 years old. Both forms of administration of the test were performed on the participants. Quantitative variables will be presented in the form of summary and dispersion measures according to their statistical distribution, on the other hand, qualitative variables will be presented in the form of absolute and relative frequencies. The correlation between the results of the tests was evaluated according to whether they were administered with the guidance by an expert and the autonomous administration of the same through Spearman. Results: 43 healthy people (20 men and 13 women) between the ages of 18 and 80 were evaluated. With each test the mean, standard deviation, minimum value, and maximum value were analyzed. The correlation of the results between each form of administration of the tests was analyzed, finding significant correlation of all the tests between the two different forms of application. Conclusions: This study establishes the normal values of the T25FW, 9HPT and SDMT tests and determines the significant correlation between two different forms of administration of the tests.spa
dc.description.degreelevelEspecialidades Médicasspa
dc.format.extent35spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79020
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Especialidad en Neurología Clínicaspa
dc.relation.references1. Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372:1502.spa
dc.relation.references2. Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handb Clin Neurol 2014; 122:231.spa
dc.relation.references3. Cheryl E. Jiménez-Pérez, Luis A. Zarco-Montero, Camilo Castañeda-Cardona, Margarita Otálora Esteban, Andrea Martínez, Diego Rosselli. Current state of multiple sclerosis in Colombia Acta Neurol Colomb. 2015; 31(4): 385-390spa
dc.relation.references4. Alonso A, Hernán MA. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 2008; 71:129.spa
dc.relation.references5. International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357:851.spa
dc.relation.references6. Mokry LE, Ross S, Ahmad OS, et al. Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med 2015; 12:e1001866.spa
dc.relation.references7. Riise T, Nortvedt MW, Ascherio A. Smoking is a risk factor for multiple sclerosis. Neurology 2003; 61:1122.spa
dc.relation.references8. Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology 2013; 80:548.spa
dc.relation.references9. DasGupta R, Fowler CJ. Bladder, bowel and sexual dysfunction in multiple sclerosis: management strategies. Drugs 2003; 63:153.spa
dc.relation.references10. Wintner A, Kim MM, Bechis SK, Kreydin EI. Voiding Dysfunction in Multiple Sclerosis. Semin Neurol 2016; 36:34.spa
dc.relation.references11. Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol 2008; 7:1139.spa
dc.relation.references12. Deloire MS, Salort E, Bonnet M, et al. Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2005; 76:519.spa
dc.relation.references13. Ruet A, Deloire M, Charré-Morin J, et al. Cognitive impairment differs between primary progressive and relapsing-remitting MS. Neurology 2013; 80:1501.spa
dc.relation.references14. Filippi M, Rocca MA, Benedict RH, et al. The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 2010; 75:2121.spa
dc.relation.references15. Patten SB, Beck CA, Williams JV, et al. Major depression in multiple sclerosis: a population-based perspective. Neurology 2003; 61:1524.spa
dc.relation.references16. Fredrikson S, Cheng Q, Jiang GX, Wasserman D. Elevated suicide risk among patients with multiple sclerosis in Sweden. Neuroepidemiology 2003; 22:146.spa
dc.relation.references17. Richards RG, Sampson FC, Beard SM, Tappenden P. A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models. Health Technol Assess 2002; 6:1.spa
dc.relation.references18. Braley TJ, Segal BM, Chervin RD. Hypnotic use and fatigue in multiple sclerosis. Sleep Med 2015; 16:131.spa
dc.relation.references19. Tartaglia MC, Narayanan S, Francis SJ, et al. The relationship between diffuse axonal damage and fatigue in multiple sclerosis. Arch Neurol 2004; 61:201.spa
dc.relation.references20. Frohman EM, Frohman TC, Zee DS, et al. The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 2005; 4:111.spa
dc.relation.references21. Balcer LJ. Clinical practice. Optic neuritis. N Engl J Med 2006; 354:1273.spa
dc.relation.references22. Frohman EM, Zhang H, Dewey RB, et al. Vertigo in MS: utility of positional and particle repositioning maneuvers. Neurology 2000; 55:1566.spa
dc.relation.references23. Rizzo MA, Hadjimichael OC, Preiningerova J, Vollmer TL. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult Scler 2004; 10:589.spa
dc.relation.references24. Rinker JR 2nd, Salter AR, Walker H, et al. Prevalence and characteristics of tremor in the NARCOMS multiple sclerosis registry: a cross-sectional survey. BMJ Open 2015; 5:e006714.spa
dc.relation.references25. Foley PL, Vesterinen HM, Laird BJ, et al. Prevalence and natural history of pain in adults with multiple sclerosis: systematic review and meta-analysis. Pain 2013; 154:632.spa
dc.relation.references26. Drulovic J, Basic-Kes V, Grgic S, et al. The Prevalence of Pain in Adults with Multiple Sclerosis: A Multicenter Cross-Sectional Survey. Pain Med 2015; 16:1597.spa
dc.relation.references27. Zivadinov R, Zorzon M, Bosco A, et al. Sexual dysfunction in multiple sclerosis: II. Correlation analysis. Mult Scler 1999; 5:428.spa
dc.relation.references28. Marrie RA, Reider N, Cohen J, et al. A systematic review of the incidence and prevalence of sleep disorders and seizure disorders in multiple sclerosis. Mult Scler 2015; 21:342.spa
dc.relation.references29. Selhorst JB, Saul RF. Uhthoff and his symptom. J Neuroophthalmol 1995; 15:63.spa
dc.relation.references30. Humm AM, Beer S, Kool J, et al. Quantification of Uhthoff's phenomenon in multiple sclerosis: a magnetic stimulation study. Clin Neurophysiol 2004; 115:2493.spa
dc.relation.references31. Syndulko K, Jafari M, Woldanski A, et al. Effects of temperature in multiple sclerosis: A review of the literature. Neurorehabil Neural Repair 1996; 10:23.spa
dc.relation.references32. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83:278.spa
dc.relation.references33. Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol 2012; 11:157.spa
dc.relation.references34. Weinshenker BG. Natural history of multiple sclerosis. Ann Neurol 1994; 36 Suppl:S6.spa
dc.relation.references35. Koch M, Kingwell E, Rieckmann P, Tremlett H. The natural history of primary progressive multiple sclerosis. Neurology 2009; 73:1996.spa
dc.relation.references36. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17:162.spa
dc.relation.references37. Brownlee WJ, Swanton JK, Miszkiel KA, et al. Should the symptomatic region be included in dissemination in space in MRI criteria for MS? Neurology 2016; 87:680.spa
dc.relation.references38. Bot JC, Barkhof F, Polman CH, et al. Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology 2004; 62:226.spa
dc.relation.references39. Ingle GT, Thompson AJ, Miller DH. Magnetic resonance imaging in primary progressive multiple sclerosis. J Rehabil Res Dev 2002; 39:261.spa
dc.relation.references40. Smith ME, Stone LA, Albert PS, et al. Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 1993; 33:480.spa
dc.relation.references41. van Waesberghe JH, van Walderveen MA, Castelijns JA, et al. Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol 1998; 19:675.spa
dc.relation.references42. Paolillo A, Pozzilli C, Gasperini C, et al. Brain atrophy in relapsing-remitting multiple sclerosis: relationship with 'black holes', disease duration and clinical disability. J Neurol Sci 2000; 174:85.spa
dc.relation.references43. Bitsch A, Kuhlmann T, Stadelmann C, et al. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 2001; 49:793.spa
dc.relation.references44. van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998; 50:1282.spa
dc.relation.references45. Arrambide G, Tintore M, Espejo C, et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain 2018; 141:1075spa
dc.relation.references46. Richard A Rudick, Nicholas LaRocca, Lynn D Hudson et al. Multiple Sclerosis Outcome Assessments Consortium: Genesis and initial
project plan. Multiple Sclerosis Journal 2013. 0(0) 1–6
spa
dc.relation.references47. U. S. Food and Drug Administration. Innovation or stagnation: Challenges and opportunity on the critical path to new medical products, www.fda.gov/ScienceResearch/Special-Topics/CriticalPathInitiative/CriticalPathOpportunitiesRe-ports/ucm077262.htm. (2004, accessed 26 February 2013).spa
dc.relation.references48. Murray TJ. Multiple sclerosis: The history of a disease. New York: Demos, 2005spa
dc.relation.references49. Goldman MD, Motl RW and Rudick RA. Possible clinical outcome measures for clinical trials in patients with multiple sclerosis. Ther Adv Neurol Disord 2010; 3: 229–239.spa
dc.relation.references50. LaRocca NG. Impact of walking impairment in multiple sclerosis: Perspectives of patients and care partners. Patient 2011; 4: 189–201spa
dc.relation.references51. Hessen C, Bohm J, Reich C, et al. Patient perception of bodily functions in multiple sclerosis: Gait and visual function are the most valuable. Mult Scler 2008; 14: 988–991.spa
dc.relation.references52. Hauser SL, Dawson DM, Lehrich JR, et al. Intensive immunosuppression in progressive multiple sclerosis: A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med 1983; 308: 173–180.spa
dc.relation.references53. Schwid SR, Goodman AD, Mattson DH, et al. The measurement of ambulatory impairment in multiple sclerosis. Neurology 1997; 49: 1419–1424.spa
dc.relation.references54. Goodman AD, Brown TR, Cohen JA, et al. Dose comparison trial of sustained-release fampridine in multiple sclerosis. Neurology 2008; 71: 1134–1141.spa
dc.relation.references55. Goodman AD, Brown TR, Edwards KR, et al. A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol 2010; 68: 494–502.spa
dc.relation.references56. Motl RW. Ambulation and multiple sclerosis. Phys Med Rehabil Clin N Am 2013; 24: 325–336.spa
dc.relation.references57. Pearson M, Bieberg G and Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: A meta-analysis. Arch Phys Med Rehabil 2015; 96: 1339–1348.spa
dc.relation.references58. Kieseier BC and Pozzilli C. Assessing walking disability in multiple sclerosis. Mult Scler 2012; 18: 914–924.spa
dc.relation.references59. Cohen JA, Reingold SC, Polman CH, et al. Disability outcome measures in multiple sclerosis clinical trials: Current status and future prospects. Lancet Neurol 2012; 11: 467–476.spa
dc.relation.references60. Robert W M. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal 2017; 1:1–7spa
dc.relation.references61. Lamers I, Cattaneo D, Chen CC, et al. Associations of upper limb disability measures on different levels of the International Classification of Functioning, Disability and Health in people with multiple sclerosis. Phys Ther 2015; 95: 65–75.spa
dc.relation.references62. Peter Feys, et al. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Multiple Sclerosis Journal 2017; 1:1-10spa
dc.relation.references63. Mathiowetz V, Weber K, Kashman N, et al. Adult norms for the Nine Hole Peg Test of finger dexterity. OTJR: Occup Particip Health 1985; 5: 24–38.spa
dc.relation.references64. Charcot JM. Lectures on the Diseases of the Nervous System. London: New Sydenham Society, 1877.spa
dc.relation.references65. Gronwall DMA. Paced auditory serial addition task: A measure of recovery from concussion. Percept Mot Skills 1977; 44: 367–373.spa
dc.relation.references66. Smith A. Symbol digit modalities test: Manual. Los Angeles, CA: Western Psychological Services, 1982.spa
dc.relation.references67. DeLuca J, Chelune GJ, Tulsky DS, et al. Is speed
of processing or working memory the primary information processing deficit in multiple sclerosis? J Clin Exp Neuropsychol 2004; 26: 550–562.spa
dc.relation.references68. Costa SL, Genova HM, DeLuca J, et al. Information processing speed in multiple sclerosis: Past, present, and future. Mult Scler. Epub ahead of print 9 May 2016.spa
dc.relation.references69. Ralph HB Benedict, et al. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal 2017. 1-13.spa
dc.relation.references70. Richman J, Spaeth GL and Wirostko B. Contrast sensitivity basics and a critique of currently available tests. J Cataract Refract Surg 2013; 39(7): 1100– 1106.spa
dc.relation.references71. Optic Neuritis Study Group. Visual function 15 years after optic neuritis: A final follow-up report from the Optic Neuritis Treatment Trial. Ophthalmology 2008; 115(6): 1079.e5–1082.e5. 
spa
dc.relation.references72. Kupersmith MJ, Seiple WH, Nelson JI, et al. Contrast sensitivity loss in multiple sclerosis. Selectivity by eye, orientation, and spatial frequency measured with the evoked potential. Invest Ophthalmol Vis Sci 1984; 25(6): 632–639. 
spa
dc.relation.references73. Davies EC, Galetta KM, Sackel DJ, et al. Retinal ganglion cell layer volumetric assessment by spectral- domain optical coherence tomography in multiple sclerosis: Application of a high-precision manual estimation technique. J Neuroophthalmol 2011; 31(3): 260–264. 
spa
dc.relation.references74. Seigo MA, Sotirchos ES, Newsome S, et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol 2012; 259(10): 2119–2130.spa
dc.relation.references75. Balcer LJ, Baier ML, Cohen JA, et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology 2003; 61(10): 1367–1373.spa
dc.relation.references76. E. Maillart, et al. Acceptability in clinical practice of MSCopilot, a smartphone application for the digital self-assessment of patients living with MS. ECTRIMS Online Library. Maillart E. Oct 11, 2018; 228545spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.proposalesclerosis múltiplespa
dc.subject.proposalmultiple sclerosiseng
dc.subject.proposalpruebas funcionalesspa
dc.subject.proposalReference Valueseng
dc.subject.proposalvalores normalesspa
dc.subject.proposalHealth Statuseng
dc.subject.proposalOutcome testseng
dc.subject.proposalPruebas de desenlacespa
dc.titleValores normales de las pruebas MSOAC en población sana en Bogotá y comparación entre administración guiada y administración autónoma de las pruebas en el año 2019spa
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032451960.2021.pdf
Tamaño:
791.71 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: