Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)

dc.contributor.advisorBarragán Fonseca, Karol Bibiana
dc.contributor.authorBonilla Amaya, Miguel Fernando
dc.contributor.orcidBonilla Amya, Miguel Fernando [0009-0009-4957-0323]spa
dc.contributor.researchgroupGrupo en Conservación y Manejo de Vida Silvestrespa
dc.contributor.researchgroupUn Acuictiospa
dc.date.accessioned2023-09-01T19:44:52Z
dc.date.available2023-09-01T19:44:52Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn la actualidad los residuos sólidos se han convertido en un gran problema ambiental, porque su manejo es ineficiente. Dentro de los residuos sólidos, los plásticos representan un gran desafío debido a su alta producción y escaso manejo. El poliestireno expandido (PS), conocido como icopor, es uno de los tipos de plástico conocidos, y es catalogado como un material que no es biodegradable. Diversos estudios han demostrado que ciertos insectos y microorganismos son capaces de consumir y degradar algunos tipos de plástico, incluyendo el PS. En esta investigación, se realizó una revisión del estado del arte de las perspectivas y desarrollos actuales de la biodegradación de plásticos por parte de los insectos, como el gusano de la harina (Tenebrio molitor, Linnaeus 1758) y el gusano rey (Zophobas atratus, Fabricius, 1775) (Coleóptera: Tenebrionidae). Posteriormente, se efectuaron experimentos para evaluar el desempeño productivo y la capacidad de degradación del PS por larvas de T. molitor y Z. atratus, bajo cinco tratamientos experimentales con diferentes niveles de inclusión de PS y salvado de trigo (ST) (PS:ST 0:100, 25:75, 50:50, 75:25 y 100:0). Establecimos que las dos especies tienen la capacidad de biodegradar el PS. En las dos especies el mejor tratamiento fue la relación 25:75, debido a que presentaron mejor índice de conversión, mejor peso y tiempo de desarrollo de las larvas. Por otro lado, T. molitor y Z. atratus han sido utilizadas como alternativa nutricional en la alimentación de peces, por lo que también se evaluó el desempeño productivo de alevinos de cachama blanca (Piaractus brachypomus, Cuvier, 1818) alimentados con larvas de estos insectos alimentados con PS. Se formularon 10 dietas, correspondientes a 10%, 7,5%, 5,0%, 2,5% y 0% de inclusión de harina de T. molitor o Z. atratus en reemplazo de total o parcial de harina de pescado, atendiendo los requerimientos nutricionales de la cachama blanca. No se registraron diferencias entre los tratamientos experimentales, por lo que podemos concluir que es posible utilizar hasta 10% de harina de T. molitor o Z. atratus para alimentación de alevinos de cachama blanca sin afectar el desempeño productivo de la especie. Los hallazgos que se presentan aquí permitieron concluir que los insectos pueden biodegradar PS, sin embargo, se recomienda suministrarlo en una relación 25:75 de PS:ST, respectivamente, para que no se afecte el ciclo de vida ni la supervivencia de los insectos. A su vez, la harina de estos insectos alimentados con PS podría ser una alternativa de alimento para la cachama blanca. Sin embargo, es importante considerar que, aunque los parámetros productivos de los peces no fueron afectados, es necesario realizar estudios direccionadas a verificar la calidad nutricional de los peces, así como la ausencia de microplásticos provenientes del PS utilizado en la alimentación de los insectos. (Texto tomado de la fuente)spa
dc.description.abstractCurrently, solid waste has become a major environmental problem due to inefficient management. Among solid waste, plastics pose a significant challenge due to their high production and inadequate handling. Expanded polystyrene (EPS), known as Styrofoam, is one type of plastic that is non-biodegradable. Several studies have shown that certain insects and microorganisms are capable of consuming and degrading certain types of plastics, including EPS. In this research, a review of the state of the art regarding the perspectives and current developments in plastic biodegradation by insects such as the mealworm (Tenebrio molitor, Linnaeus 1758) and the superworm (Zophobas atratus, Fabricius, 1775) (Coleóptera: Tenebrionidae), was conducted. Subsequently, experiments were carried out to evaluate the productive performance and EPS degradation capacity of T. molitor and Z. atratus larvae under five experimental treatments with different levels of EPS and wheat bran inclusion (EPS: Wheat Bran 0:100, 25:75, 50:50, 75:25, and 100:0). It was found that both species have the ability to biodegrade EPS. The best treatment for both species was the 25:75 ratios, as it showed better conversion rates, biodegradation, larval weight, and development time. Furthermore, T. molitor and Z. atratus have been used as a nutritional alternative in fish feeding. Therefore, the productive performance of white cachama fingerlings (Piaractus brachypomus) fed with larvae of these insects fed with EPS was also evaluated. Ten diets were formulated, corresponding to 10%, 7.5%, 5.0%, 2.5%, and 0% inclusion of T. molitoror Z. atratus meal, replacing total or partial of fishmeal, meeting the nutritional requirements of the white cachama. There were no differences between the experimental treatments, so we can deduce that it is possible to use up to 10% of T. molitor or Z. atratus meal to feed white cachama fingerlings without affecting the productive performance of the species. The findings presented here allowed us to conclude that insects can biodegrade PS, however, it is recommended to supply it in a 25:75 ratio of PS and ST, respectively, so that the life cycle and survival of insects are not affected. In turn, the meal of these insects fed with PS could be a food alternative for the white cachama. However, it is important to consider that, although the productive parameters of the fish were not affected, it is necessary to carry out more research aimed at verifying the nutritional quality of the fish, as well as the absence of microplastics from the PS used in insect feeding.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaSistemas Pecuariosspa
dc.format.extentxvii, 84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84629
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAbdel, M., Ahmad, M. H., Khattab, Y. A. E., & Shalaby, A. M. E. (2010). Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298(3–4), 267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027spa
dc.relation.referencesAbdulhay, H. S. (2020). Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian Journal of Agriculture and Biology, 8(2), 201–206. https://doi.org/10.35495/ajab.2019.11.515spa
dc.relation.referencesAboelkheir, M. G., Visconte, L. Y., Oliveira, G. E., Toledo Filho, R. D., & Souza, F. G. (2019). The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Science of the Total Environment, 649, 1075–1082. https://doi.org/10.1016/j.scitotenv.2018.08.228spa
dc.relation.referencesAbraham, J., Ghosh, E., Mukherjee, P., & Gajendiran, A. (2017). Microbial degradation of low density polyethylene. Environmental Progress and Sustainable Energy, 36(1), 147–154. https://doi.org/10.1002/ep.12467spa
dc.relation.referencesAharon, Y., Pasternak, Z., Yosef, M. Ben, Behar, A., Lauzon, C., Yuval, B., & Jurkevitch, E. (2013). Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Applied and Environmental Microbiology, 79(1), 303–313. https://doi.org/10.1128/AEM.02761-12spa
dc.relation.referencesAhmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. In Environmental Science and Pollution Research (Vol. 25, Issue 8, pp. 7287–7298). Springer Verlag. https://doi.org/10.1007/s11356-018-1234-9spa
dc.relation.referencesAlbertsson, A. C., & Hakkarainen, M. (2017). Designed to degrade - Suitably designed degradable polymers can play a role in reducing plastic waste. In Science (Vol. 358, Issue 6365, pp. 872–873). American Association for the Advancement of Science. https://doi.org/10.1126/science.aaq8115spa
dc.relation.referencesArango, G. P. , Vergara Ruiz, R. A., & Mejía Vélez, H. (2004). Analisis composicional, microbiológico y digestibilidad de la proteína de la harina de larvas de Hermetia illuscens l (diptera:stratiomyiidae) en Angelópolis-Antioquia,Colombia. Rev. Fac. Nac. Agron. Medellín. , Vol.57, 2491–2499.spa
dc.relation.referencesArévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. In Food Control (Vol. 138). Elsevier Ltd. https://doi.org/10.1016/j.foodcont.2022.109030spa
dc.relation.referencesAshter, S. A. (2016). Mechanisms of Polymer Degradation. In Introduction to Bioplastics Engineering (pp. 31–59). Elsevier. https://doi.org/10.1016/b978-0-323-39396- 6.00003-8spa
dc.relation.referencesAzagoh, C., Ducept, F., Garcia, R., Rakotozafy, L., Cuvelier, M. E., Keller, S., Lewandowski, R., & Mezdour, S. (2016). Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International, 88, 24– 31. https://doi.org/10.1016/j.foodres.2016.06.010spa
dc.relation.referencesBarnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205spa
dc.relation.referencesBarragán-Fonseca, K. B., Muñoz-Ramírez, A. P., Mc Cune, N. M., Pineda, J., Dicke, M., & Cortés, J. (2022). Fighting rural poverty in Colombia: Circular agriculture by using insects as feed in aquaculture. www.wageningenUR.nl/livestockresearchspa
dc.relation.referencesBarragán-Fonseca, K. Y., Barragán-Fonseca, K. B., Verschoor, G., van Loon, J. J., & Dicke, M. (2020). Insects for peace. In Current Opinion in Insect Science (Vol. 40, pp. 85–93). Elsevier Inc. https://doi.org/10.1016/j.cois.2020.05.011spa
dc.relation.referencesBarroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422–423, 193–201. https://doi.org/10.1016/j.aquaculture.2013.12.024spa
dc.relation.referencesBasto, A., Matos, E., & Valente, L. M. P. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521. https://doi.org/10.1016/j.aquaculture.2020.735085spa
dc.relation.referencesBeach, E. S., Weeks, B. R., Stern, R., & Anastas, P. T. (2013). Plastics additives and green chemistry. Pure and Applied Chemistry, 85(8), 1611–1624. https://doi.org/10.1351/PAC-CON-12-08-08spa
dc.relation.referencesBenítez, G. (2013). Investigación: ―Relleno sanitario bordo poniente: ECÓPOLIS.‖ http://www.obrasenmiciudad.df.gob.mx/?p=14819spa
dc.relation.referencesBenzertiha, A., Kierończyk, B., Rawski, M., Józefiak, A., Kozłowski, K., Jankowski, J., & Józefiak, D. (2019). Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals, 9(12). https://doi.org/10.3390/ani9121128spa
dc.relation.referencesBerasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015- 7186-9spa
dc.relation.referencesBiasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M. T., Biasibetti, E., Tarantola, M., Sterpone, L., Cavallarin, L., Gai, F., Pozzo, L., Bergagna, S., Dezzutto, D., Zoccarato, I., & Schiavone, A. (2018). Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poultry Science, 97(2), 540–548. https://doi.org/10.3382/ps/pex308spa
dc.relation.referencesBillen, P., Khalifa, L., Van Gerven, F., Tavernier, S., & Spatari, S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macroorganisms such as mealworms and wax moth larvae. Science of the Total Environment, 735. https://doi.org/10.1016/j.scitotenv.2020.139521spa
dc.relation.referencesBirnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern? In Environmental Health Perspectives (Vol. 112, Issue 1, pp. 9–17). Public Health Services, US Dept of Health and Human Services. https://doi.org/10.1289/ehp.6559spa
dc.relation.referencesBombelli, P., Howe, C. J., & Bertocchini, F. (2017). Current Biology Polyethylene biodegradation by caterpillars of the wax moth Galleria mellonella. R292 Current Biology, 27, 283–293. https://doi.org/10.1016/jspa
dc.relation.referencesBosch, G., Vervoort, J. J. M., & Hendriks, W. H. (2016). In vitro digestibility and fermentability of selected insects for dog foods. Animal Feed Science and Technology, 221, 174–184. https://doi.org/10.1016/j.anifeedsci.2016.08.018spa
dc.relation.referencesBosch, G., Zhang, S., Oonincx, D. G. A. B., & Hendriks, W. H. (2014). Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, 3. https://doi.org/10.1017/jns.2014.23spa
dc.relation.referencesBourtzis, & Miller. (2003). Insect symbiosis An introduction (2003rd ed.). Taylo & Fraancis Group,LLc.spa
dc.relation.referencesBovera F, Loponte R, Marono S, Piccolo G, Parisi G, Laconisi V, Gasco L, & Nizza A. (2016). Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Animal Science, 639–647.spa
dc.relation.referencesBożek, M., Hanus-Lorenz, B., & Rybak, J. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17, 1–7. https://doi.org/10.1051/e3sconf/20171700011spa
dc.relation.referencesBrandon, A. M., El Abbadi, S. H., Ibekwe, U. A., Cho, Y. M., Wu, W. M., & Criddle, C. S. (2020). Fate of hexabromocyclododecane (HBCD), a common flame retardant, in polystyrene-degrading mealworms: Elevated HBCD levels in egested polymer but no bioaccumulation. Environmental Science and Technology, 54(1), 364–371. https://doi.org/10.1021/acs.est.9b06501spa
dc.relation.referencesBrandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301spa
dc.relation.referencesBulak, P., Polakowski, C., Nowak, K., Waśko, A., Wiącek, D., & Bieganowski, A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Science of the Total Environment, 633, 912–919. https://doi.org/10.1016/j.scitotenv.2018.03.252spa
dc.relation.referencesCanopoli, L., Fidalgo, B., Coulon, F., & Wagland, S. T. (2018). Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. In Waste Management (Vol. 76, pp. 55–67). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2018.03.043spa
dc.relation.referencesCaparros, R., Poelaert, C., Ernens, M., Liotta, M., Blecker, C., Danthine, S., Tyteca, E., Haubruge, É., Alabi, T., Bindelle, J., & Francis, F. (2018). Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, 106, 503–508. https://doi.org/10.1016/j.foodres.2018.01.002spa
dc.relation.referencesCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pẽa, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. In Nature Methods (Vol. 7, Issue 5, pp. 335–336). https://doi.org/10.1038/nmeth.f.303spa
dc.relation.referencesCappelli, A., Cini, E., Lorini, C., Oliva, N., & Bonaccorsi, G. (2020). Insects as food: A review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development. In Food Control (Vol. 108). Elsevier Ltd. https://doi.org/10.1016/j.foodcont.2019.106877spa
dc.relation.referencesCarr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. https://doi.org/10.1016/j.watres.2016.01.002spa
dc.relation.referencesChae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. In Environmental Pollution (Vol. 240, pp. 387–395). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2018.05.008spa
dc.relation.referencesChainark, P. . , Prachom, N. . , Boonyoung, S. . , & Yuangsoi, B. (2022). Replacement of Fish Meal Protein with Giant Worm (Zophobas morio) and Black Cricket (Gryllus bimaculatus) in Diet of Cobia (Rachycentron canadum). Ournal of Fisheries and Environment, 122–129.spa
dc.relation.referencesChapman, R. F. (2009). Mouthparts. In Encyclopedia of Insects (pp. 663–668). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374144-8.00182-Xspa
dc.relation.referencesChirinos, N., Díaz-Viteri, J., & Mego-Mego, V. (2022). Efecto de dietas extruidas en base a torta de castaña y fruto de macambo, sobre los índices de crecimiento y zootécnicos en el cultivo de pacos juveniles. Ariotake – Revista de Investigación Veterinaria y Amazonía, 1(1), e176. https://doi.org/10.55873/ariva.v1i1.176spa
dc.relation.referencesChoi, E. Y., Lee, J. H., Han, S. H., Jung, G. H., Han, E. J., Jeon, S. J., Jung, S. H., Park, J. U., Park, J. H., Bae, Y. J., Park, E. S., & Jung, J. Y. (2022). Subacute Oral Toxicity Evaluation of ExpandedPolystyrene-Fed Tenebrio molitor Larvae (Yellow Mealworm) Powder in Sprague-Dawley Rats. Food Science of Animal Resources, 42(4), 609–624. https://doi.org/10.5851/kosfa.2022.e25spa
dc.relation.referencesCoffey, D., Dawson, K., Ferket, P., & Connolly, A. (2016). Review of the feed industry from a historical perspective and implications for its future. Journal of Applied Animal Nutrition, 4. https://doi.org/10.1017/jan.2015.11spa
dc.relation.referencesComisión Euopea. (2017). Comisión Europea.(2017) Reglamento (UE) 2017/893 de la comisión de 24 de mayo de 2017 que modifica los anexos I y IV del Reglamento (CE) No. 999/2001 del Parlamento Europeo y del Consejo y los anexos X, XIV y XV del Reglamento (UE) No. 142/2011 de la Comisión por lo que se refiere a las disposiciones sobre proteína animal transformada.transformada.spa
dc.relation.referencesCouto, F. , Tavares, F. , Calvacante, E. F. , da Costa, D. V. , Silva, A. C., & Cardoso, S. P. (2021). Uso de farinha de inseto como alimento alternativo na dieta de alevinos de pirapitinga (Piaractus brachypomus). Revista Panorâmica Online, 2.spa
dc.relation.referencesCraig, S. R., Washburn, B. S., & Gatlin, D. M. (1999). Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. In Fish Physiology and Biochemistry (Vol. 21). https://doi.org/10.1023/a:1007843420128spa
dc.relation.referencesDalev, P. G. (1994). Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. In Bioresource Technology (Vol. 45).spa
dc.relation.referencesDe Almeida, Á. J., Sado, R. Y., & Cyrino, J. E. P. (2009). Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquaculture Research, 40(4), 486–495. https://doi.org/10.1111/j.1365- 2109.2008.02120.xspa
dc.relation.referencesDe Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L., & Schiavone, A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology, 209, 211–218. https://doi.org/10.1016/j.anifeedsci.2015.08.006spa
dc.relation.referencesDe Smet, J., Lenaerts, S., Borremans, A., Scholliers, J., Van Der Borght, M., & Van Campenhout, L. (2019). Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT, 102, 113–121. https://doi.org/10.1016/j.lwt.2018.12.017spa
dc.relation.referencesDelort, A.-M., & Combourieu, B. (2001). In situ 1 H NMR study of the biodegradation of xenobiotics: Application to heterocyclic compounds. In Journal of Industrial Microbiology & Biotechnology. www.nature.com/jimspa
dc.relation.referencesDerraik, B. (2002). The pollution of the marine environment by plastic debris: a review. 842–852. www.elsevier.com/locate/marpolbulspa
dc.relation.referencesDillon, R. J., Webster, G., Weightman, A. J., Dillon, V. M., Blanford, S., & Charnley, A. K. (2008). Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. Journal of Invertebrate Pathology, 97(3), 265–272. https://doi.org/10.1016/j.jip.2007.09.010spa
dc.relation.referencesDoğankaya, L. (2016). Effects of fish meal substitution with super worm (Zophobas morio) meal on growth performance of rainbow trout fingerlings. Aquatic Sciences and Engineering. Turkish Journal of Aquatic Sciences, 1–7. https://doi.org/10.18864/tjas201701spa
dc.relation.referencesDossey, A. T., Morales-Ramos, J. A., & Rojas, M. G. (2016). Insects as sustainable food ingredients : production, processing and food applications.spa
dc.relation.referencesDouglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and Their Symbiotic Bacteria Buchnera. In Annu. Rev. Entomol (Vol. 43). www.annualreviews.orgspa
dc.relation.referencesDouglas, A. E. (2009). The microbial dimension in insect nutritional ecology. In Functional Ecology (Vol. 23, Issue 1, pp. 38–47). https://doi.org/10.1111/j.1365- 2435.2008.01442.xspa
dc.relation.referencesEngel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025spa
dc.relation.referencesEuropean Bioplastics. (2018). Bioplastics market data 2018 - Global production capacities of bioplastics 2018-2023. https://www.european-bioplastics.org/wpcontent/uploads/2016/02/Report_Bioplastics-Market-Data_2018.pdfspa
dc.relation.referencesFabrikov, D., Sánchez-Muros, M. J., Barroso, F. G., Tomás-Almenar, C., Melenchón, F., Hidalgo, M. C., Morales, A. E., Rodriguez-Rodriguez, M., & Montes-Lopez, J. (2020). Comparative study of growth performance and amino acid catabolism in Oncorhynchus mykiss, Tinca tinca and Sparus aurata and the catabolic changes in response to insect meal inclusion in the diet. Aquaculture, 529. https://doi.org/10.1016/j.aquaculture.2020.735731spa
dc.relation.referencesFernández, F., Guerrero, R. J., & Sánchez-Restrepo, A. F. (2021). Systematics and diversity of neotropical ants. Revista Colombiana de Entomologia, 47(1). https://doi.org/10.25100/socolen.v47i1.11082spa
dc.relation.referencesFiliciotto, L., & Rothenberg, G. (2021). Biodegradable Plastics: Standards, Policies, and Impacts. In ChemSusChem (Vol. 14, Issue 1, pp. 56–72). Wiley-VCH Verlag. https://doi.org/10.1002/cssc.202002044spa
dc.relation.referencesFlórez, L. V., Biedermann, P. H. W., Engl, T., & Kaltenpoth, M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32(7), 904–936. https://doi.org/10.1039/c5np00010fspa
dc.relation.referencesFolino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. In Sustainability (Switzerland) (Vol. 12, Issue 15). MDPI. https://doi.org/10.3390/su12156030spa
dc.relation.referencesFontes, T., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of insect meals for nile tilapia fingerlings. Animals, 9(4). https://doi.org/10.3390/ani9040181spa
dc.relation.referencesFontes, T. V. (2018). Coeficiente de digestibilidade de farinha de insetos na alimentação de alevinos de tilápia do nilo (Oreochromis niloticus). Universidade Federal de Lavras.spa
dc.relation.referencesGao, W., Liu, Y. J., Tian, L. X., Mai, K. S., Liang, G. Y., Yang, H. J., Huai, M. Y., & Luo, W. J. (2011). Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: A comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis niloticus × O. aureus). Aquaculture Nutrition, 17(1), 2–12. https://doi.org/10.1111/j.1365- 2095.2009.00698.xspa
dc.relation.referencesGarofalo, C., Osimani, A., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Riolo, P., Ruschioni, S., Isidoro, N., & Clementi, F. (2017). The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiology, 62, 15–22. https://doi.org/10.1016/j.fm.2016.09.012spa
dc.relation.referencesGasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. In Current Opinion in Green and Sustainable Chemistry (Vol. 23, pp. 67–79). Elsevier B.V. https://doi.org/10.1016/j.cogsc.2020.03.003spa
dc.relation.referencesGasco, L., Biasato, I., Dabbou, S., Schiavone, A., & Gai, F. (2019). Animals fed insectbased diets: State-of-the-art on digestibility, performance and product quality. In Animals (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/ani9040170spa
dc.relation.referencesGasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P., & Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220, 34–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003spa
dc.relation.referencesGautam, R., Bassi, A. S., & Yanful, E. K. (2007). Plastic and Foam Biodegradation 85 A Review of Biodegradation of Synthetic Plastic and Foams. In Applied Biochemistry and Biotechnology (Vol. 141).spa
dc.relation.referencesGhaly, A. E., & Alkoaik, F. N. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal of Agricultural and Biological Sciences, 4(4), 319–331.spa
dc.relation.referencesGibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. In Ecology Letters (Vol. 13, Issue 2, pp. 223–234). https://doi.org/10.1111/j.1461-0248.2009.01416.xspa
dc.relation.referencesGilpin, R. K., Wagel, D. J., & Solch, J. G. (2003). Production, Distribution, and Fate of Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans, and Related Organohalogens in the Environment (A. Schecter & T. A. Gasiewicz, Eds.; Second edition). https://doi.org/doi.org/10.1002/0471722014.ch2spa
dc.relation.referencesGómez, E. F., & Michel, F. C. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583–2591. https://doi.org/10.1016/j.polymdegradstab.2013.09.018spa
dc.relation.referencesGracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247–253. https://doi.org/10.1016/S0141-3910(03)00269-6spa
dc.relation.referencesGümüş, E., & İkiz, R. (2009). Effect of dietary levels of lipid and carbohydrate on growth performance, chemical contents and digestibility in rainbow trout, Oncorhynchus mykiss. Pakistan Vet. J, 29(2), 59–63.spa
dc.relation.referencesGuo, B., Yin, J., Hao, W., & Jiao, M. (2019). Polyurethane foam induces epigenetic modification of mitochondrial DNA during different metamorphic stages of Tenebrio molitor. Ecotoxicology and Environmental Safety, 183. https://doi.org/10.1016/j.ecoenv.2019.109461spa
dc.relation.referencesGutiérrez, J. (2013). Biodegradación de polietileno de baja densidad por consorcios microbianos. Universidad Nacional Autónoma de Mexico.spa
dc.relation.referencesHadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.xspa
dc.relation.referencesHahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. In Journal of Hazardous Materials (Vol. 344, pp. 179–199). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2017.10.014spa
dc.relation.referencesHamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. In Polymer Degradation and Stability (Vol. 98, Issue 12, pp. 2801–2812). https://doi.org/10.1016/j.polymdegradstab.2013.09.025spa
dc.relation.referencesHamed, M., & Attias, J. (1987). Isolation and partial characterization of two alkaline proteases of the greater wax moth Galleria mellonella (L.). In Insect Biochem (Vol. 17, Issue 5).spa
dc.relation.referencesHarshvardhan, K., & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1–2), 100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025spa
dc.relation.referencesHenry, Gai, F., Enes, P., Peréz-Jiménez, A., & Gasco, L. (2018). Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 83, 308–313. https://doi.org/10.1016/j.fsi.2018.09.040spa
dc.relation.referencesHenry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. In Animal Feed Science and Technology (Vol. 203, Issue 1, pp. 1–22). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2015.03.001spa
dc.relation.referencesHivrale, V. K., Chougule, N. P., Chhabda, P. J., Giri, A. P., & Kachole, M. S. (2005). Unraveling biochemical properties of cockroach (Periplaneta americana) proteinases with a gel X-ray film contact print method. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 141(3), 261–266. https://doi.org/10.1016/j.cbpc.2005.02.015spa
dc.relation.referencesIaconisi, V., Bonelli, A., Pupino, R., Gai, F., & Parisi, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture, 484, 197– 204. https://doi.org/10.1016/j.aquaculture.2017.11.034spa
dc.relation.referencesIaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F., & Piccolo, G. (2017). Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476, 49–58. https://doi.org/10.1016/j.aquaculture.2017.04.007spa
dc.relation.referencesImathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. In NFS Journal (Vol. 18, pp. 1–11). Elsevier GmbH. https://doi.org/10.1016/j.nfs.2019.11.002spa
dc.relation.referencesJabir, R., Razak, S., & Vikinesway, S. (2012). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Biotechnology, 11(24). https://doi.org/10.5897/ajb11.1084spa
dc.relation.referencesJayasekara, R., Harding, I., Bowater, I., & Lonergan, G. (2005). Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. In Journal of Polymers and the Environment (Vol. 13, Issue 3, pp. 231–251). https://doi.org/10.1007/s10924-005-4758-2spa
dc.relation.referencesJeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences, 23(1). https://doi.org/10.1186/s41240-020-00158-7spa
dc.relation.referencesJordan, R. (2015). Plastic-eating worms may offer solution to mounting waste, Stanford researchers discover. https://news.stanford.edu/2015/09/29/worms-digest-plastics092915/spa
dc.relation.referencesJung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., & Park, W. (2014). Gut microbiota of Tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016spa
dc.relation.referencesKannan, M., Mubarakali, D., Thiyonila, B., Krishnan, M., Padmanaban, B., & Shantkriti, S. (2019). Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. In Biocatalysis and Agricultural Biotechnology (Vol. 18). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2019.01.048spa
dc.relation.referencesKarian, H. G. (2003). Handbook of polypropylene and polypropylene composites. Marcel Dekker.spa
dc.relation.referencesKarlsson, S., Ljungquist, O., & Albertsson, A.-C. (1988). Biodegradation of Polyethylene and the Influence of Surfactants. In Polymer Degradation and Stability (Vol. 21).spa
dc.relation.referencesKathiresan, C. R. (2003). Polythene and Plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51, 629–633. http://www.redalyc.org/articulo.oa?id=44911882003spa
dc.relation.referencesKhan, S., Dong, Y., Nadir, S., Schaefer, D. A., Mortimer, P. E., Xu, J., Ye, L., Gui, H., Wanasinghe, D. N., Dossa, G. G. O., Yu, M., & Sheng, J. (2021). Valorizing plastic waste by insect consumption. Circular Agricultural Systems, 1(1), 1–9. https://doi.org/10.48130/CAS-2021-0007spa
dc.relation.referencesKong, H. G., Kim, H. H., Chung, J. hui, Jun, J. H., Lee, S., Kim, H. M., Jeon, S., Park, S. G., Bhak, J., & Ryu, C. M. (2019). The Galleria mellonella Hologenome Supports Microbiota-Independent Metabolism of Long-Chain Hydrocarbon Beeswax. Cell Reports, 26(9), 2451-2464.e5. https://doi.org/10.1016/j.celrep.2019.02.018spa
dc.relation.referencesKooijman, B. (2009). Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge University Press. https://doi.org/10.1017/CBO9780511805400spa
dc.relation.referencesKovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., Srikachar, S., & Chotimanothum, B. (2019). Potential of insect meals as protein sources for meattype ducks based on in vitro digestibility. Animals, 9(4). https://doi.org/10.3390/ani9040155spa
dc.relation.referencesKrenn, H. W. (2019). Insect Mouthparts (Vol. 5). http://www.springer.com/series/15188spa
dc.relation.referencesKudrya, V. A., & Simonenko, I. A. (1994). Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subUIis. In Appl Microbiol Biotechnol (Vol. 41).spa
dc.relation.referencesKulma, M., Kouřimská, L., Homolková, D., Božik, M., Plachý, V., & Vrabec, V. (2020). Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. Journal of Food Composition and Analysis, 92. https://doi.org/10.1016/j.jfca.2020.103570spa
dc.relation.referencesKumar, S., Hatha, A. A. M., & Christi, K. S. (2007). Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev. Biol. Trop., 55(4), 777–786.spa
dc.relation.referencesKundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A., & Devipriya, S. P. (2021). Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environmental Technology (United Kingdom), 42(5), 717–730. https://doi.org/10.1080/09593330.2019.1643925spa
dc.relation.referencesKwon, B. G., Saido, K., Koizumi, K., Sato, H., Ogawa, N., Chung, S. Y., Kusui, T., Kodera, Y., & Kogure, K. (2014). Regional distribution of styrene analogues generated from polystyrene degradation along the coastlines of the North-East Pacific Ocean and Hawaii. Environmental Pollution, 188, 45–49. https://doi.org/10.1016/j.envpol.2014.01.019spa
dc.relation.referencesKyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology, 52(3), 411–419. https://doi.org/10.1007/s12088-012-0250-6spa
dc.relation.referencesKyrikou, I., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: A critical review. In Journal of Polymers and the Environment (Vol. 15, Issue 2, pp. 125–150). https://doi.org/10.1007/s10924-007-0053-8spa
dc.relation.referencesLandines, M. A., Rodríguez L., & Rodríguez D. (2011). Estrategias de alimentación para Cachama y Yamú a partir de prácticas de restricción alimenticia. ResearchGate. https://www.researchgate.net/publication/266416402spa
dc.relation.referencesLatney, L. V. , Toddes, B. D. , Wyre, N. R. , Brown, D. C. , Michel, K. E. , & Briscoe, J. A. (2017). Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae). 178–185.spa
dc.relation.referencesLaw, K. L. (2017). Plastics in the Marine Environment. In Annual Review of Marine Science (Vol. 9, Issue 1, pp. 205–229). Annual Reviews Inc. https://doi.org/10.1146/annurev-marine-010816-060409spa
dc.relation.referencesLear, G., Kingsbury, J. M., Franchini, S., Gambarini, V., Maday, S. D. M., Wallbank, J. A., Weaver, L., & Pantos, O. (2021). Plastics and the microbiome: impacts and solutions. In Environmental Microbiomes (Vol. 16, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40793-020-00371-wspa
dc.relation.referencesLee, B., Pometto Iii, A. L., Fratzke, A., & Bailey, T. B. (1991). Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Speciest. In Applied And Environmental Microbiology (Vol. 678, Issue 3).spa
dc.relation.referencesLeja, & Lewandowicz, G. (2010). Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies, 19.spa
dc.relation.referencesLiaqat, S. (2020). Microbial ecology: A new perspective of plastic degradation. Pure and Applied Biology, 9(4). https://doi.org/10.19045/bspab.2020.90228spa
dc.relation.referencesLiceaga, A. M. (2021). Processing insects for use in the food and feed industry. In Current Opinion in Insect Science (Vol. 48, pp. 32–36). Elsevier Inc. https://doi.org/10.1016/j.cois.2021.08.002spa
dc.relation.referencesLlagostera, P., Kallas, Z., Reig, L., & Amores de Gea, D. (2019). The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production, 229, 10–21. https://doi.org/10.1016/j.jclepro.2019.05.012spa
dc.relation.referencesMahdavi, A., Ghadamyari, M., Sajedi, R. H., Sharifi, M., & Kouchaki, B. (2013). Identification and Partial Characterization of Midgut Proteases in the Lesser Mulberry Pyralid, Glyphodes pyloalis. Journal of Insect Science, 13. https://doi.org/10.1673/031.013.8101spa
dc.relation.referencesMancini, S., Mattioli, S., Paolucci, S., Fratini, F., Dal Bosco, A., Tuccinardi, T., & Paci, G. (2021). Effect of Cooking Techniques on the in vitro Protein Digestibility, Fatty Acid Profile, and Oxidative Status of Mealworms (Tenebrio molitor). Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.675572spa
dc.relation.referencesMassardier-Nageotte, V., Pestre, C., Cruard-Pradet, T., & Bayard, R. (2006). Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, 91(3), 620–627. https://doi.org/10.1016/j.polymdegradstab.2005.02.029spa
dc.relation.referencesMastoraki, M., Mollá Ferrándiz, P., Vardali, S. C., Kontodimas, D. C., Kotzamanis, Y. P., Gasco, L., Chatzifotis, S., & Antonopoulou, E. (2020). A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture, 528. https://doi.org/10.1016/j.aquaculture.2020.735511spa
dc.relation.referencesMeena, M. D., Joshi, P. K., Narjary, B., Sheoran, P., Jat, H. S., Chinchmalatpure, A. R., Yadav, R. K., & Sharma, D. K. (2016). Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard-pearl millet cropping system. Soil Research, 54(8), 958–969. https://doi.org/10.1071/SR15342spa
dc.relation.referencesMehmood, C. T., Qazi, I. A., Hashmi, I., Bhargava, S., & Deepa, S. (2016). Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. International Biodeterioration and Biodegradation, 113, 276–286. https://doi.org/10.1016/j.ibiod.2016.01.025spa
dc.relation.referencesMelenchón, F., Larrán, A. M., de Mercado, E., Hidalgo, M. C., Cardenete, G., Barroso, F. G., Fabrikov, D., Lourenço, H. M., Pessoa, M. F., & Tomás-Almenar, C. (2021). Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 27(2), 491–505. https://doi.org/10.1111/anu.13201spa
dc.relation.referencesMelgar-Lalanne, G., Hernández-Álvarez, A. J., & Salinas-Castro, A. (2019). Edible Insects Processing: Traditional and Innovative Technologies. In Comprehensive Reviews in Food Science and Food Safety. Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12463spa
dc.relation.referencesMelis, R., Braca, A., Mulas, G., Sanna, R., Spada, S., Serra, G., Fadda, M. L., Roggio, T., Uzzau, S., & Anedda, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science and Emerging Technologies, 48, 138–149. https://doi.org/10.1016/j.ifset.2018.06.003spa
dc.relation.referencesMesa, M. N., & Botero-Aguirre, M. C. (2007). La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. In Rev Col Cienc Pec (Vol. 20, Issue 1).spa
dc.relation.referencesMika, N., Zorn, H., & Rühl, M. (2013). Insect-derived enzymes: A treasure for industrial biotechnology and food biotechnology. In Advances in Biochemical Engineering/Biotechnology (Vol. 136, pp. 1–17). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/10_2013_204spa
dc.relation.referencesMikołajczak, Z., Rawski, M., Mazurkiewicz, J., Kierończyk, B., & Józefiak, D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10(6), 1–20. https://doi.org/10.3390/ani10061031spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2021). Dirección de Cadenas Pecuarias, Pesqueras y Acuicolas. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2021- 03-31%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMondragón, I. (2021). Dimorfismo sexual de Zophobas morio (Fabricius, 1776) (Coleoptera, Tenebrionidae) en las etapas de pupa y de adulto. Ingeniería y Región, 25, 22–31. https://doi.org/10.25054/22161325.2703spa
dc.relation.referencesMoran, N. A. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. www.nasonline.org/adaptationandcomplexdesign.spa
dc.relation.referencesMoruzzo, R., Riccioli, F., Espinosa Diaz, S., Secci, C., Poli, G., & Mancini, S. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. In Animals (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/ani11092568spa
dc.relation.referencesMotte, C., Rios, A., Lefebvre, T., Do, H., Henry, M., & Jintasataporn, O. (2019). Replacing fish meal with defatted insect meal (Yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9(5). https://doi.org/10.3390/ani9050258spa
dc.relation.referencesMustafa, N. S., Omer, M. A., Garlnabi, M. E., & Ismail, H. A. (2016). Reviewing of General Polymer Types, Properties and Application in Medical Field. International Journal of Science and Research (IJSR), 5(8), 212–221. https://doi.org/10.21275/art2016772spa
dc.relation.referencesNanda, S., Snigdha Sahu, S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J. Appl. Sci. Environ. Manage, 14(2), 57–60. www.bioline.org.br/jaspa
dc.relation.referencesNeklyudov, A. D., Ivankin, A. N., & Berdutina, A. V. (2000). Properties and Uses of Protein Hydrolysates (Review). In Translated frora Prikladnaya Bioldaimiya i Mikrobiologi)~ (Vol. 36, Issue 5).spa
dc.relation.referencesNovotný, Č., Malachová, K., Adamus, G., Kwiecień, M., Lotti, N., Soccio, M., Verney, V., & Fava, F. (2018). Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. International Biodeterioration and Biodegradation, 132, 259–267. https://doi.org/10.1016/j.ibiod.2018.04.014spa
dc.relation.referencesNowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39–46. https://doi.org/10.1016/j.foodchem.2014.10.114spa
dc.relation.referencesNukmal, N., Umar, S., Amanda, S. P., & Kanedi, M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), 24–28. https://doi.org/10.3844/ojbsci.2018.24.28spa
dc.relation.referencesNyangena, D. N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S., Nakimbugwe, D., & Fiaboe, K. K. M. (2020). Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods, 9(5). https://doi.org/10.3390/foods9050574spa
dc.relation.referencesOECD. (2022). Global Plastics Outlook Economic Drivers, Environmental Impacts and Policy Options. https://rds.org.co/apc-aa-files/205ec78c9cca6d1850bdca24e20e50bf/document.pdfspa
dc.relation.referencesOjha, S., Bußler, S., & Schlüter, O. K. (2020). Food waste valorisation and circular economy concepts in insect production and processing. In Waste Management (Vol. 118, pp. 600–609). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2020.09.010spa
dc.relation.referencesOsimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., Pasquini, M., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Petruzzelli, A., Foglini, M., Gabucci, C., Tonucci, F., & Aquilanti, L. (2018). The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. International Journal of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001spa
dc.relation.referencesPanini, R. L., Freitas, L. E. L., Guimarães, A. M., Rios, C., da Silva, M. F. O., Vieira, F. N., Fracalossi, D. M., Samuels, R. I., Prudêncio, E. S., Silva, C. P., & Amboni, R. D. M. C. (2017). Potential use of mealworms as an alternative protein source for Pacific white shrimp: Digestibility and performance. Aquaculture, 473, 115–120. https://doi.org/10.1016/j.aquaculture.2017.02.008spa
dc.relation.referencesPeng, B. Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W. M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115206spa
dc.relation.referencesPeng, B. Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. S., Wu, W. M., & Zhang, Y. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256–5265. https://doi.org/10.1021/acs.est.8b06963spa
dc.relation.referencesPeydaei, A., Bagheri, H., Gurevich, L., de Jonge, N., & Nielsen, J. L. (2020). Impact of polyethylene on salivary glands proteome in Galleria melonella. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 34. https://doi.org/10.1016/j.cbd.2020.100678spa
dc.relation.referencesPiccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12–20. https://doi.org/10.1016/j.anifeedsci.2017.02.007spa
dc.relation.referencesPlascticsEurope. (2020). Plastics-the Facts 2020 An analysis of European plastics production, demand and waste data.spa
dc.relation.referencesPlastics Europe. (2015). An analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-thefacts.pdfspa
dc.relation.referencesPlastics Europe. (2015). An analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-thefacts.pdfspa
dc.relation.referencesPramila, R., & Vijaya Ramesh, K. (2015). African Journal of Bacteriology Research Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. 7(3), 24–28. https://doi.org/10.5897/JBR2015.0152spa
dc.relation.referencesPrzemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256. https://doi.org/10.1016/j.envpol.2019.113265spa
dc.relation.referencesPurcell, J. P., Greenplate, J. T., & Sammons, R. D. (1992). Examination of midgut luminal proteinase activities in six economically important insects. In Insect Biochem. Molec. Biol (Vol. 22).spa
dc.relation.referencesPurschke, B., Brüggen, H., Scheibelberger, R., & Jäger, H. (2018). Effect of pretreatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). European Food Research and Technology, 244(2), 269–280. https://doi.org/10.1007/s00217-017-2953-8spa
dc.relation.referencesQueiroz, L. S., Nogueira Silva, N. F., Jessen, F., Mohammadifar, M. A., Stephani, R., Fernandes de Carvalho, A., Perrone, Í. T., & Casanova, F. (2023). Edible insect as an alternative protein source: a review on the chemistry and functionalities of proteins under different processing methods. In Heliyon (Vol. 9, Issue 4). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2023.e14831spa
dc.relation.referencesR: The R Project for Statistical Computing. (2021). https://www.r-project.org/spa
dc.relation.referencesRaaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J. Acad. Indus. Res, 1(6), 313spa
dc.relation.referencesRadajewski, S., Ineson23, P., Parekh2 , N. R., & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. In NATURE (Vol. 403). www.nature.comspa
dc.relation.referencesRagaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. In Waste Management (Vol. 69, pp. 24–58). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.07.044spa
dc.relation.referencesRen, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y., & Zhang, W. (2019). Biodegradation of polyethylene by enterobacter sp. D1 from the guts ofwax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11). https://doi.org/10.3390/ijerph16111941spa
dc.relation.referencesRestrepo-Flórez, J. M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene - A review. In International Biodeterioration and Biodegradation (Vol. 88, pp. 83–90). https://doi.org/10.1016/j.ibiod.2013.12.014spa
dc.relation.referencesRibeiro, F. M., Divino, P. V., Freitas, X., Oliveira Dos Santos, E., Martins De Sousa, R., Carvalho, T. A., Menezes De Almeida, E., Oliveira, T., Santos, D., & Carvalho Costa, A. (2016). Publicações em Medicina Veterinária e Zootecnia Alimentação e nutrição de Pirapitinga (Piaractus brachypomums) e Tambaqui (Colossoma macropomum): Revisão. 873–882. https://doi.org/10.22256/pubvet.v10n1spa
dc.relation.referencesRibeiro, J. C., Lima, R. C., Maia, M. R. G., Almeida, A. A., Fonseca, A. J. M., Cabrita, A. R. J., & Cunha, L. M. (2019). Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT, 113. https://doi.org/10.1016/j.lwt.2019.108335spa
dc.relation.referencesRiudavets, J., Salas, I., & Pons, M. J. (2007). Damage characteristics produced by insect pests in packaging film. Journal of Stored Products Research, 43(4), 564–570. https://doi.org/10.1016/j.jspr.2007.03.006spa
dc.relation.referencesRojas-Jiménez, K., & Hernández, M. (2015). Isolation of fungi and bacteria associated with the guts of tropical wood-feeding Coleoptera and determination of their lignocellulolytic activities. International Journal of Microbiology, 2015. https://doi.org/10.1155/2015/285018spa
dc.relation.referencesRomanelli, D., Casartelli, M., Cappellozza, S., De Eguileor, M., & Tettamanti, G. (2016). Roles and regulation of autophagy and apoptosis in the remodelling of the Lepidopteran midgut epithelium during metamorphosis. Scientific Reports, 6. https://doi.org/10.1038/srep32939spa
dc.relation.referencesSamir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. Npj Materials Degradation, 6(1). https://doi.org/10.1038/s41529-022-00277-7spa
dc.relation.referencesSanatan, P. T., Lomate, P. R., Giri, A. P., & Hivrale, V. K. (2013). Characterization of a chemostable serine alkaline protease from Periplaneta americana. http://www.biomedcentral.com/1471-2091/14/32spa
dc.relation.referencesSánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. In Journal of Cleaner Production (Vol. 65, pp. 16–27). https://doi.org/10.1016/j.jclepro.2013.11.068spa
dc.relation.referencesSánchez-Muros, M. J., de Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition, 22(5), 943–955. https://doi.org/10.1111/anu.12313spa
dc.relation.referencesSantana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T., & Turra, A. (2016). Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Marine Pollution Bulletin, 106(1–2), 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074spa
dc.relation.referencesSchauer, C., Thompson, C. L., & Brune, A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology, 78(8), 2758– 2767. https://doi.org/10.1128/AEM.07788-11spa
dc.relation.referencesScientific Standards & Methods - AOAC INTERNATIONAL. (1996). https://www.aoac.org/scientific-solutions/spa
dc.relation.referencesShah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. In Biotechnology Advances (Vol. 26, Issue 3, pp. 246–265). https://doi.org/10.1016/j.biotechadv.2007.12.005spa
dc.relation.referencesShibao, J., Helena, D., & Bastos, M. (2011). Maillard reaction products in foods: implications for human health R E S U M O. In Rev. Nutr (Vol. 24, Issue 6)spa
dc.relation.referencesShorthouse, J. D. (2003). Insects and Other Animals Overview of Insects.spa
dc.relation.referencesSingh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. In Polymer Degradation and Stability (Vol. 93, Issue 3, pp. 561–584). https://doi.org/10.1016/j.polymdegradstab.2007.11.008spa
dc.relation.referencesSivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylenedegrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4spa
dc.relation.referencesSmith, R., & Barnes, E. (2015). PROteINSECT Consensus Business Case Report:‗Determining the contribution that insects can make to addressing the protein deficit in Europe. www.proteinsect.euspa
dc.relation.referencesSoares, R., Rafael Ribeiro, dos Santos Benfica, T. A. R., Ferraz, V. P., & Moreira Santos, E. (2019). Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. Journal of Food Composition and Analysis, 76, 22–26. https://doi.org/10.1016/j.jfca.2018.11.005spa
dc.relation.referencesSogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. In Animals (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/ani9040119spa
dc.relation.referencesSong, S. G., Chi, S. Y., Tan, B. P., Liang, G. L., Lu, B. Q., Dong, X. H., Yang, Q. H., Liu, H. Y., & Zhang, S. (2018). Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus♀). Aquaculture Research, 49(6), 2210–2217. https://doi.org/10.1111/are.13677spa
dc.relation.referencesStathopoulou, P., Asimaki, A., Berillis, P., Vlahos, N., Levizou, E., Katsoulas, N., Karapanagiotidis, I. T., Rumbos, C. I., Athanassiou, C. G., & Mente, E. (2022). Aqua-Ento-Ponics: Effect of Insect Meal on the Development of Sea Bass, Dicentrarchus labrax, in Co-Culture with Lettuce. Fishes, 7(6). https://doi.org/10.3390/fishes7060397spa
dc.relation.referencesStoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., & Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, 122–127. https://doi.org/10.1016/j.fm.2015.09.010spa
dc.relation.referencesSu, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., & Xie, S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 69, 59–66. https://doi.org/10.1016/j.fsi.2017.08.008spa
dc.relation.referencesSudakaran, S., Retz, F., Kikuchi, Y., Kost, C., & Kaltenpoth, M. (2015). Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME Journal, 9(12), 2587–2604. https://doi.org/10.1038/ismej.2015.75spa
dc.relation.referencesSudhakar, M., Doble, M., Murthy, P. S., & Venkatesan, R. (2008). Marine microbemediated biodegradation of low- and high-density polyethylenes. International Biodeterioration and Biodegradation, 61(3), 203–213. https://doi.org/10.1016/j.ibiod.2007.07.011spa
dc.relation.referencesSzendrő, K., Nagy, M. Z., & Tóth, K. (2020). Consumer acceptance of meat from animals reared on insect meal as feed. Animals, 10(8), 1–10. https://doi.org/10.3390/ani10081312spa
dc.relation.referencesTang, S., Yin, H., Chen, S., Peng, H., Chang, J., Liu, Z., & Dang, Z. (2016). Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process. Journal of Hazardous Materials, 308, 335–342. https://doi.org/10.1016/j.jhazmat.2016.01.062spa
dc.relation.referencesTerra, W. R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. In Biochem. Physiol (Vol. 109, Issue 1).spa
dc.relation.referencesTsybina, T. A., Dunaevsky, Y. E., Belozersky, M. A., Zhuzhikov, D. P., Oppert, B., & Elpidina, E. N. (2005). Digestive Proteinases of Yellow Mealworm (Tenebrio molitor) Larvae: Purification and Characterization of a TrypsinnLike Proteinase. Translated from Biokhimiya, 70(3), 3700377.spa
dc.relation.referencesTubin, J. S. B., Paiano, D., Hashimoto, G. S. de O., Furtado, W. E., Martins, M. L., Durigon, E., & Emerenciano, M. G. C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519. https://doi.org/10.1016/j.aquaculture.2019.734763spa
dc.relation.referencesTuomela, M., Vikman, M., Hatakka, A., & It• Avaara, M. (2000). Biodegradation of lignin in a compost environment: a review. El Sevier, 169–183.spa
dc.relation.referencesUchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated βglucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89(6), 1761–1771. https://doi.org/10.1007/s00253- 010-2963-yspa
dc.relation.referencesUnited Nations Environment Programme. (2018). Single-use plastics, a roadmap for sustainabilityspa
dc.relation.referencesUrbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262. https://doi.org/10.1016/j.envpol.2020.114281spa
dc.relation.referencesUzcátegui, J. P. , Méndez, X. , Isea, F. , & Parra, R. (2014). Evaluación de dietas con diferente contenido proteico sobre el desempeño productivo de alevines del híbrido Cachamay (Colossoma macropomum x Piaractus brachypomus) en condiciones de cautiverio. XXIV, 458–465.spa
dc.relation.referencesValdez, C., & Untiveros, G. (2010). Extracción y caracterización del aceite de las larvas del Tenebrio molitor. Revista de La Sociedad Química Del Perú, 407–414.spa
dc.relation.referencesvan Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494–501. https://doi.org/10.1038/s43016-021-00322-9spa
dc.relation.referencesVan Huis, A. (2013). Potential of insects as food and feed in assuring food security. In Annual Review of Entomology (Vol. 58, pp. 563–583). https://doi.org/10.1146/annurev-ento-120811-153704spa
dc.relation.referencesvan Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: A review. In Journal of Insects as Food and Feed (Vol. 6, Issue 1, pp. 27–44). Wageningen Academic Publishers. https://doi.org/10.3920/JIFF2019.0017spa
dc.relation.referencesVan Huis, A. , Van Itterbeeck, J. , Klunder, H. , Mertens, E. , Halloran, A. , Muir, G. , & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. Fao Forestry Paperspa
dc.relation.referencesvan Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed. A review. In Agronomy for Sustainable Development (Vol. 37, Issue 5). Springer-Verlag France. https://doi.org/10.1007/s13593-017-0452-8spa
dc.relation.referencesvan Huis, A., Rumpold, B. A., van der Fels-Klerx, H. J., & Tomberlin, J. K. (2021). Advancing edible insects as food and feed in a circular economy. Journal of Insects as Food and Feed, 7(5), 935–948. https://doi.org/10.3920/JIFF2021.x005spa
dc.relation.referencesVarela, H. , Daniel Ferrari, M. , Belobrajdic, L. , Vázquez, A. , & Lyliam Loperena, M. (1997). Skin unhairing proteases of Bacillus subtilis - Production andpartial characterization.spa
dc.relation.referencesVásquez, W. (2005). A pirapitinga, reprodução e cultivo. Espécies Nativas para Piscicultura no Brasil. Santa Maria. 203–223. https://scholar.google.com/citations?view_op=view_citation&hl=es&user=TNoET1w AAAAJ&citation_for_view=TNoET1wAAAAJ:9yKSN-GCB0ICspa
dc.relation.referencesVásquez, W., & Arias-Castellanos, J. A. (2012). Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus). Aquaculture Research.spa
dc.relation.referencesVásquez, W., Pereira Filho, M. , & Arias-Castellanos, J. A. (2011). Optimum dietary crude protein requirement for juvenile cachama Piaractus brachypomus. Ciência Rural, 41, 2183–2189. http://www.redalyc.org/articulo.oa?id=33121069020spa
dc.relation.referencesVega, F., & Dowd, P. (2005). The Role of Yeasts as Insect Endosymbiontsspa
dc.relation.referencesVeldkamp, T., & Bosch, G. (2012). Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. https://www.researchgate.net/publication/283419849spa
dc.relation.referencesVerbeke, W., Spranghers, T., De Clercq, P., De Smet, S., Sas, B., & Eeckhout, M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Animal Feed Science and Technology, 204, 72–87. https://doi.org/10.1016/j.anifeedsci.2015.04.001spa
dc.relation.referencesViana, R., & Revollo B, A. (1988). Cultivo intensivo de la cachama Colossoma macropomum (cuvier 1818) en estanques tipo campesino en Gaira. Universidad tecnologica del Magdalena .spa
dc.relation.referencesVolke-Seplveda, T., Saucedo-Castaeda, G., Gutirrez-Rojas, M., Manzur, A., & FavelaTorres, E. (2002). Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. Journal of Applied Polymer Science, 83(2), 305–314. https://doi.org/10.1002/app.2245spa
dc.relation.referencesWang, Y., Luo, L., Li, X., Wang, J., Wang, H., Chen, C., Guo, H., Han, T., Zhou, A., & Zhao, X. (2022). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837. https://doi.org/10.1016/j.scitotenv.2022.155719spa
dc.relation.referencesWang, Z., Xin, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Science of the Total Environment, 726. https://doi.org/10.1016/j.scitotenv.2020.138564spa
dc.relation.referencesWebb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001spa
dc.relation.referencesWhiteley, K. S. (2011). Polyethylene. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a21_487.pub2spa
dc.relation.referencesWorld Economic Forum. (2016). World Economic Forum, Ellen MacArthur Foundation, McKinsey & Company The New Plastics Economy — Rethinking the Future of Plastics Ellen MacArthur Foundation, Cowes.spa
dc.relation.referencesWu, & Criddle, C. S. (2021). Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 648, 95–120. https://doi.org/10.1016/BS.MIE.2020.12.029spa
dc.relation.referencesWu, Q., Tao, H., & Wong, M. H. (2019). Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environmental Geochemistry and Health, 41(1), 17–26. https://doi.org/10.1007/s10653-018-0161-5spa
dc.relation.referencesWynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., Borremans, A., Bruyninckx, L., & Van Campenhout, L. (2017). Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004spa
dc.relation.referencesWynants, E., Crauwels, S., Verreth, C., Gianotten, N., Lievens, B., Claes, J., & Van Campenhout, L. (2018). Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiology, 70, 181–191. https://doi.org/10.1016/j.fm.2017.09.012spa
dc.relation.referencesYamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. El Sevier, 72, 323–327. www.elsevier.nl/locate/polydegstabspa
dc.relation.referencesYang, Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S. Y., Fan, H. Q., Wang, Z. Y., Ren, J., Benbow, E., Ren, N. Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W. M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117spa
dc.relation.referencesYang, Chen, J., Wu, W. M., Zhao, J., & Yang, J. (2015). Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. Journal of Biotechnology, 200, 77–78. https://doi.org/10.1016/j.jbiotec.2015.02.034spa
dc.relation.referencesYang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W. M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262. https://doi.org/10.1016/j.chemosphere.2020.127818spa
dc.relation.referencesYang, Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708. https://doi.org/10.1016/j.scitotenv.2019.135233spa
dc.relation.referencesYang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015a). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661spa
dc.relation.referencesYang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015b). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661spa
dc.relation.referencesYang, Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038aspa
dc.relation.referencesYepes, L. M. (2014). Degradación de Polietileno de Baja Densidad Utilizando Hongos. Revisión Sistemática de la Literatura [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/16184spa
dc.relation.referencesZhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q., & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704. https://doi.org/10.1016/j.scitotenv.2019.135931spa
dc.relation.referencesZielińska, E., Zieliński, D., Jakubczyk, A., Karaś, M., Pankiewicz, U., Flasz, B., Dziewięcka, M., & Lewicki, S. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry, 345. https://doi.org/10.1016/j.foodchem.2020.128846spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.decsPlásticos biodegradablesspa
dc.subject.decsBiodegradable Plasticseng
dc.subject.lembPoliestirenospa
dc.subject.lembIcoporspa
dc.subject.proposalPlásticosspa
dc.subject.proposalInsectos como alimentospa
dc.subject.proposalTenebriosspa
dc.subject.proposalGusano reyspa
dc.subject.proposalNutrición de pecesspa
dc.subject.proposalEconomía circularspa
dc.subject.proposalColeópterosspa
dc.subject.proposalBioconversiónspa
dc.titleEvaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)spa
dc.title.translatedEvaluation of the consumption of expanded polystyrene (styrofoam) for larvae of two species of Coleoptera (Tenebrio molitor and Zophobas atratus) and their inclusion in cachama fry diets white (Piaractus brachypomus)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013610734.2023.pdf
Tamaño:
3.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: