Construcción y caracterización parcial de un doble mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7
dc.contributor.advisor | Soto Ospina, Carlos Yesid | |
dc.contributor.author | Cruz Cacais, Alver Antonio | |
dc.contributor.orcid | Cruz Cacais, Alver Antonio [000000018208863X] | |
dc.contributor.researchgroup | Bioquímica y Biología Molecular de las Micobacterias | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-09T14:05:21Z | |
dc.date.available | 2025-09-09T14:05:21Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías, mapa | spa |
dc.description.abstract | La tuberculosis (TB), producida por su agente etiológico Mycobacterium tuberculosis (Mtb), es actualmente la primera causa de muerte por un agente infeccioso a nivel mundial. Sin embargo, la única vacuna autorizada contra la TB, el bacilo Calmette–Guérin (BCG), no logra proteger de forma eficiente contra la enfermedad. En este sentido, el desarrollo de nuevos candidatos a vacuna contra la TB, que reemplacen a la BCG es absolutamente prioritario. Actualmente, ha surgido mucho interés en el uso de proteínas de membrana como dianas de atenuación de Mtb encaminado a la construcción de mutantes atenuados con potencial vacunal. Por ejemplo, CtpF, una ATPasa tipo P transportadora de Ca2+, relevante en la virulencia y supervivencia del bacilo tuberculoso, se muestra como una buena diana de atenuación de Mtb. Por otra parte, MmpL7 es una proteína transportadora no relacionada con CtpF, implicada en la biosíntesis de lípidos de Mtb, incluyendo los dimicocerosatos de tiocerol (PDIM), considerados factores de virulencia. La deleción del gen mmpL7 en el genoma micobacteriano conduce a la atenuación del bacilo tuberculoso. El objetivo del presente trabajo es obtener y evaluar preliminarmente un doble mutante defectivo en los genes ctpF y mmpL7, desprovisto parcialmente de resistencia antibiótica, y que pueda ser probado en estudios preclínicos de atenuación en modelo celular y animal como un posible candidato a vacuna viva contra la TB. (Texto tomado de la fuente) | spa |
dc.description.abstract | Tuberculosis (TB), caused by the etiological agent Mycobacterium tuberculosis (Mtb), remains the leading cause of death from a single infectious agent worldwide. The only licensed TB vaccine, Bacillus Calmette–Guérin (BCG), provides limited and inconsistent protection, underscoring the urgent need for more effective alternatives. Membrane proteins have recently gained attention as promising targets for Mtb attenuation, enabling the generation of live attenuated mutants with vaccine potential. CtpF, a P-type ATPase involved in Ca²⁺ transport, plays a critical role in Mtb virulence and survival, making it an attractive candidate for genetic inactivation. In parallel, MmpL7, an unrelated membrane transporter required for the biosynthesis of phthiocerol dimycocerosates (PDIM), recognized virulence factors, has also been implicated in pathogenesis. Deletion of the mmpL7 gene leads to attenuation of the bacillus. Here, we describe the generation and preliminary characterization of a double mutant lacking ctpF and mmpL7, engineered to be partially devoid of antibiotic resistance markers. This strain is intended for preclinical evaluation in cellular and animal models as a potential live attenuated TB vaccine candidate. | eng |
dc.description.curriculararea | Química.Sede Bogotá | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias – Bioquímica | |
dc.description.researcharea | Hospedero-Patógeno | |
dc.description.researcharea | [Virulencia y latencia de las micobacterias] | |
dc.description.sponsorship | División de Investigación de Bogotá-DIB por financiar el proyecto “Construcción y caracterización parcial del mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7, con potencial vacunal.” en la Convocatoria para el apoyo a proyectos de investigación y creación artística de la Sede Bogotá de la Universidad Nacional De Colombia-2019. | |
dc.format.extent | 109 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88662 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.relation.references | A. Elamin, A., Stehr, M., & Singh, M. (2012). The Cord Factor: Structure, Biosynthesis and Application in Drug Research – Achilles Heel of Mycobacterium tuberculosis? En P.-J. Cardona (Ed.), Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. InTech. https://doi.org/10.5772/32032 | |
dc.relation.references | Abrahams, K. A., & Besra, G. S. (2018). Mycobacterial cell wall biosynthesis: A multifaceted antibiotic target. Parasitology, 145(2), 116-133. https://doi.org/10.1017/S0031182016002377 | |
dc.relation.references | Aguilo, N., Uranga, S., Marinova, D., Monzon, M., Badiola, J., & Martin, C. (2016). MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis, 96, 71-74. https://doi.org/10.1016/j.tube.2015.10.010 | |
dc.relation.references | Alberto Mendoza Ticona, E. G. H. (2008). Tuberculosis extremadamente resistente (TB-XDR), historia y situación actual. Acta Med Per, 25(4), 236-246. | |
dc.relation.references | Aldovini, A., Husson, R. N., & Young, R. A. (1993). The uraA locus and homologous recombination in Mycobacterium bovis BCG. Journal of Bacteriology, 175(22), 7282-7289. https://doi.org/10.1128/jb.175.22.7282-7289.1993 | |
dc.relation.references | Arbues, A., Aguilo, J. I., Gonzalo-Asensio, J., Marinova, D., Uranga, S., Puentes, E., Fernandez, C., Parra, A., Cardona, P. J., Vilaplana, C., Ausina, V., Williams, A., Clark, S., Malaga, W., Guilhot, C., Gicquel, B., & Martin, C. (2013). Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 31(42), 4867-4873. https://doi.org/10.1016/j.vaccine.2013.07.051 | |
dc.relation.references | Astarie-Dequeker, C., Le Guyader, L., Malaga, W., Seaphanh, F.-K., Chalut, C., Lopez, A., & Guilhot, C. (2009). Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids. PLoS Pathogens, 5(2), e1000289. https://doi.org/10.1371/journal.ppat.1000289 | |
dc.relation.references | Atlas, R. M. (2010). Handbook of microbiological media (4th ed). CRC Press. | |
dc.relation.references | Augenstreich, J., Arbues, A., Simeone, R., Haanappel, E., Wegener, A., Sayes, F., Le Chevalier, F., Chalut, C., Malaga, W., Guilhot, C., Brosch, R., & Astarie‐Dequeker, C. (2017). ESX‐1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cmi.12726 | |
dc.relation.references | Azad, A. K., Sirakova, T. D., Rogers, L. M., & Kolattukudy, P. E. (1996). Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proceedings of the National Academy of Sciences, 93(10), 4787-4792. https://doi.org/10.1073/pnas.93.10.4787 | |
dc.relation.references | Baena, A., & Porcelli, S. A. (2009). Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens, 74(3), 189-204. https://doi.org/10.1111/j.1399-0039.2009.01301.x | |
dc.relation.references | Balasubramanian, V., Pavelka, M. S., Bardarov, S. S., Martin, J., Weisbrod, T. R., McAdam, R. A., Bloom, B. R., & Jacobs, W. R. (1996). Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. Journal of Bacteriology, 178(1), 273-279. https://doi.org/10.1128/jb.178.1.273-279.1996 | |
dc.relation.references | Bates, T. A., Trank-Greene, M., Nguyenla, X., Anastas, A., Gurmessa, S. K., Merutka, I. R., Dixon, S. D., Shumate, A., Groncki, A. R., Parson, M. A., Ingram, J. R., Barklis, E., Burke, J. E., Shinde, U., Ploegh, H. L., & Tafesse, F. G. (2024). ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. bioRxiv: The Preprint Server for Biology, 2023.08.16.553641. https://doi.org/10.1101/2023.08.16.553641 | |
dc.relation.references | Berthet, F.-X., Rasmussen, P. B., Rosenkrands, I., Andersen, P., & Gicquel, B. (1998). A Mycobacterium tuberculosis operon encoding ESAT=6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology, 144(11), 3195-3203. https://doi.org/10.1099/00221287-144-11-3195 | |
dc.relation.references | Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A., & Duncan, K. (2002). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling: Nutrient starvation of M. tuberculosis. Molecular Microbiology, 43(3), 717-731. https://doi.org/10.1046/j.1365-2958.2002.02779.x | |
dc.relation.references | Brandt, L., Oettinger, T., Holm, A., Andersen, A. B., & Andersen, P. (1996). Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. The Journal of Immunology, 157(8), 3527-3533. https://doi.org/10.4049/jimmunol.157.8.3527 | |
dc.relation.references | Brodin, P., De Jonge, M. I., Majlessi, L., Leclerc, C., Nilges, M., Cole, S. T., & Brosch, R. (2005). Functional Analysis of Early Secreted Antigenic Target-6, the Dominant T-cell Antigen of Mycobacterium tuberculosis, Reveals Key Residues Involved in Secretion, Complex Formation, Virulence, and Immunogenicity. Journal of Biological Chemistry, 280(40), 33953-33959. https://doi.org/10.1074/jbc.M503515200 | |
dc.relation.references | Brodin, P., Rosenkrands, I., Andersen, P., Cole, S. T., & Brosch, R. (2004). ESAT-6 proteins: Protective antigens and virulence factors? Trends in Microbiology, 12(11), 500-508. https://doi.org/10.1016/j.tim.2004.09.007 | |
dc.relation.references | Bublitz, M., Poulsen, H., Morth, J. P., & Nissen, P. (2010). In and out of the cation pumps: P-Type ATPase structure revisited. Current Opinion in Structural Biology, 20(4), 431-439. https://doi.org/10.1016/j.sbi.2010.06.007 | |
dc.relation.references | Camacho, L. R., Constant, P., Raynaud, C., Lanéelle, M.-A., Triccas, J. A., Gicquel, B., Daffé, M., & Guilhot, C. (2001). Analysis of the Phthiocerol Dimycocerosate Locus ofMycobacterium tuberculosis. Journal of Biological Chemistry, 276(23), 19845-19854. https://doi.org/10.1074/jbc.M100662200 | |
dc.relation.references | Cambier, C., Banik, S. M., Buonomo, J. A., & Bertozzi, C. R. (2020). Spreading of a mycobacterial cell-surface lipid into host epithelial membranes promotes infectivity. eLife, 9, e60648. https://doi.org/10.7554/eLife.60648 | |
dc.relation.references | Cambier, C. J., Takaki, K. K., Larson, R. P., Hernandez, R. E., Tobin, D. M., Urdahl, K. B., Cosma, C. L., & Ramakrishnan, L. (2014). Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature, 505(7482), 218-222. https://doi.org/10.1038/nature12799 | |
dc.relation.references | Chandra, P., Grigsby, S. J., & Philips, J. A. (2022). Immune evasion and provocation by Mycobacterium tuberculosis. Nature Reviews Microbiology, 20(12), 750-766. https://doi.org/10.1038/s41579-022-00763-4 | |
dc.relation.references | Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., … Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537-544. https://doi.org/10.1038/31159 | |
dc.relation.references | Cox, J. S., Chen, B., McNeil, M., & Jr, W. R. J. (1999). Complex lipid determines tissue-speci®c replication of Mycobacterium tuberculosis in mice. 402. | |
dc.relation.references | Daffé, M., & Reyrat, J.-M. (Eds.). (2008). The mycobacterial cell envelope. ASM Press. | |
dc.relation.references | Dahl, J. L. (2005). Scanning electron microscopy analysis of aged Mycobacterium tuberculosis cells. Canadian Journal of Microbiology, 51(3), 277-281. https://doi.org/10.1139/w05-001 | |
dc.relation.references | Darzins, E. (1958). The bacteriology of tuberculosis. Univ. of Minnesota Press. | |
dc.relation.references | Daugelat, S., Kowall, J., Mattow, J., Bumann, D., Winter, R., Hurwitz, R., & Kaufmann, S. H. E. (2003). The RD1 proteins of Mycobacterium tuberculosis: Expression in Mycobacterium smegmatis and biochemical characterization. Microbes and Infection, 5(12), 1082-1095. https://doi.org/10.1016/S1286-4579(03)00205-3 | |
dc.relation.references | Delogu, G., Sali, M., & Fadda, G. (2013). The biology of mycobacterium tuberculosis infection. Mediterranean Journal of Hematology and Infectious Diseases, 5(1). https://doi.org/10.4084/mjhid.2013.070 | |
dc.relation.references | Dillon, D. C., Alderson, M. R., Day, C. H., Bement, T., Campos-Neto, A., Skeiky, Y. A. W., Vedvick, T., Badaro, R., Reed, S. G., & Houghton, R. (2000). Molecular and Immunological Characterization ofMycobacterium tuberculosis CFP-10, an Immunodiagnostic Antigen Missing in Mycobacterium bovis BCG. Journal of Clinical Microbiology, 38(9), 3285-3290. https://doi.org/10.1128/JCM.38.9.3285-3290.2000 | |
dc.relation.references | Dulberger, C. L., Rubin, E. J., & Boutte, C. C. (2020). The mycobacterial cell envelope—A moving target. Nature Reviews Microbiology, 18(1), 47-59. https://doi.org/10.1038/s41579-019-0273-7 | |
dc.relation.references | Feng, C.-Q., Zhang, Z.-Y., Zhu, X.-J., Lin, Y., Chen, W., Tang, H., & Lin, H. (2019). iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics, 35(9), 1469-1477. https://doi.org/10.1093/bioinformatics/bty827 | |
dc.relation.references | Gröschel, M. I., Sayes, F., Simeone, R., Majlessi, L., & Brosch, R. (2016). ESX secretion systems: Mycobacterial evolution to counter host immunity. Nature Reviews Microbiology, 14(11), 677-691. https://doi.org/10.1038/nrmicro.2016.131 | |
dc.relation.references | Hamon, M. A., Ribet, D., Stavru, F., & Cossart, P. (2012). Listeriolysin O: The Swiss army knife of Listeria. Trends in Microbiology, 20(8), 360-368. https://doi.org/10.1016/j.tim.2012.04.006 | |
dc.relation.references | Hernandez-Pando, R., Shin, S. J., Clark, S., Casonato, S., Becerril-Zambrano, M., Kim, H., Boldrin, F., Mata-Espinoza, D., Provvedi, R., Arbues, A., Marquina-Castillo, B., Cioetto Mazzabò, L., Barrios-Payan, J., Martin, C., Cho, S.-N., Williams, A., & Manganelli, R. (2019). Construction and Characterization of the Mycobacterium tuberculosis sigE fadD26 Unmarked Double Mutant as a Vaccine Candidate. Infection and Immunity, 88(1), e00496-19. https://doi.org/10.1128/IAI.00496-19 | |
dc.relation.references | INS. (2022). Tuberculosis, Colombia [Informe de evento]. Ministerio de Salud y Protección Social de Colombia. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/informe-tuberculosis-2022-colombia.pdf | |
dc.relation.references | Interest, S. O. F., & Nipo, T. N. S. (2007). Poverty and tuberculosis: Is it truly a simple inverse linear correlation? 33(4), 4-5. https://doi.org/10.1183/09031936.00182808 | |
dc.relation.references | J S Cox, B Chen, M McNeil, & W R Jacobs Jr. (1999). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature, 402(6757), 79-83. | |
dc.relation.references | Jorgensen, J. H., Carroll, K. C., Funke, G., Pfaller, M. A., Landry, M. L., Richter, S. S., & Warnock, D. W. (Eds.). (2015). Manual of Clinical Microbiology. ASM Press. https://doi.org/10.1128/9781555817381 | |
dc.relation.references | Julián, E., Roldán, M., Sánchez-Chardi, A., Astola, O., Agustí, G., & Luquin, M. (2010). Microscopic Cords, a Virulence-Related Characteristic of Mycobacterium tuberculosis , Are Also Present in Nonpathogenic Mycobacteria. Journal of Bacteriology, 192(7), 1751-1760. https://doi.org/10.1128/JB.01485-09 | |
dc.relation.references | Kapopoulou, A., Lew, J. M., & Cole, S. T. (2011). The MycoBrowser portal: A comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis, 91(1), 8-13. https://doi.org/10.1016/j.tube.2010.09.006 | |
dc.relation.references | Malaga, W., Perez, E., & Guilhot, C. (2003). Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiology Letters, 219(2), 261-268. https://doi.org/10.1016/S0378-1097(03)00003-X | |
dc.relation.references | Mangtani, P., Abubakar, I., Ariti, C., Beynon, R., Pimpin, L., Fine, P. E. M., Rodrigues, L. C., Smith, P. G., Lipman, M., Whiting, P. F., & Sterne, J. A. (2014). Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clinical Infectious Diseases, 58(4), 470-480. https://doi.org/10.1093/cid/cit790 | |
dc.relation.references | Mansfield, K. G., & Fox, J. G. (2018). Bacterial diseases. The Common Marmoset in Captivity and Biomedical Research, 265-287. https://doi.org/10.1016/B978-0-12-811829-0.00016-9 | |
dc.relation.references | Marinelli, L. J., Piuri, M., & Hatfull, G. F. (2019). Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. En M. R. J. Clokie, A. Kropinski, & R. Lavigne (Eds.), Bacteriophages (Vol. 1898, pp. 69-80). Springer New York. https://doi.org/10.1007/978-1-4939-8940-9_6 | |
dc.relation.references | Martin, C., Aguilo, N., Marinova, D., & Gonzalo-asensio, J. (2020). Update on TB Vaccine Pipeline. 1-15. | |
dc.relation.references | Martin, C., Williams, A., Hernandezpando, R., Cardona, P., Gormley, E., Bordat, Y., Soto, C., Clark, S., Hatch, G., & Aguilar, D. (2006). The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 24(17), 3408-3419. https://doi.org/10.1016/j.vaccine.2006.03.017 | |
dc.relation.references | Mathur, M., & Kolattukudy, P. E. (1992). Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from Mycobacterium tuberculosis var. Bovis Bacillus Calmette-Guerin. Journal of Biological Chemistry, 267(27), 19388-19395. https://doi.org/10.1016/S0021-9258(18)41788-7 | |
dc.relation.references | Maue, A. C., Waters, W. R., Palmer, M. V., Nonnecke, B. J., Minion, F. C., Brown, W. C., Norimine, J., Foote, M. R., Scherer, C. F. C., & Estes, D. M. (2007). An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis. Vaccine, 25(24), 4735-4746. https://doi.org/10.1016/j.vaccine.2007.03.052 | |
dc.relation.references | Maya Hoyos, M. (2021). ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80314 | |
dc.relation.references | Maya-Hoyos, M., Mata-Espinosa, D., López-Torres, M. O., Tovar-Vázquez, B., Barrios-Payán, J., León-Contreras, J. C., Ocampo, M., Hernández-Pando, R., & Soto, C. Y. (2022). The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. International Journal of Molecular Sciences, 23(11), 6015. https://doi.org/10.3390/ijms23116015 | |
dc.relation.references | Maya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E., & Soto, C. Y. (2019). The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon, 5(11), e02852. https://doi.org/10.1016/j.heliyon.2019.e02852 | |
dc.relation.references | Nieuwenhuizen, N. E., Kulkarni, P. S., Shaligram, U., Cotton, M. F., Rentsch, C. A., Eisele, B., Grode, L., & Kaufmann, S. H. E. (2017). The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Frontiers in Immunology, 8, 1147. https://doi.org/10.3389/fimmu.2017.01147 | |
dc.relation.references | Novoa-Aponte, L., León-Torres, A., Patiño-Ruiz, M., Cuesta-Bernal, J., Salazar, L.-M., Landsman, D., Mariño-Ramírez, L., & Soto, C.-Y. (2012). In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Structural Biology, 12(1), 25. https://doi.org/10.1186/1472-6807-12-25 | |
dc.relation.references | Novoa-Aponte, L., & Soto Ospina, C. Y. (2014). Mycobacterium tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development. BioMed Research International, 2014, 1-9. https://doi.org/10.1155/2014/296986 | |
dc.relation.references | Pai, M., Behr, M. A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C. C., Ginsberg, A., Swaminathan, S., Spigelman, M., Getahun, H., Menzies, D., & Raviglione, M. (2016). Tuberculosis. Nature Reviews Disease Primers, 2. https://doi.org/10.1038/nrdp.2016.76 | |
dc.relation.references | Parish, T., Gordhan, B. G., McAdam, R. A., Duncan, K., Mizrahi, V., & Stoker, N. G. (1999). Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology, 145(12), 3497-3503. https://doi.org/10.1099/00221287-145-12-3497 | |
dc.relation.references | Quigley, J., Hughitt, V. K., Velikovsky, C. A., Mariuzza, R. A., El-Sayed, N. M., & Briken, V. (2017). The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio, 8(2), e00148-17. https://doi.org/10.1128/mBio.00148-17 | |
dc.relation.references | Rabodoarivelo, M. S., Aerts, M., Vandamme, P., Palomino, J. C., Rasolofo, V., & Martin, A. (2016). Optimizing of a protein extraction method for Mycobacterium tuberculosis proteome analysis using mass spectrometry. Journal of Microbiological Methods, 131, 144-147. https://doi.org/10.1016/j.mimet.2016.10.021 | |
dc.relation.references | Refai, A., Haoues, M., Othman, H., Barbouche, M. R., Moua, P., Bondon, A., Mouret, L., Srairi‐Abid, N., & Essafi, M. (2015). Two distinct conformational states of Mycobacterium tuberculosis virulent factor early secreted antigenic target 6 KD a are behind the discrepancy around its biological functions. The FEBS Journal, 282(21), 4114-4129. https://doi.org/10.1111/febs.13408 | |
dc.relation.references | Renshaw, P. S., Panagiotidou, P., Whelan, A., Gordon, S. V., Hewinson, R. G., Williamson, R. A., & Carr, M. D. (2002). Conclusive Evidence That the Major T-cell Antigens of theMycobacterium tuberculosis Complex ESAT-6 and CFP-10 Form a Tight, 1:1 Complex and Characterization of the Structural Properties of ESAT-6, CFP-10, and the ESAT-6·CFP-10 Complex. Journal of Biological Chemistry, 277(24), 21598-21603. https://doi.org/10.1074/jbc.M201625200 | |
dc.relation.references | Romano, M., Squeglia, F., Kramarska, E., Barra, G., Choi, H.-G., Kim, H.-J., Ruggiero, A., & Berisio, R. (2023). A Structural View at Vaccine Development against M. tuberculosis. Cells, 12(2), 317. https://doi.org/10.3390/cells12020317 | |
dc.relation.references | Ryndak, M., Wang, S., & Smith, I. (2008). PhoP, a key player in Mycobacterium tuberculosis virulence. Trends in Microbiology, 16(11), 528-534. https://doi.org/10.1016/j.tim.2008.08.006 | |
dc.relation.references | Sable, S. B., Posey, J. E., & Scriba, T. J. (2020). Tuberculosis vaccine development: Progress in clinical evaluation. Clinical Microbiology Reviews, 33(1), 1-30. https://doi.org/10.1128/cmr.00100-19 | |
dc.relation.references | Sambrook, Joseph., Russell, D. W., & Laboratory, C. S. H. (2001). Molecular cloning: A laboratory manual / Joseph Sambrook, David W. Russell (3rd. ed.). Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y. | |
dc.relation.references | Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209-217. https://doi.org/10.1038/nchembio.304 | |
dc.relation.references | Siméone, R., Léger, M., Constant, P., Malaga, W., Marrakchi, H., Daffé, M., Guilhot, C., & Chalut, C. (2010). Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. The FEBS Journal, 277(12), 2715-2725. https://doi.org/10.1111/j.1742-4658.2010.07688.x | |
dc.relation.references | Sørensen, A. L., Nagai, S., Houen, G., Andersen, P., & Andersen, A. B. (1995). Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infection and Immunity, 63(5), 1710-1717. https://doi.org/10.1128/iai.63.5.1710-1717.1995 | |
dc.relation.references | Spertini, F., Audran, R., Chakour, R., Karoui, O., Steiner-Monard, V., Thierry, A.-C., Mayor, C. E., Rettby, N., Jaton, K., Vallotton, L., Lazor-Blanchet, C., Doce, J., Puentes, E., Marinova, D., Aguilo, N., & Martin, C. (2015). Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: A randomised, double-blind, controlled phase I trial. The Lancet Respiratory Medicine, 3(12), 953-962. https://doi.org/10.1016/S2213-2600(15)00435-X | |
dc.relation.references | Sulzenbacher, G., Canaan, S., Bordat, Y., Neyrolles, O., Stadthagen, G., Roig-Zamboni, V., Rauzier, J., Maurin, D., Laval, F., Daffé, M., Cambillau, C., Gicquel, B., Bourne, Y., & Jackson, M. (2006). LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. The EMBO Journal, 25(7), 1436-1444. https://doi.org/10.1038/sj.emboj.7601048 | |
dc.relation.references | Tameris, M., Rozot, V., Imbratta, C., Geldenhuys, H., Mendelsohn, S. C., Kany Luabeya, A. K., Shenje, J., Tredoux, N., Fisher, M., Mulenga, H., Bilek, N., Young, C., Veldsman, A., Botes, N., Thole, J., Fritzell, B., Mukherjee, R., Jelsbak, I. M., Rodriguez, E., … Van Rooyes, J. (2025). Safety, reactogenicity, and immunogenicity of MTBVAC in infants: A phase 2a randomised, double-blind, dose-defining trial in a TB endemic setting. eBioMedicine, 114, 105628. https://doi.org/10.1016/j.ebiom.2025.105628 | |
dc.relation.references | Tan, T., Lee, W. L., Alexander, D. C., Grinstein, S., & Liu, J. (2006). The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cellular Microbiology, 8(9), 1417-1429. https://doi.org/10.1111/j.1462-5822.2006.00721.x | |
dc.relation.references | Trivedi, O. A., Arora, P., Sridharan, V., Tickoo, R., Mohanty, D., & Gokhale, R. S. (2004). Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature, 428(6981), 441-445. https://doi.org/10.1038/nature02384 | |
dc.relation.references | Van Helden, P. D., Victor, T. C., Warren, R. M., & Van Helden, E. G. (2001). Isolation of DNA from Mycobacterium tuberculosis. En T. Parish & N. G. Stoker, Mycobacterium Tuberculosis Protocols (Vol. 54, pp. 019-030). Humana Press. https://doi.org/10.1385/1-59259-147-7:019 | |
dc.relation.references | van Kessel, J. C. (2008). Recombineering in mycobacteria using mycobacteriophage proteins [Doctoral Dissertation, University of Pittsburgh]. http://d-scholarship.pitt.edu/id/eprint/8939 | |
dc.relation.references | van Kessel, J. C., & Hatfull, G. F. (2007). Recombineering in Mycobacterium tuberculosis. Nature Methods, 4(2), 147-152. https://doi.org/10.1038/nmeth996 | |
dc.relation.references | van Kessel, J. C., Marinelli, L. J., & Hatfull, G. F. (2008). Recombineering mycobacteria and their phages. Nature Reviews Microbiology, 6(11), 851-857. https://doi.org/10.1038/nrmicro2014 | |
dc.relation.references | Vásquez Godoy, V. (2021). Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80627 | |
dc.relation.references | Walker, K. B., Brennan, M. J., Ho, M. M., Eskola, J., Thiry, G., Sadoff, J., Dobbelaer, R., Grode, L., Liu, M. A., Fruth, U., & Lambert, P. H. (2010). The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine, 28(11), 2259-2270. https://doi.org/10.1016/j.vaccine.2009.12.083 | |
dc.relation.references | Welin, A., Björnsdottir, H., Winther, M., Christenson, K., Oprea, T., Karlsson, A., Forsman, H., Dahlgren, C., & Bylund, J. (2015). CFP-10 from Mycobacterium tuberculosis Selectively Activates Human Neutrophils through a Pertussis Toxin-Sensitive Chemotactic Receptor. Infection and Immunity, 83(1), 205-213. https://doi.org/10.1128/IAI.02493-14 | |
dc.relation.references | White, A. D., Sibley, L., Sarfas, C., Morrison, A., Gullick, J., Clark, S., Gleeson, F., McIntyre, A., Arlehamn, C. L., Sette, A., Salguero, F. J., Rayner, E., Rodriguez, E., Puentes, E., Laddy, D., Williams, A., Dennis, M., Martin, C., & Sharpe, S. (2021). MTBVAC vaccination protects rhesus macaques against aerosol challenge with M. tuberculosis and induces immune signatures analogous to those observed in clinical studies. Npj Vaccines, 6(1), 4. https://doi.org/10.1038/s41541-020-00262-8 | |
dc.relation.references | WHO. (2022). Global Tuberculosis Report 2022 (1st ed). World Health Organization. | |
dc.relation.references | WHO. (2023). Global Tuberculosis Report 2023 (1st ed). World Health Organization. | |
dc.relation.references | WHO. (2024). Global Tuberculosis Report 2024 (1st ed). World Health Organization. | |
dc.relation.references | Wu, Y., Woodworth, J. S., Shin, D. S., Morris, S., & Behar, S. M. (2008). Vaccine-Elicited 10-Kilodalton Culture Filtrate Protein-Specific CD8+ T Cells Are Sufficient To Mediate Protection against Mycobacterium tuberculosis Infection. Infection and Immunity, 76(5), 2249-2255. https://doi.org/10.1128/IAI.00024-08 | |
dc.relation.references | Zhao, X., Ruelens, P., Farr, A. D., De Visser, J. A. G. M., & Baraban, L. (2023). Population dynamics of cross-protection against β-lactam antibiotics in droplet microreactors. Frontiers in Microbiology, 14, 1294790. https://doi.org/10.3389/fmicb.2023.1294790 | |
dc.relation.references | Zhuang, L., Ye, Z., Li, L., Yang, L., & Gong, W. (2023). Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines, 11(8), 1304. https://doi.org/10.3390/vaccines11081304 | |
dc.relation.references | Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302-308. https://doi.org/10.1006/abio.1996.0171 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.ddc | 540 - Química y ciencias afines | |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | |
dc.subject.decs | Mycobacterium tuberculosis -- Química | spa |
dc.subject.decs | Mycobacterium tuberculosis -- Chemistry | eng |
dc.subject.decs | Tuberculosis -- Microbiología | spa |
dc.subject.decs | Tuberculosis -- Microbiology | eng |
dc.subject.decs | Tuberculosis -- Etiología | spa |
dc.subject.decs | Tuberculosis -- Etiology | eng |
dc.subject.decs | ATPasas Tipo P -- Química | spa |
dc.subject.decs | P-type ATPases -- Chemistry | eng |
dc.subject.decs | Proteínas mutantes -- Biosíntesis | spa |
dc.subject.decs | Mutant proteins -- Biosynthesis | eng |
dc.subject.proposal | Mtb | spa |
dc.subject.proposal | Mutante atenuado | spa |
dc.subject.proposal | ATPasa tipo P | spa |
dc.subject.proposal | Transportador de lípidos | spa |
dc.subject.proposal | Mtb | spa |
dc.subject.proposal | Mtb | eng |
dc.subject.proposal | Tuberculosis | eng |
dc.subject.proposal | Attenuated mutant | eng |
dc.subject.proposal | P-type ATPase | eng |
dc.subject.proposal | Lipid transporter | eng |
dc.title | Construcción y caracterización parcial de un doble mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7 | spa |
dc.title.translated | Construction and partial characterization of a double mutant of Mycobacterium tuberculosis in the membrane transporters CtpF and MmpL7 | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Construcción y caracterización parcial del mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7, con potencial vacunal | |
oaire.fundername | División de Investigación de Bogotá-DIB |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis MSc _ Alver _ VF.pdf
- Tamaño:
- 6.35 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: