Construcción y caracterización parcial de un doble mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7

dc.contributor.advisorSoto Ospina, Carlos Yesid
dc.contributor.authorCruz Cacais, Alver Antonio
dc.contributor.orcidCruz Cacais, Alver Antonio [000000018208863X]
dc.contributor.researchgroupBioquímica y Biología Molecular de las Micobacterias
dc.coverage.countryColombia
dc.date.accessioned2025-09-09T14:05:21Z
dc.date.available2025-09-09T14:05:21Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografías, mapaspa
dc.description.abstractLa tuberculosis (TB), producida por su agente etiológico Mycobacterium tuberculosis (Mtb), es actualmente la primera causa de muerte por un agente infeccioso a nivel mundial. Sin embargo, la única vacuna autorizada contra la TB, el bacilo Calmette–Guérin (BCG), no logra proteger de forma eficiente contra la enfermedad. En este sentido, el desarrollo de nuevos candidatos a vacuna contra la TB, que reemplacen a la BCG es absolutamente prioritario. Actualmente, ha surgido mucho interés en el uso de proteínas de membrana como dianas de atenuación de Mtb encaminado a la construcción de mutantes atenuados con potencial vacunal. Por ejemplo, CtpF, una ATPasa tipo P transportadora de Ca2+, relevante en la virulencia y supervivencia del bacilo tuberculoso, se muestra como una buena diana de atenuación de Mtb. Por otra parte, MmpL7 es una proteína transportadora no relacionada con CtpF, implicada en la biosíntesis de lípidos de Mtb, incluyendo los dimicocerosatos de tiocerol (PDIM), considerados factores de virulencia. La deleción del gen mmpL7 en el genoma micobacteriano conduce a la atenuación del bacilo tuberculoso. El objetivo del presente trabajo es obtener y evaluar preliminarmente un doble mutante defectivo en los genes ctpF y mmpL7, desprovisto parcialmente de resistencia antibiótica, y que pueda ser probado en estudios preclínicos de atenuación en modelo celular y animal como un posible candidato a vacuna viva contra la TB. (Texto tomado de la fuente)spa
dc.description.abstractTuberculosis (TB), caused by the etiological agent Mycobacterium tuberculosis (Mtb), remains the leading cause of death from a single infectious agent worldwide. The only licensed TB vaccine, Bacillus Calmette–Guérin (BCG), provides limited and inconsistent protection, underscoring the urgent need for more effective alternatives. Membrane proteins have recently gained attention as promising targets for Mtb attenuation, enabling the generation of live attenuated mutants with vaccine potential. CtpF, a P-type ATPase involved in Ca²⁺ transport, plays a critical role in Mtb virulence and survival, making it an attractive candidate for genetic inactivation. In parallel, MmpL7, an unrelated membrane transporter required for the biosynthesis of phthiocerol dimycocerosates (PDIM), recognized virulence factors, has also been implicated in pathogenesis. Deletion of the mmpL7 gene leads to attenuation of the bacillus. Here, we describe the generation and preliminary characterization of a double mutant lacking ctpF and mmpL7, engineered to be partially devoid of antibiotic resistance markers. This strain is intended for preclinical evaluation in cellular and animal models as a potential live attenuated TB vaccine candidate.eng
dc.description.curricularareaQuímica.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias – Bioquímica
dc.description.researchareaHospedero-Patógeno
dc.description.researcharea[Virulencia y latencia de las micobacterias]
dc.description.sponsorshipDivisión de Investigación de Bogotá-DIB por financiar el proyecto “Construcción y caracterización parcial del mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7, con potencial vacunal.” en la Convocatoria para el apoyo a proyectos de investigación y creación artística de la Sede Bogotá de la Universidad Nacional De Colombia-2019.
dc.format.extent109 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88662
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.relation.referencesA. Elamin, A., Stehr, M., & Singh, M. (2012). The Cord Factor: Structure, Biosynthesis and Application in Drug Research – Achilles Heel of Mycobacterium tuberculosis? En P.-J. Cardona (Ed.), Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. InTech. https://doi.org/10.5772/32032
dc.relation.referencesAbrahams, K. A., & Besra, G. S. (2018). Mycobacterial cell wall biosynthesis: A multifaceted antibiotic target. Parasitology, 145(2), 116-133. https://doi.org/10.1017/S0031182016002377
dc.relation.referencesAguilo, N., Uranga, S., Marinova, D., Monzon, M., Badiola, J., & Martin, C. (2016). MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis, 96, 71-74. https://doi.org/10.1016/j.tube.2015.10.010
dc.relation.referencesAlberto Mendoza Ticona, E. G. H. (2008). Tuberculosis extremadamente resistente (TB-XDR), historia y situación actual. Acta Med Per, 25(4), 236-246.
dc.relation.referencesAldovini, A., Husson, R. N., & Young, R. A. (1993). The uraA locus and homologous recombination in Mycobacterium bovis BCG. Journal of Bacteriology, 175(22), 7282-7289. https://doi.org/10.1128/jb.175.22.7282-7289.1993
dc.relation.referencesArbues, A., Aguilo, J. I., Gonzalo-Asensio, J., Marinova, D., Uranga, S., Puentes, E., Fernandez, C., Parra, A., Cardona, P. J., Vilaplana, C., Ausina, V., Williams, A., Clark, S., Malaga, W., Guilhot, C., Gicquel, B., & Martin, C. (2013). Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 31(42), 4867-4873. https://doi.org/10.1016/j.vaccine.2013.07.051
dc.relation.referencesAstarie-Dequeker, C., Le Guyader, L., Malaga, W., Seaphanh, F.-K., Chalut, C., Lopez, A., & Guilhot, C. (2009). Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids. PLoS Pathogens, 5(2), e1000289. https://doi.org/10.1371/journal.ppat.1000289
dc.relation.referencesAtlas, R. M. (2010). Handbook of microbiological media (4th ed). CRC Press.
dc.relation.referencesAugenstreich, J., Arbues, A., Simeone, R., Haanappel, E., Wegener, A., Sayes, F., Le Chevalier, F., Chalut, C., Malaga, W., Guilhot, C., Brosch, R., & Astarie‐Dequeker, C. (2017). ESX‐1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cmi.12726
dc.relation.referencesAzad, A. K., Sirakova, T. D., Rogers, L. M., & Kolattukudy, P. E. (1996). Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proceedings of the National Academy of Sciences, 93(10), 4787-4792. https://doi.org/10.1073/pnas.93.10.4787
dc.relation.referencesBaena, A., & Porcelli, S. A. (2009). Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens, 74(3), 189-204. https://doi.org/10.1111/j.1399-0039.2009.01301.x
dc.relation.referencesBalasubramanian, V., Pavelka, M. S., Bardarov, S. S., Martin, J., Weisbrod, T. R., McAdam, R. A., Bloom, B. R., & Jacobs, W. R. (1996). Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. Journal of Bacteriology, 178(1), 273-279. https://doi.org/10.1128/jb.178.1.273-279.1996
dc.relation.referencesBates, T. A., Trank-Greene, M., Nguyenla, X., Anastas, A., Gurmessa, S. K., Merutka, I. R., Dixon, S. D., Shumate, A., Groncki, A. R., Parson, M. A., Ingram, J. R., Barklis, E., Burke, J. E., Shinde, U., Ploegh, H. L., & Tafesse, F. G. (2024). ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. bioRxiv: The Preprint Server for Biology, 2023.08.16.553641. https://doi.org/10.1101/2023.08.16.553641
dc.relation.referencesBerthet, F.-X., Rasmussen, P. B., Rosenkrands, I., Andersen, P., & Gicquel, B. (1998). A Mycobacterium tuberculosis operon encoding ESAT=6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology, 144(11), 3195-3203. https://doi.org/10.1099/00221287-144-11-3195
dc.relation.referencesBetts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A., & Duncan, K. (2002). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling: Nutrient starvation of M. tuberculosis. Molecular Microbiology, 43(3), 717-731. https://doi.org/10.1046/j.1365-2958.2002.02779.x
dc.relation.referencesBrandt, L., Oettinger, T., Holm, A., Andersen, A. B., & Andersen, P. (1996). Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. The Journal of Immunology, 157(8), 3527-3533. https://doi.org/10.4049/jimmunol.157.8.3527
dc.relation.referencesBrodin, P., De Jonge, M. I., Majlessi, L., Leclerc, C., Nilges, M., Cole, S. T., & Brosch, R. (2005). Functional Analysis of Early Secreted Antigenic Target-6, the Dominant T-cell Antigen of Mycobacterium tuberculosis, Reveals Key Residues Involved in Secretion, Complex Formation, Virulence, and Immunogenicity. Journal of Biological Chemistry, 280(40), 33953-33959. https://doi.org/10.1074/jbc.M503515200
dc.relation.referencesBrodin, P., Rosenkrands, I., Andersen, P., Cole, S. T., & Brosch, R. (2004). ESAT-6 proteins: Protective antigens and virulence factors? Trends in Microbiology, 12(11), 500-508. https://doi.org/10.1016/j.tim.2004.09.007
dc.relation.referencesBublitz, M., Poulsen, H., Morth, J. P., & Nissen, P. (2010). In and out of the cation pumps: P-Type ATPase structure revisited. Current Opinion in Structural Biology, 20(4), 431-439. https://doi.org/10.1016/j.sbi.2010.06.007
dc.relation.referencesCamacho, L. R., Constant, P., Raynaud, C., Lanéelle, M.-A., Triccas, J. A., Gicquel, B., Daffé, M., & Guilhot, C. (2001). Analysis of the Phthiocerol Dimycocerosate Locus ofMycobacterium tuberculosis. Journal of Biological Chemistry, 276(23), 19845-19854. https://doi.org/10.1074/jbc.M100662200
dc.relation.referencesCambier, C., Banik, S. M., Buonomo, J. A., & Bertozzi, C. R. (2020). Spreading of a mycobacterial cell-surface lipid into host epithelial membranes promotes infectivity. eLife, 9, e60648. https://doi.org/10.7554/eLife.60648
dc.relation.referencesCambier, C. J., Takaki, K. K., Larson, R. P., Hernandez, R. E., Tobin, D. M., Urdahl, K. B., Cosma, C. L., & Ramakrishnan, L. (2014). Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature, 505(7482), 218-222. https://doi.org/10.1038/nature12799
dc.relation.referencesChandra, P., Grigsby, S. J., & Philips, J. A. (2022). Immune evasion and provocation by Mycobacterium tuberculosis. Nature Reviews Microbiology, 20(12), 750-766. https://doi.org/10.1038/s41579-022-00763-4
dc.relation.referencesCole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., … Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537-544. https://doi.org/10.1038/31159
dc.relation.referencesCox, J. S., Chen, B., McNeil, M., & Jr, W. R. J. (1999). Complex lipid determines tissue-speci®c replication of Mycobacterium tuberculosis in mice. 402.
dc.relation.referencesDaffé, M., & Reyrat, J.-M. (Eds.). (2008). The mycobacterial cell envelope. ASM Press.
dc.relation.referencesDahl, J. L. (2005). Scanning electron microscopy analysis of aged Mycobacterium tuberculosis cells. Canadian Journal of Microbiology, 51(3), 277-281. https://doi.org/10.1139/w05-001
dc.relation.referencesDarzins, E. (1958). The bacteriology of tuberculosis. Univ. of Minnesota Press.
dc.relation.referencesDaugelat, S., Kowall, J., Mattow, J., Bumann, D., Winter, R., Hurwitz, R., & Kaufmann, S. H. E. (2003). The RD1 proteins of Mycobacterium tuberculosis: Expression in Mycobacterium smegmatis and biochemical characterization. Microbes and Infection, 5(12), 1082-1095. https://doi.org/10.1016/S1286-4579(03)00205-3
dc.relation.referencesDelogu, G., Sali, M., & Fadda, G. (2013). The biology of mycobacterium tuberculosis infection. Mediterranean Journal of Hematology and Infectious Diseases, 5(1). https://doi.org/10.4084/mjhid.2013.070
dc.relation.referencesDillon, D. C., Alderson, M. R., Day, C. H., Bement, T., Campos-Neto, A., Skeiky, Y. A. W., Vedvick, T., Badaro, R., Reed, S. G., & Houghton, R. (2000). Molecular and Immunological Characterization ofMycobacterium tuberculosis CFP-10, an Immunodiagnostic Antigen Missing in Mycobacterium bovis BCG. Journal of Clinical Microbiology, 38(9), 3285-3290. https://doi.org/10.1128/JCM.38.9.3285-3290.2000
dc.relation.referencesDulberger, C. L., Rubin, E. J., & Boutte, C. C. (2020). The mycobacterial cell envelope—A moving target. Nature Reviews Microbiology, 18(1), 47-59. https://doi.org/10.1038/s41579-019-0273-7
dc.relation.referencesFeng, C.-Q., Zhang, Z.-Y., Zhu, X.-J., Lin, Y., Chen, W., Tang, H., & Lin, H. (2019). iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics, 35(9), 1469-1477. https://doi.org/10.1093/bioinformatics/bty827
dc.relation.referencesGröschel, M. I., Sayes, F., Simeone, R., Majlessi, L., & Brosch, R. (2016). ESX secretion systems: Mycobacterial evolution to counter host immunity. Nature Reviews Microbiology, 14(11), 677-691. https://doi.org/10.1038/nrmicro.2016.131
dc.relation.referencesHamon, M. A., Ribet, D., Stavru, F., & Cossart, P. (2012). Listeriolysin O: The Swiss army knife of Listeria. Trends in Microbiology, 20(8), 360-368. https://doi.org/10.1016/j.tim.2012.04.006
dc.relation.referencesHernandez-Pando, R., Shin, S. J., Clark, S., Casonato, S., Becerril-Zambrano, M., Kim, H., Boldrin, F., Mata-Espinoza, D., Provvedi, R., Arbues, A., Marquina-Castillo, B., Cioetto Mazzabò, L., Barrios-Payan, J., Martin, C., Cho, S.-N., Williams, A., & Manganelli, R. (2019). Construction and Characterization of the Mycobacterium tuberculosis sigE fadD26 Unmarked Double Mutant as a Vaccine Candidate. Infection and Immunity, 88(1), e00496-19. https://doi.org/10.1128/IAI.00496-19
dc.relation.referencesINS. (2022). Tuberculosis, Colombia [Informe de evento]. Ministerio de Salud y Protección Social de Colombia. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/informe-tuberculosis-2022-colombia.pdf
dc.relation.referencesInterest, S. O. F., & Nipo, T. N. S. (2007). Poverty and tuberculosis: Is it truly a simple inverse linear correlation? 33(4), 4-5. https://doi.org/10.1183/09031936.00182808
dc.relation.referencesJ S Cox, B Chen, M McNeil, & W R Jacobs Jr. (1999). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature, 402(6757), 79-83.
dc.relation.referencesJorgensen, J. H., Carroll, K. C., Funke, G., Pfaller, M. A., Landry, M. L., Richter, S. S., & Warnock, D. W. (Eds.). (2015). Manual of Clinical Microbiology. ASM Press. https://doi.org/10.1128/9781555817381
dc.relation.referencesJulián, E., Roldán, M., Sánchez-Chardi, A., Astola, O., Agustí, G., & Luquin, M. (2010). Microscopic Cords, a Virulence-Related Characteristic of Mycobacterium tuberculosis , Are Also Present in Nonpathogenic Mycobacteria. Journal of Bacteriology, 192(7), 1751-1760. https://doi.org/10.1128/JB.01485-09
dc.relation.referencesKapopoulou, A., Lew, J. M., & Cole, S. T. (2011). The MycoBrowser portal: A comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis, 91(1), 8-13. https://doi.org/10.1016/j.tube.2010.09.006
dc.relation.referencesMalaga, W., Perez, E., & Guilhot, C. (2003). Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiology Letters, 219(2), 261-268. https://doi.org/10.1016/S0378-1097(03)00003-X
dc.relation.referencesMangtani, P., Abubakar, I., Ariti, C., Beynon, R., Pimpin, L., Fine, P. E. M., Rodrigues, L. C., Smith, P. G., Lipman, M., Whiting, P. F., & Sterne, J. A. (2014). Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clinical Infectious Diseases, 58(4), 470-480. https://doi.org/10.1093/cid/cit790
dc.relation.referencesMansfield, K. G., & Fox, J. G. (2018). Bacterial diseases. The Common Marmoset in Captivity and Biomedical Research, 265-287. https://doi.org/10.1016/B978-0-12-811829-0.00016-9
dc.relation.referencesMarinelli, L. J., Piuri, M., & Hatfull, G. F. (2019). Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. En M. R. J. Clokie, A. Kropinski, & R. Lavigne (Eds.), Bacteriophages (Vol. 1898, pp. 69-80). Springer New York. https://doi.org/10.1007/978-1-4939-8940-9_6
dc.relation.referencesMartin, C., Aguilo, N., Marinova, D., & Gonzalo-asensio, J. (2020). Update on TB Vaccine Pipeline. 1-15.
dc.relation.referencesMartin, C., Williams, A., Hernandezpando, R., Cardona, P., Gormley, E., Bordat, Y., Soto, C., Clark, S., Hatch, G., & Aguilar, D. (2006). The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 24(17), 3408-3419. https://doi.org/10.1016/j.vaccine.2006.03.017
dc.relation.referencesMathur, M., & Kolattukudy, P. E. (1992). Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from Mycobacterium tuberculosis var. Bovis Bacillus Calmette-Guerin. Journal of Biological Chemistry, 267(27), 19388-19395. https://doi.org/10.1016/S0021-9258(18)41788-7
dc.relation.referencesMaue, A. C., Waters, W. R., Palmer, M. V., Nonnecke, B. J., Minion, F. C., Brown, W. C., Norimine, J., Foote, M. R., Scherer, C. F. C., & Estes, D. M. (2007). An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis. Vaccine, 25(24), 4735-4746. https://doi.org/10.1016/j.vaccine.2007.03.052
dc.relation.referencesMaya Hoyos, M. (2021). ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80314
dc.relation.referencesMaya-Hoyos, M., Mata-Espinosa, D., López-Torres, M. O., Tovar-Vázquez, B., Barrios-Payán, J., León-Contreras, J. C., Ocampo, M., Hernández-Pando, R., & Soto, C. Y. (2022). The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. International Journal of Molecular Sciences, 23(11), 6015. https://doi.org/10.3390/ijms23116015
dc.relation.referencesMaya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E., & Soto, C. Y. (2019). The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon, 5(11), e02852. https://doi.org/10.1016/j.heliyon.2019.e02852
dc.relation.referencesNieuwenhuizen, N. E., Kulkarni, P. S., Shaligram, U., Cotton, M. F., Rentsch, C. A., Eisele, B., Grode, L., & Kaufmann, S. H. E. (2017). The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Frontiers in Immunology, 8, 1147. https://doi.org/10.3389/fimmu.2017.01147
dc.relation.referencesNovoa-Aponte, L., León-Torres, A., Patiño-Ruiz, M., Cuesta-Bernal, J., Salazar, L.-M., Landsman, D., Mariño-Ramírez, L., & Soto, C.-Y. (2012). In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Structural Biology, 12(1), 25. https://doi.org/10.1186/1472-6807-12-25
dc.relation.referencesNovoa-Aponte, L., & Soto Ospina, C. Y. (2014). Mycobacterium tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development. BioMed Research International, 2014, 1-9. https://doi.org/10.1155/2014/296986
dc.relation.referencesPai, M., Behr, M. A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C. C., Ginsberg, A., Swaminathan, S., Spigelman, M., Getahun, H., Menzies, D., & Raviglione, M. (2016). Tuberculosis. Nature Reviews Disease Primers, 2. https://doi.org/10.1038/nrdp.2016.76
dc.relation.referencesParish, T., Gordhan, B. G., McAdam, R. A., Duncan, K., Mizrahi, V., & Stoker, N. G. (1999). Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology, 145(12), 3497-3503. https://doi.org/10.1099/00221287-145-12-3497
dc.relation.referencesQuigley, J., Hughitt, V. K., Velikovsky, C. A., Mariuzza, R. A., El-Sayed, N. M., & Briken, V. (2017). The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio, 8(2), e00148-17. https://doi.org/10.1128/mBio.00148-17
dc.relation.referencesRabodoarivelo, M. S., Aerts, M., Vandamme, P., Palomino, J. C., Rasolofo, V., & Martin, A. (2016). Optimizing of a protein extraction method for Mycobacterium tuberculosis proteome analysis using mass spectrometry. Journal of Microbiological Methods, 131, 144-147. https://doi.org/10.1016/j.mimet.2016.10.021
dc.relation.referencesRefai, A., Haoues, M., Othman, H., Barbouche, M. R., Moua, P., Bondon, A., Mouret, L., Srairi‐Abid, N., & Essafi, M. (2015). Two distinct conformational states of Mycobacterium tuberculosis virulent factor early secreted antigenic target 6 KD a are behind the discrepancy around its biological functions. The FEBS Journal, 282(21), 4114-4129. https://doi.org/10.1111/febs.13408
dc.relation.referencesRenshaw, P. S., Panagiotidou, P., Whelan, A., Gordon, S. V., Hewinson, R. G., Williamson, R. A., & Carr, M. D. (2002). Conclusive Evidence That the Major T-cell Antigens of theMycobacterium tuberculosis Complex ESAT-6 and CFP-10 Form a Tight, 1:1 Complex and Characterization of the Structural Properties of ESAT-6, CFP-10, and the ESAT-6·CFP-10 Complex. Journal of Biological Chemistry, 277(24), 21598-21603. https://doi.org/10.1074/jbc.M201625200
dc.relation.referencesRomano, M., Squeglia, F., Kramarska, E., Barra, G., Choi, H.-G., Kim, H.-J., Ruggiero, A., & Berisio, R. (2023). A Structural View at Vaccine Development against M. tuberculosis. Cells, 12(2), 317. https://doi.org/10.3390/cells12020317
dc.relation.referencesRyndak, M., Wang, S., & Smith, I. (2008). PhoP, a key player in Mycobacterium tuberculosis virulence. Trends in Microbiology, 16(11), 528-534. https://doi.org/10.1016/j.tim.2008.08.006
dc.relation.referencesSable, S. B., Posey, J. E., & Scriba, T. J. (2020). Tuberculosis vaccine development: Progress in clinical evaluation. Clinical Microbiology Reviews, 33(1), 1-30. https://doi.org/10.1128/cmr.00100-19
dc.relation.referencesSambrook, Joseph., Russell, D. W., & Laboratory, C. S. H. (2001). Molecular cloning: A laboratory manual / Joseph Sambrook, David W. Russell (3rd. ed.). Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y.
dc.relation.referencesSchneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209-217. https://doi.org/10.1038/nchembio.304
dc.relation.referencesSiméone, R., Léger, M., Constant, P., Malaga, W., Marrakchi, H., Daffé, M., Guilhot, C., & Chalut, C. (2010). Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. The FEBS Journal, 277(12), 2715-2725. https://doi.org/10.1111/j.1742-4658.2010.07688.x
dc.relation.referencesSørensen, A. L., Nagai, S., Houen, G., Andersen, P., & Andersen, A. B. (1995). Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infection and Immunity, 63(5), 1710-1717. https://doi.org/10.1128/iai.63.5.1710-1717.1995
dc.relation.referencesSpertini, F., Audran, R., Chakour, R., Karoui, O., Steiner-Monard, V., Thierry, A.-C., Mayor, C. E., Rettby, N., Jaton, K., Vallotton, L., Lazor-Blanchet, C., Doce, J., Puentes, E., Marinova, D., Aguilo, N., & Martin, C. (2015). Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: A randomised, double-blind, controlled phase I trial. The Lancet Respiratory Medicine, 3(12), 953-962. https://doi.org/10.1016/S2213-2600(15)00435-X
dc.relation.referencesSulzenbacher, G., Canaan, S., Bordat, Y., Neyrolles, O., Stadthagen, G., Roig-Zamboni, V., Rauzier, J., Maurin, D., Laval, F., Daffé, M., Cambillau, C., Gicquel, B., Bourne, Y., & Jackson, M. (2006). LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. The EMBO Journal, 25(7), 1436-1444. https://doi.org/10.1038/sj.emboj.7601048
dc.relation.referencesTameris, M., Rozot, V., Imbratta, C., Geldenhuys, H., Mendelsohn, S. C., Kany Luabeya, A. K., Shenje, J., Tredoux, N., Fisher, M., Mulenga, H., Bilek, N., Young, C., Veldsman, A., Botes, N., Thole, J., Fritzell, B., Mukherjee, R., Jelsbak, I. M., Rodriguez, E., … Van Rooyes, J. (2025). Safety, reactogenicity, and immunogenicity of MTBVAC in infants: A phase 2a randomised, double-blind, dose-defining trial in a TB endemic setting. eBioMedicine, 114, 105628. https://doi.org/10.1016/j.ebiom.2025.105628
dc.relation.referencesTan, T., Lee, W. L., Alexander, D. C., Grinstein, S., & Liu, J. (2006). The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cellular Microbiology, 8(9), 1417-1429. https://doi.org/10.1111/j.1462-5822.2006.00721.x
dc.relation.referencesTrivedi, O. A., Arora, P., Sridharan, V., Tickoo, R., Mohanty, D., & Gokhale, R. S. (2004). Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature, 428(6981), 441-445. https://doi.org/10.1038/nature02384
dc.relation.referencesVan Helden, P. D., Victor, T. C., Warren, R. M., & Van Helden, E. G. (2001). Isolation of DNA from Mycobacterium tuberculosis. En T. Parish & N. G. Stoker, Mycobacterium Tuberculosis Protocols (Vol. 54, pp. 019-030). Humana Press. https://doi.org/10.1385/1-59259-147-7:019
dc.relation.referencesvan Kessel, J. C. (2008). Recombineering in mycobacteria using mycobacteriophage proteins [Doctoral Dissertation, University of Pittsburgh]. http://d-scholarship.pitt.edu/id/eprint/8939
dc.relation.referencesvan Kessel, J. C., & Hatfull, G. F. (2007). Recombineering in Mycobacterium tuberculosis. Nature Methods, 4(2), 147-152. https://doi.org/10.1038/nmeth996
dc.relation.referencesvan Kessel, J. C., Marinelli, L. J., & Hatfull, G. F. (2008). Recombineering mycobacteria and their phages. Nature Reviews Microbiology, 6(11), 851-857. https://doi.org/10.1038/nrmicro2014
dc.relation.referencesVásquez Godoy, V. (2021). Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P [Tesis de maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80627
dc.relation.referencesWalker, K. B., Brennan, M. J., Ho, M. M., Eskola, J., Thiry, G., Sadoff, J., Dobbelaer, R., Grode, L., Liu, M. A., Fruth, U., & Lambert, P. H. (2010). The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine, 28(11), 2259-2270. https://doi.org/10.1016/j.vaccine.2009.12.083
dc.relation.referencesWelin, A., Björnsdottir, H., Winther, M., Christenson, K., Oprea, T., Karlsson, A., Forsman, H., Dahlgren, C., & Bylund, J. (2015). CFP-10 from Mycobacterium tuberculosis Selectively Activates Human Neutrophils through a Pertussis Toxin-Sensitive Chemotactic Receptor. Infection and Immunity, 83(1), 205-213. https://doi.org/10.1128/IAI.02493-14
dc.relation.referencesWhite, A. D., Sibley, L., Sarfas, C., Morrison, A., Gullick, J., Clark, S., Gleeson, F., McIntyre, A., Arlehamn, C. L., Sette, A., Salguero, F. J., Rayner, E., Rodriguez, E., Puentes, E., Laddy, D., Williams, A., Dennis, M., Martin, C., & Sharpe, S. (2021). MTBVAC vaccination protects rhesus macaques against aerosol challenge with M. tuberculosis and induces immune signatures analogous to those observed in clinical studies. Npj Vaccines, 6(1), 4. https://doi.org/10.1038/s41541-020-00262-8
dc.relation.referencesWHO. (2022). Global Tuberculosis Report 2022 (1st ed). World Health Organization.
dc.relation.referencesWHO. (2023). Global Tuberculosis Report 2023 (1st ed). World Health Organization.
dc.relation.referencesWHO. (2024). Global Tuberculosis Report 2024 (1st ed). World Health Organization.
dc.relation.referencesWu, Y., Woodworth, J. S., Shin, D. S., Morris, S., & Behar, S. M. (2008). Vaccine-Elicited 10-Kilodalton Culture Filtrate Protein-Specific CD8+ T Cells Are Sufficient To Mediate Protection against Mycobacterium tuberculosis Infection. Infection and Immunity, 76(5), 2249-2255. https://doi.org/10.1128/IAI.00024-08
dc.relation.referencesZhao, X., Ruelens, P., Farr, A. D., De Visser, J. A. G. M., & Baraban, L. (2023). Population dynamics of cross-protection against β-lactam antibiotics in droplet microreactors. Frontiers in Microbiology, 14, 1294790. https://doi.org/10.3389/fmicb.2023.1294790
dc.relation.referencesZhuang, L., Ye, Z., Li, L., Yang, L., & Gong, W. (2023). Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines, 11(8), 1304. https://doi.org/10.3390/vaccines11081304
dc.relation.referencesZor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302-308. https://doi.org/10.1006/abio.1996.0171
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.decsMycobacterium tuberculosis -- Químicaspa
dc.subject.decsMycobacterium tuberculosis -- Chemistryeng
dc.subject.decsTuberculosis -- Microbiologíaspa
dc.subject.decsTuberculosis -- Microbiologyeng
dc.subject.decsTuberculosis -- Etiologíaspa
dc.subject.decsTuberculosis -- Etiologyeng
dc.subject.decsATPasas Tipo P -- Químicaspa
dc.subject.decsP-type ATPases -- Chemistryeng
dc.subject.decsProteínas mutantes -- Biosíntesisspa
dc.subject.decsMutant proteins -- Biosynthesiseng
dc.subject.proposalMtbspa
dc.subject.proposalMutante atenuadospa
dc.subject.proposalATPasa tipo Pspa
dc.subject.proposalTransportador de lípidosspa
dc.subject.proposalMtbspa
dc.subject.proposalMtbeng
dc.subject.proposalTuberculosiseng
dc.subject.proposalAttenuated mutanteng
dc.subject.proposalP-type ATPaseeng
dc.subject.proposalLipid transportereng
dc.titleConstrucción y caracterización parcial de un doble mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7spa
dc.title.translatedConstruction and partial characterization of a double mutant of Mycobacterium tuberculosis in the membrane transporters CtpF and MmpL7eng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConstrucción y caracterización parcial del mutante de Mycobacterium tuberculosis en los transportadores de membrana CtpF y MmpL7, con potencial vacunal
oaire.fundernameDivisión de Investigación de Bogotá-DIB

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc _ Alver _ VF.pdf
Tamaño:
6.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: