N-Heterocyclic Carbenes as Coordinating Linkers for Platinum Nanoparticles and Spin-Crossover Fe(II) Coordination Polymers in Hybrid Nanomaterials with Potential Applications in Neuromorphic Learning

dc.contributor.advisorBaquero Velasco, Edwin Arley
dc.contributor.advisorTricard, Simon
dc.contributor.authorGalvis Sandoval, Daniel Esteban
dc.contributor.researchgroupEstado Sólido y Catálisis Ambiental
dc.contributor.researchgroupLaboratoire de Physique et Chimie des Nano-Objets (LPCNO)
dc.contributor.researchgroupInstitut National des Sciences Appliquées de Toulouse (INSA)
dc.date.accessioned2025-09-10T17:06:09Z
dc.date.available2025-09-10T17:06:09Z
dc.date.issued2025-08-19
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractInspirada en el funcionamiento de los sistemas nerviosos biológicos, la computación neuromórfica ofrece un enfoque prometedor para diseñar hardware más eficiente energéticamente y de alto rendimiento. En este contexto, los nanomateriales híbridos que integran nanopartículas metálicas con componentes moleculares capaces de imitar el comportamiento neuronal y sináptico se han convertido en candidatos atractivos. Esta tesis presenta la síntesis por autoensamblaje de materiales híbridos nanoestructurados compuestos por nanopartículas de platino ultrapequeñas (PtNPs, de 1,4 nm de tamaño, según se determinó mediante microscopía electrónica de transmisión) y polímeros de coordinación (PC) basados en Fe(II) que incorporan 4-amino-1,2,4-triazol (NH2-trz) o 4-amino-1,2,4-triazol y 1,3- dimetil-5- [(E)-(1,2,4-triazolimino)metil]-1H-imidazol-3-io tetrafluoroborato (compuesto 2) como ligandos. Los CP se caracterizaron mediante magnetometría de muestra vibrante (VSM), lo que confirmó su comportamiento de cruce de espín (SCO), y los materiales híbridos se examinaron minuciosamente mediante técnicas microscópicas, magnéticas y espectroscópicas. La conductividad eléctrica se analizó mediante microscopía de fuerza atómica conductiva (c-AFM). Cabe destacar que el orden de inclusión de los componentes influyó significativamente en la morfología y las propiedades electrónicas de los híbridos basados en NH2-trz, mientras que en los sistemas basados en el compuesto 2 solo se vieron afectadas las propiedades eléctricas. Estos resultados demuestran la naturaleza ajustable del comportamiento eléctrico en dichos híbridos, lo que ofrece información valiosa para el diseño de materiales multifuncionales para aplicaciones neuromórficas. (Texto tomado de la fuente)spa
dc.description.abstractInspired by the functioning of biological nervous systems, neuromorphic computing offers a promising approach to designing more energy-efficient and high-performance hardware. In this context, hybrid nanomaterials that integrate metallic nanoparticles with molecular components capable of mimicking neuronal and synaptic behavior have emerged as attractive candidates. This thesis presents the self- assembly synthesis of nanostructured hybrid materials composed of ultra-small platinum nanoparticles (PtNPs, 1.4 nm in size, as determined by transmission electron microscopy) and Fe(II)-based coordination polymers (CPs) incorporating either 4-amino-1,2,4-triazole (NH2-trz) or 4-amino-1,2,4-triazole and 1,3- dimethyl-5-[(E)-(1,2,4-triazolimino)methyl]-1H-imidazol-3-ium tetrafluoroborate salt (compound 2) as ligands. The CPs were characterized by vibrating sample magnetometry (VSM), confirming their spin- crossover (SCO) behavior, and the hybrid materials were thoroughly examined by microscopic, magnetic, and spectroscopic techniques. Electrical conductivity was probed using conductive atomic force microscopy (c-AFM). Notably, the inclusion order of components significantly influenced the morphology and electronic properties of the NH2-trz-based hybrids, whereas for the compound 2-based systems, only electrical properties were affected. These results demonstrate the tunable nature of electrical behavior in such hybrids, offering valuable insights for the design of multifunctional materials for neuromorphic applications.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Química Investigación
dc.description.researchareaQuímica de materiales
dc.format.extent62 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88697
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesSangwan, V. K.; Hersam, M. C. Neuromorphic Nanoelectronic Materials. Nat. Nanotechnol. 2020, 15 (7), 517–528. https://doi.org/10.1038/s41565-020-0647-z.
dc.relation.referencesArikpo, I. I.; Ogban, F. U.; Eteng, I. E. Von Neumann Architecture and Modern Computers. Glob. J. Math. Sci. 2008, 6 (2), 97–103. https://doi.org/10.4314/gjmas.v6i2.21415.
dc.relation.referencesHan, S.-H.; Kim, K. W.; Kim, S.; Youn, Y. C. Artificial Neural Network: Understanding the Basic Concepts without Mathematics. Dement. Neurocognitive Disord. 2018, 17 (3), 83. https://doi.org/10.12779/dnd.2018.17.3.83.
dc.relation.referencesGrossi, E.; Buscema, M. Introduction to Artificial Neural Networks: Eur. J. Gastroenterol. Hepatol. 2007, 19 (12), 1046–1054. https://doi.org/10.1097/MEG.0b013e3282f198a0.
dc.relation.referencesSharp, K. G. Inorganic/Organic Hybrid Materials. Adv. Mater. 1998, 10 (15), 1243–1248. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1243::AID-ADMA1243>3.0.CO;2-6.
dc.relation.referencesKickelbick, G. Hybrid Materials – Past, Present and Future. Hybrid Mater. 2014, 1 (1). https://doi.org/10.2478/hyma-2014-0001.
dc.relation.referencesAlemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T. Definitions of Terms Relating to the Structure and Processing of Sols, Gels, Networks, and Inorganic-Organic Hybrid Materials (IUPAC Recommendations 2007). Pure Appl. Chem. 2007, 79 (10), 1801–1829. https://doi.org/10.1351/pac200779101801.
dc.relation.referencesIslam, Md. S.; Mubarak, M.; Lee, H.-J. Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices. Inorganics 2023, 11 (5), 183. https://doi.org/10.3390/inorganics11050183.
dc.relation.referencesUsmani, S.; Mikolasek, M.; Gillet, A.; Sanchez Costa, J.; Rigoulet, M.; Chaudret, B.; Bousseksou, A.; Lassalle-Kaiser, B.; Demont, P.; Molnár, G.; Salmon, L.; Carrey, J.; Tricard, S. Spin Crossover in Fe(Triazole)–Pt Nanoparticle Self-Assembly Structured at the Sub-5 Nm Scale. Nanoscale 2020, 12 (15), 8180–8187. https://doi.org/10.1039/D0NR02154G.
dc.relation.referencesZhu, Y.; Inada, H.; Hartschuh, A.; Shi, L.; Della Pia, A.; Costantini, G.; Vázquez de Parga, A. L.; Miranda, R.; Barbier, A.; Mocuta, C.; Belkhou, R.; Bhushan, B.; Hoo, J. H.; Park, K. S.; Baskaran, R.; Böhringer, K. F.; Lu, W.; Nosonovsky, M.; Ham, M.-H.; Boghossian, A. A.; Choi, J. H.; Strano, M. S.; Lang, A.; Habegger, M. L.; Motta, P.; Bhushan, B.; Bachmann, T.; Wagner, H.; Brenner, D. W.; Chen, J.; Shakiba, N.; Tan, Q.; Sun, Y.; Greer, J. R.; Laver, M.; Khaled, S. M.; Parodi, A.; Tasciotti, E.; Dave, B. C.; Lockwood, S. B.; Musicanti, C.; Gasco, P.; Vollrath, F.; Booth, A.; McIntosh, A. C.; Beheshti, N.; Walker, R.; Larsson, L. U.; Copestake, A.; Hwang, H.; Cho, Y.-K.; Chen, J.; Chu, M.; Gordijo, C. R.; Wu, X. Y.; Sun, Y.; Kolle, M.; Steiner, U.; Wang, S.-W.; Ceyssens, F.; Puers, R.; Han, X.; Mao, S.; Zhang, Z.; Jiang, L.; Lin, L.; Ragan, R.; Lughi, V.; Drummond, C.; Ruths, M.; Mu, W.; Ketterson, J. B.; Berini, P.; Zhao, Y.-P.; Wang, F.-C.; Prakash, S.; Henley, S. J.; Anguita, J. V.; Silva, S. R. P.; Chanana, M.; Mateo, C.; Salgueirino, V.; Correa-Duarte, M. A.; Kar, S.; Talapatra, S.; Calvo Fuentes, J.; Rivas, J.; López-Quintela, M. A.; Tsuda, S. Self-Assembly of Nanostructures. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer Netherlands: Dordrecht, 2012; pp 2371–2382. https://doi.org/10.1007/978-90-481- 9751-4_274.
dc.relation.referencesTricard, S.; Said-Aizpuru, O.; Bouzouita, D.; Usmani, S.; Gillet, A.; Tassé, M.; Poteau, R.; Viau, G.; Demont, P.; Carrey, J.; Chaudret, B. Chemical Tuning of Coulomb Blockade at Room-Temperature in Ultra-Small Platinum Nanoparticle Self-Assemblies. Mater. Horiz. 2017, 4 (3), 487–492. https://doi.org/10.1039/C6MH00419A.
dc.relation.referencesThe IUPAC Compendium of Chemical Terminology: The Gold Book, 4th ed.; Gold, V., Ed.; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, 2019. https://doi.org/10.1351/goldbook.
dc.relation.referencesPaul, D. J. Nanoelectronics. In Encyclopedia of Physical Science and Technology; Elsevier, 2003; pp 285–301. https://doi.org/10.1016/B0-12-227410-5/00469-5.
dc.relation.referencesElectronics and Communication. In Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines; Elsevier, 2018; pp 431–485. https://doi.org/10.1016/B978-0-323-48057-4.00014-1.
dc.relation.references(15)Khater, A. Electronic Transport in Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hybrid Nanoparticles; Elsevier, 2019; pp 125–139. https://doi.org/10.1016/B978-0-12-814134-2.00006-1.
dc.relation.referencesSanchez, C.; Shea, K. J.; Kitagawa, S. Recent Progress in Hybrid Materials Science. Chem. Soc. Rev. 2011, 40 (2), 471. https://doi.org/10.1039/c1cs90001c.
dc.relation.referencesMunch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, Bio-Inspired Hybrid Materials. Science 2008, 322 (5907), 1516–1520. https://doi.org/10.1126/science.1164865.
dc.relation.referencesKahn, O.; Kröber, J.; Jay, C. Spin Transition Molecular Materials for Displays and Data Recording. Adv. Mater. 1992, 4 (11), 718–728. https://doi.org/10.1002/adma.19920041103.
dc.relation.referencesCambi, L.; Szegö, L. Über die magnetische Susceptibilität der komplexen Verbindungen. Berichte Dtsch. Chem. Ges. B Ser. 1931, 64 (10), 2591–2598. https://doi.org/10.1002/cber.19310641002.
dc.relation.referencesWang, D.; Zhang, R.; Liu, J.; Ji, B.; Wang, W.; Peng, M.; Huang, C.; Cheng, L.; Ding, Y. Synthesis and Characterization of a One-Dimensional Malleable Spin-Crossover Polymer Complex Modified by Methoxy Polyethylene Glycol. Polymers 2023, 15 (10), 2363. https://doi.org/10.3390/polym15102363.
dc.relation.referencesIshikawa, R.; Noda, T.; Ueno, S.; Okubo, T.; Yamakawa, H.; Sakamoto, K.; Kawata, S. Spin Crossover in Bipyridine Derivative Bridged One-Dimensional Iron(III) Coordination Polymer. Magnetochemistry 2020, 6 (3), 29. https://doi.org/10.3390/magnetochemistry6030029.
dc.relation.referencesKahn, O.; Martinez, C. J. Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science 1998, 279 (5347), 44–48. https://doi.org/10.1126/science.279.5347.44.
dc.relation.referencesSugahara, A.; Kamebuchi, H.; Okazawa, A.; Enomoto, M.; Kojima, N. Control of Spin-Crossover Phenomena in One-Dimensional Triazole-Coordinated Iron(II) Complexes by Means of Functional Counter Ions. Inorganics 2017, 5 (3), 50. https://doi.org/10.3390/inorganics5030050.
dc.relation.referencesHalcrow, M. The Effect of Ligand Design on Metal Ion Spin State—Lessons from Spin Crossover Complexes. Crystals 2016, 6 (5), 58. https://doi.org/10.3390/cryst6050058.
dc.relation.referencesLochenie, C.; Schötz, K.; Panzer, F.; Kurz, H.; Maier, B.; Puchtler, F.; Agarwal, S.; Köhler, A.; Weber, B. Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. J. Am. Chem. Soc. 2018, 140 (2), 700–709. https://doi.org/10.1021/jacs.7b10571.
dc.relation.referencesDîrtu, M. M.; Rotaru, A.; Gillard, D.; Linares, J.; Codjovi, E.; Tinant, B.; Garcia, Y. Prediction of the Spin Transition Temperature in Fe II One-Dimensional Coordination Polymers: An Anion Based Database. Inorg. Chem. 2009, 48 (16), 7838–7852. https://doi.org/10.1021/ic900814b.
dc.relation.referencesVoisin, H.; Aimé, C.; Vallée, A.; Coradin, T.; Roux, C. A Flexible Polymer–Nanoparticle Hybrid Material Containing Triazole-Based Fe( II ) with Spin Crossover Properties for Magneto-Optical Applications. Inorg. Chem. Front. 2018, 5 (9), 2140–2147. https://doi.org/10.1039/C8QI00494C.
dc.relation.referencesSirenko, V. Y.; Kucheriv, O. I.; Rotaru, A.; Fritsky, I. O.; Gural’skiy, I. A. Direct Synthesis of Spin- Crossover Complexes: An Unexpectedly Revealed New Iron-Triazolic Structure. Eur. J. Inorg. Chem. 2020, 2020 (48), 4523–4531. https://doi.org/10.1002/ejic.202000848.
dc.relation.referencesZhao, S.; Zhou, H.; Qin, C.; Zhang, H.; Li, Y.; Yamashita, M.; Wang, S. Anion Effects on Spin Crossover Systems: From Supramolecular Chemistry to Magnetism. Chem. – Eur. J. 2023, 29 (44), e202300554. https://doi.org/10.1002/chem.202300554.
dc.relation.referencesSiddiqui, S. A.; Domanov, O.; Schafler, E.; Vejpravova, J.; Shiozawa, H. Synthesis and Size-Dependent Spin Crossover of Coordination Polymer [Fe(Htrz) 2 (Trz)](BF 4 ). J. Mater. Chem. C 2021, 9 (3), 1077– 1084. https://doi.org/10.1039/D0TC03878D.
dc.relation.referencesBousseksou, A.; Molnár, G.; Demont, P.; Menegotto, J. Observation of a Thermal Hysteresis Loop in the Dielectric Constant of Spin Crossover Complexes: Towards Molecular Memory Devices. J Mater Chem 2003, 13 (9), 2069–2071. https://doi.org/10.1039/B306638J.
dc.relation.referencesAleshin, D. Y.; Nikovskiy, I.; Novikov, V. V.; Polezhaev, A. V.; Melnikova, E. K.; Nelyubina, Y. V. Room- Temperature Spin Crossover in a Solution of Iron(II) Complexes with N , N ʹ-Disubstituted Bis(Pyrazol- 3-Yl)Pyridines. ACS Omega 2021, 6 (48), 33111–33121. https://doi.org/10.1021/acsomega.1c05463.
dc.relation.referencesGe, J.; Chen, Z.; Zhang, L.; Liang, X.; Su, J.; Kurmoo, M.; Zuo, J. A Two-Dimensional Iron(II) Coordination Polymer with Synergetic Spin-Crossover and Luminescent Properties. Angew. Chem. Int. Ed. 2019, 58 (26), 8789–8793. https://doi.org/10.1002/anie.201903281.
dc.relation.referencesKsiążek, M.; Weselski, M.; Dreczko, A.; Maliuzhenko, V.; Kaźmierczak, M.; Tołoczko, A.; Kusz, J.; Bronisz, R. Two Ways of Spin Crossover in an Iron( II ) Coordination Polymer Associated with Conformational Changes of a Bridging Ligand. Dalton Trans. 2020, 49 (28), 9811–9819. https://doi.org/10.1039/D0DT01696A.
dc.relation.referencesEnríquez-Cabrera, A.; Routaboul, L.; Salmon, L.; Bousseksou, A. Complete Post-Synthetic Modification of a Spin Crossover Complex. Dalton Trans. 2019, 48 (45), 16853–16856. https://doi.org/10.1039/C9DT03587G.
dc.relation.referencesVan Koningsbruggen, P. J.; Garcia, Y.; Codjovi, E.; Lapouyade, R.; Kahn, O.; Fournès, L.; Rabardel, L. Non-Classical FeII Spin-Crossover Behaviour in Polymeric Iron(II) Compounds of Formula [Fe(NH2trz)3]X2xH2O (NH2trz=4-Amino-1,2,4-Triazole; X=derivatives of Naphthalene Sulfonate). J. Mater. Chem. 1997, 7 (10), 2069–2075. https://doi.org/10.1039/a702690k.
dc.relation.referencesKrober, J.; Codjovi, E.; Kahn, O.; Groliere, F.; Jay, C. A Spin Transition System with a Thermal Hysteresis at Room Temperature. J. Am. Chem. Soc. 1993, 115 (21), 9810–9811. https://doi.org/10.1021/ja00074a062.
dc.relation.referencesGarcia, Y.; Niel, V.; Muñoz, M. C.; Real, J. A. Spin Crossover in 1D, 2D and 3D Polymeric Fe(II) Networks. In Spin Crossover in Transition Metal Compounds I; Gütlich, P., Goodwin, H. A., Eds.; Topics in Current Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; Vol. 233, pp 229–257. https://doi.org/10.1007/b95408.
dc.relation.referencesUsmani, S.; Mikolasek, M.; Gillet, A.; Sanchez Costa, J.; Rigoulet, M.; Chaudret, B.; Bousseksou, A.; Lassalle-Kaiser, B.; Demont, P.; Molnár, G.; Salmon, L.; Carrey, J.; Tricard, S. Spin Crossover in Fe(Triazole)–Pt Nanoparticle Self-Assembly Structured at the Sub-5 Nm Scale. Nanoscale 2020, 12 (15), 8180–8187. https://doi.org/10.1039/D0NR02154G.
dc.relation.referencesAn, Y.; Yu, J.; Han, Y. Recent Advances in the Chemistry of N -Heterocyclic-Carbene-Functionalized Metal-Nanoparticles and Their Applications. Chin. J. Chem. 2019, 37 (1), 76–87. https://doi.org/10.1002/cjoc.201800450.
dc.relation.referencesThomas, S. R.; Casini, A. N-Heterocyclic Carbenes as “Smart” Gold Nanoparticle Stabilizers: State-of- the Art and Perspectives for Biomedical Applications. J. Organomet. Chem. 2021, 938, 121743. https://doi.org/10.1016/j.jorganchem.2021.121743.
dc.relation.referencesGarcía-Zaragoza, A.; Cerezo-Navarrete, C.; Mollar-Cuni, A.; Oña-Burgos, P.; Mata, J. A.; Corma, A.; Martínez-Prieto, L. M. Tailoring Graphene-Supported Ru Nanoparticles by Functionalization with Pyrene-Tagged N-Heterocyclic Carbenes. Catal. Sci. Technol. 2022, 12 (4), 1257–1270. https://doi.org/10.1039/D1CY02063C.
dc.relation.referencesIkemoto, S.; Muratsugu, S.; Koitaya, T.; Tsuji, Y.; Das, M.; Yoshizawa, K.; Glorius, F.; Tada, M. Coordination-Induced Trigger for Activity: N-Heterocyclic Carbene-Decorated Ceria Catalysts Incorporating Cr and Rh with Activity Induction by Surface Adsorption Site Control. J. Am. Chem. Soc. 2023, 145 (3), 1497–1504. https://doi.org/10.1021/jacs.2c07290.
dc.relation.referencesValero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. NHC-Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope 60 Exchange Reactions of Anilines. Angew. Chem. Int. Ed. 2020, 59 (9), 3517–3522. https://doi.org/10.1002/anie.201914369.
dc.relation.referencesTegeder, P.; Freitag, M.; Chepiga, K. M.; Muratsugu, S.; Möller, N.; Lamping, S.; Tada, M.; Glorius, F.; Ravoo, B. J. N-Heterocyclic Carbene-Modified Au–Pd Alloy Nanoparticles and Their Application as Biomimetic and Heterogeneous Catalysts. Chem. – Eur. J. 2018, 24 (70), 18682–18688. https://doi.org/10.1002/chem.201803274.
dc.relation.referencesTegeder, P.; Marelli, M.; Freitag, M.; Polito, L.; Lamping, S.; Psaro, R.; Glorius, F.; Ravoo, B. J.; Evangelisti, C. Metal Vapor Synthesis of Ultrasmall Pd Nanoparticles Functionalized with N- Heterocyclic Carbenes. Dalton Trans. 2018, 47 (36), 12647–12651. https://doi.org/10.1039/C8DT02535E.
dc.relation.referencesZuluaga-Villamil, A.; Mencia, G.; Asensio, J. M.; Fazzini, P.-F.; Baquero, E. A.; Chaudret, B. N- Heterocyclic Carbene-Based Iridium and Ruthenium/Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C–H Bond Activations. Organometallics 2022, 41 (22), 3313–3319. https://doi.org/10.1021/acs.organomet.2c00288.
dc.relation.referencesSuárez-Riaño, O.; Mencia, G.; Tricard, S.; Esvan, J.; Fazzini, P.-F.; Chaudret, B.; Baquero, E. A. Water- Soluble NHC Pd/Ni Bimetallic Nanoparticles for H/D Exchange in Aromatic Amino-Acids. Chem. Commun. 2023, 59 (8), 1062–1065. https://doi.org/10.1039/D2CC06019A.
dc.relation.referencesAvello, M. G.; Golling, S.; Truong-Phuoc, L.; Vidal, L.; Romero, T.; Papaefthimiou, V.; Gruber, N.; Chetcuti, M. J.; Leroux, F. R.; Donnard, M.; Ritleng, V.; Pham-Huu, C.; Michon, C. (NHC-Olefin)- Nickel(0) Nanoparticles as Catalysts for the ( Z )-Selective Semi-Hydrogenation of Alkynes and Ynamides. Chem. Commun. 2023, 59 (11), 1537–1540. https://doi.org/10.1039/D2CC05302K.
dc.relation.referencesTorres-Cavanillas, R.; Sanchis-Gual, R.; Dugay, J.; Coronado-Puchau, M.; Giménez-Marqués, M.; Coronado, E. Design of Bistable Gold@Spin-Crossover Core–Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching. Adv. Mater. 2019, 31 (27). https://doi.org/10.1002/adma.201900039.
dc.relation.referencesPhillips, J. P.; Yazdani, S.; Highland, W.; Cheng, R. A High Sensitivity Custom-Built Vibrating Sample Magnetometer. Magnetochemistry 2022, 8 (8), 84. https://doi.org/10.3390/magnetochemistry8080084.
dc.relation.referencesFoner, S. Versatile and Sensitive Vibrating-Sample Magnetometer. Rev. Sci. Instrum. 1959, 30 (7), 548–557. https://doi.org/10.1063/1.1716679.
dc.relation.referencesSmith, D. O. Development of a Vibrating-Coil Magnetometer. Rev. Sci. Instrum. 1956, 27 (5), 261– 268. https://doi.org/10.1063/1.1715538.
dc.relation.referencesBragg, E. E.; Seehra, M. S. Analysis of Induced EMF in Vibrating-Sample Magnetometers. J. Phys. [E] 1976, 9 (3), 216–223. https://doi.org/10.1088/0022-3735/9/3/020.
dc.relation.referencesSankhi, B. R.; Turgut, E. A Low-Cost Vibrating Sample Magnetometry Based on Audio Components. J. Magn. Magn. Mater. 2020, 502, 166560. https://doi.org/10.1016/j.jmmm.2020.166560.
dc.relation.referencesBurgei, W.; Pechan, M. J.; Jaeger, H. A Simple Vibrating Sample Magnetometer for Use in a Materials Physics Course. Am. J. Phys. 2003, 71 (8), 825–828. https://doi.org/10.1119/1.1572149.
dc.relation.referencesNizhankovskii, V. I.; Lugansky, L. B. Vibrating Sample Magnetometer with a Step Motor. Meas. Sci. Technol. 2007, 18 (5), 1533–1537. https://doi.org/10.1088/0957-0233/18/5/044.
dc.relation.referencesBumbrah, G. S.; Sharma, R. M. Raman Spectroscopy – Basic Principle, Instrumentation and Selected Applications for the Characterization of Drugs of Abuse. Egypt. J. Forensic Sci. 2016, 6 (3), 209–215. https://doi.org/10.1016/j.ejfs.2015.06.001.
dc.relation.referencesJayasooriya, U. A.; Jenkins, R. D. Introduction to Raman Spectroscopy. In An Introduction to Laser Spectroscopy; Andrews, D. L., Demidov, A. A., Eds.; Springer US: Boston, MA, 2002; pp 77–104. https://doi.org/10.1007/978-1-4615-0727-7_3.
dc.relation.referencesCialla-May, D.; Schmitt, M.; Popp, J. Theoretical Principles of Raman Spectroscopy. Phys. Sci. Rev. 2019, 4 (6). https://doi.org/10.1515/psr-2017-0040.
dc.relation.referencesTampieri, A.; Szabó, M.; Medina, F.; Gulyás, H. A Brief Introduction to the Basics of NMR Spectroscopy and Selected Examples of Its Applications to Materials Characterization. Phys. Sci. Rev. 2021, 6 (1), 20190086. https://doi.org/10.1515/psr-2019-0086.
dc.relation.referencesSanders, J. K. M.; Mersh, J. D. Nuclear Magnetic Double Resonance; the Use of Difference Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 1982, 15 (4), 353–400. https://doi.org/10.1016/0079-6565(82)80011-3.
dc.relation.referencesElyashberg, M. Identification and Structure Elucidation by NMR Spectroscopy. TrAC Trends Anal. Chem. 2015, 69, 88–97. https://doi.org/10.1016/j.trac.2015.02.014.
dc.relation.referencesBrand, T.; Cabrita, E. J.; Berger, S. Intermolecular Interaction as Investigated by NOE and Diffusion Studies. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46 (4), 159–196. https://doi.org/10.1016/j.pnmrs.2005.04.003.
dc.relation.referencesSedaghat Doost, A.; Akbari, M.; Stevens, C. V.; Setiowati, A. D.; Van Der Meeren, P. A Review on Nuclear Overhauser Enhancement (NOE) and Rotating-Frame Overhauser Effect (ROE) NMR Techniques in Food Science: Basic Principles and Applications. Trends Food Sci. Technol. 2019, 86, 16–24. https://doi.org/10.1016/j.tifs.2019.02.001.
dc.relation.referencesJocelyn Paré, J. R.; Yaylayan, V. Chapter 7 Mass Spectrometry: Principles and Applications. In Techniques and Instrumentation in Analytical Chemistry; Elsevier, 1997; Vol. 18, pp 239–266. https://doi.org/10.1016/S0167-9244(97)80016-9.
dc.relation.referencesKaklamanos, G.; Aprea, E.; Theodoridis, G. Mass Spectrometry: Principles and Instrumentation. In Chemical Analysis of Food; Elsevier, 2020; pp 525–552. https://doi.org/10.1016/B978-0-12-813266- 1.00011-5.
dc.relation.referencesTransmission Electron Microscopy: Physics of Image Formation; Springer Series in Optical Sciences; Springer New York: New York, NY, 2008; Vol. 36. https://doi.org/10.1007/978-0-387-40093-8.
dc.relation.referencesStachowiak, G. W.; Batchelor, A. W.; Stachowiak, G. B. Surface Micrography and Analysis. In Tribology Series; Elsevier, 2004; Vol. 44, pp 165–220. https://doi.org/10.1016/S0167-8922(04)80024-5.
dc.relation.referencesHeuer, A. H. Application of Transmission Electron Microscopy to Engineering Practice in Ceramics: Introduction, Fundamentals, and Application to Precipitation Phenomena. J. Am. Ceram. Soc. 1979, 62 (5–6), 226–235. https://doi.org/10.1111/j.1151-2916.1979.tb09476.x.
dc.relation.referencesMourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10 (27), 12871–12934. https://doi.org/10.1039/C8NR02278J.
dc.relation.referencesVernon-Parry, K. D. Scanning Electron Microscopy: An Introduction. III-Vs Rev. 2000, 13 (4), 40–44. https://doi.org/10.1016/S0961-1290(00)80006-X.
dc.relation.referencesZhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Fundamentals of Scanning Electron Microscopy (SEM). In Scanning Microscopy for Nanotechnology; Zhou, W., Wang, Z. L., Eds.; Springer New York: New York, NY, 2006; pp 1–40. https://doi.org/10.1007/978-0-387-39620-0_1.
dc.relation.referencesZhang, K.; Lanza, M.; Shen, Z.; Fu, Q.; Hou, S.; Porti, M.; Nafría, M. Analysis of Factors in the Nanoscale Physical and Electrical Characterization of High-K Materials by Conductive Atomic Force Microscope. Integr. Ferroelectr. 2014, 153 (1), 1–8. https://doi.org/10.1080/10584587.2014.902280.
dc.relation.referencesLiu, S.; Wang, Y. Application of AFM in Microbiology: A Review. Scanning 2010, 32 (2), 61–73. https://doi.org/10.1002/sca.20173.
dc.relation.referencesSi, H.; Zhang, S.; Ma, S.; Xiong, Z.; Kausar, A.; Liao, Q.; Zhang, Z.; Sattar, A.; Kang, Z.; Zhang, Y. Emerging Conductive Atomic Force Microscopy for Metal Halide Perovskite Materials and Solar Cells. Adv. Energy Mater. 2020, 10 (10), 1903922. https://doi.org/10.1002/aenm.201903922.
dc.relation.referencesEnríquez-Cabrera, A.; Ridier, K.; Salmon, L.; Routaboul, L.; Bousseksou, A. Complete and Versatile Post-Synthetic Modification on Iron-Triazole Spin Crossover Complexes: A Relevant Material Elaboration Method. Eur. J. Inorg. Chem. 2021, 2021 (21), 2000–2016. https://doi.org/10.1002/ejic.202100090.
dc.relation.referencesBerezin, M.; Achilefu, S. Novel Synthon for Incorporating 1,3-Dimethyl-Imidazolium Group into Molecular Architecture. Tetrahedron Lett. 2007, 48 (7), 1195–1199. https://doi.org/10.1016/j.tetlet.2006.12.051.
dc.relation.referencesWajda-Hermanowicz, K.; Pieniążczak, D.; Zatajska, A.; Wróbel, R.; Drabent, K.; Ciunik, Z. A Study on the Condensation Reaction of 4-Amino-3,5-Dimethyl-1,2,4-Triazole with Benzaldehydes: Structure and Spectroscopic Properties of Some New Stable Hemiaminals. Molecules 2015, 20 (9), 17109– 17131. https://doi.org/10.3390/molecules200917109.
dc.relation.referencesTokarev, A.; Salmon, L.; Guari, Y.; Nicolazzi, W.; Molnár, G.; Bousseksou, A. Cooperative Spin Crossover Phenomena in [Fe(NH2trz)3](Tosylate)2 Nanoparticles. Chem. Commun. 2010, 46 (42), 8011. https://doi.org/10.1039/c0cc02606a.
dc.relation.referencesLada, Z. G. The Investigation of Spin-Crossover Systems by Raman Spectroscopy: A Review. Magnetochemistry 2022, 8 (9), 108. https://doi.org/10.3390/magnetochemistry8090108.
dc.relation.referencesTobon, Y. A.; Kabalan, L.; Bonhommeau, S.; Daro, N.; Grosjean, A.; Guionneau, P.; Matar, S.; Létard, J.- F.; Guillaume, F. Spin Crossover Complexes [Fe(NH2trz)3](X)2·nH2O Investigated by Means of Polarized Raman Scattering and DFT Calculations. Phys. Chem. Chem. Phys. 2013, 15 (41), 18128. https://doi.org/10.1039/c3cp52505h.
dc.relation.referencesCruz, C. de la; Sheppard, N. A Review of νCO Bond-Stretching Wavenumbers for CO Ligands in Metal Coordination Compounds or Clusters with Emphasis on the Less Common Types of Metal/CO Bonding Patterns, and of the Relationship between νCO and the Internuclear Distance, r(CO). J. Mol. Struct. 1990, 224, 141–161. https://doi.org/10.1016/0022-2860(90)87013-N.
dc.relation.referencesBaldwin, J. E.; Pinschmidt, R. K. Bicyclo[2.1.0]Pent-2-Ene. 6JHH Spin-Spin Coupling in the Cyclopentadiene Diels-Alder Adduct. J. Am. Chem. Soc. 1970, 92 (17), 5247–5248. https://doi.org/10.1021/ja00720a057.
dc.relation.referencesKallury, R. K. M. R.; Upadhyaya, P. V.; Surendra Nath, T. G.; Srinivasan, V. R. Electron Impact Induced Fragmentation of Some 1,2,4-triazole Derivatives. Org. Mass Spectrom. 1977, 12 (5), 307–312. https://doi.org/10.1002/oms.1210120511.
dc.relation.referencesDeev, S. L.; Khalymbadzha, I. A.; Shestakova, T. S.; Charushin, V. N.; Chupakhin, O. N. 15 N Labeling and Analysis of13 C–15 N and1 H–15 N Couplings in Studies of the Structures and Chemical Transformations of Nitrogen Heterocycles. RSC Adv. 2019, 9 (46), 26856–26879. https://doi.org/10.1039/C9RA04825A.
dc.relation.referencesBesse, P.; Combourieu, B.; Boyse, G.; Sancelme, M.; De Wever, H.; Delort, A.-M. Long-Range1 H15 N Heteronuclear Shift Correlation at Natural Abundance: A Tool To Study Benzothiazole Biodegradation by Two Rhodococcus Strains. Appl. Environ. Microbiol. 2001, 67 (4), 1412–1417. https://doi.org/10.1128/AEM.67.4.1412-1417.2001.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.bneMateriales híbridosspa
dc.subject.bneMateriales nanoestructuradosspa
dc.subject.bneNanostructured materialseng
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.lembNanopartículasspa
dc.subject.lembNanoparticleseng
dc.subject.lembCompuestos de hierrospa
dc.subject.lembIron compoundseng
dc.subject.otherAutoensamblaje (Química)eng
dc.subject.otherSelf-assembly (Chemistry)spa
dc.subject.proposalNanoparticleseng
dc.subject.proposalSelf-assemblyeng
dc.subject.proposalSpin-crossovereng
dc.subject.proposalHybrid nanostructured materialseng
dc.subject.proposalNanopartículasspa
dc.subject.proposalAuto-ensamblajespa
dc.subject.proposalSpin-crossoverspa
dc.subject.proposalMateriales híbridos nanoestructuradosspa
dc.titleN-Heterocyclic Carbenes as Coordinating Linkers for Platinum Nanoparticles and Spin-Crossover Fe(II) Coordination Polymers in Hybrid Nanomaterials with Potential Applications in Neuromorphic Learningeng
dc.title.translatedCarbenos N-heterocíclicos como enlaces coordinadores para nanopartículas de platino y polímeros de coordinación Fe(II) con transición de espín en nanomateriales híbridos con aplicaciones potenciales en el aprendizaje neuromórficospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis_MSc_DG.pdf
Tamaño:
5.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: