Análisis espacial multicriterio para la ubicación de parques eólicos y granjas solares en Colombia

dc.contributor.advisorÁngel Sanint, Enrique
dc.contributor.authorGarcía Orrego, Simón
dc.contributor.financerEnergética 2030
dc.coverage.cityGuajira (Departamento, Colombia)
dc.coverage.cityAtlántico (Departamento, Colombia)
dc.date.accessioned2021-05-10T15:43:38Z
dc.date.available2021-05-10T15:43:38Z
dc.date.issued2021-05-08
dc.description.abstractEn Colombia para el 2030 se espera que el 15% de la energía eléctrica se genere a partir de fuentes renovables no convencionales, pero no se tiene certeza de la forma en que se alcanzará dicha meta y cuáles son las ubicaciones que reúnen las variables idóneas para albergar proyectos de esta naturaleza. Para determinar las zonas que presentan las mejores características para desarrollar parques eólicos y granjas solares fotovoltaicas en Colombia, se implementaron Sistemas de Información Geográfica para entender cómo se distribuyen las condiciones físicas, bióticas, económicas, culturales y políticas que pueden restringir o condicionar la implementación de estos proyectos, posteriormente se calcularon los LCOE asociados con cada ubicación y se valoraron, a través de entrevistas realizadas a un conjunto de expertos, las características ambientales que obligan al desarrollador del proyecto a hacer un mayor gasto en gestión ambiental; logrando así obtener mapas donde se puede visualizar las zonas con potencial clasificadas según su rentabilidad y facilidad para desarrollar un proyecto allí. Los resultados permiten estimar el potencial real instalable en cada una de las tecnologías en todo el territorio colombiano y dar señales para el sistema nacional interconectado de hacia dónde se espera que se den los nuevos desarrollos energéticos del país. El recurso eólico termina ofreciendo unas condiciones ideales principalmente en zonas de los departamentos de La Guajira y Atlántico; el recurso solar, por su parte, es atractivo en la generalidad de los departamentos que hacen parte del SIN, sobresaliendo aquellos pertenecientes a la región Caribe.spa
dc.description.abstractIn Colombia by 2030 it is expected that 15% of the electrical energy will be generated from non-conventional renewable sources, but it is not certain how this goal will be achieved, and which are the locations with true aptitude to host projects of this nature. In order to determine the areas that present the best characteristics to develop wind and photovoltaic solar farms in Colombia, Geographic Information Systems were implemented to understand how the physical, biotic, economic, cultural and political conditions that can restrict or condition the implementation of these projects are distributed, the LCOE associated with each location were subsequently calculated and, through interviews with a group of experts, the environmental characteristics that force the project developer to spend more on environmental management were assessed. Thus, achieving maps where you can view the areas with potential classified according to their profitability and ease of developing a project. The results allow estimating the real installable potential in each of the technologies throughout the Colombian territory and provide signals for the national interconnected system of where the new energy developments in the country are expected to take place. The wind resource ends up offering ideal conditions mainly in parts of La Guajira and Atlántico departments, the solar resource, for its part, is attractive in most of the Departments that are part of the SIN, standing out those belonging to the Caribbean region.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaEnergías Renovablesspa
dc.format.extent142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79490
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.referencesAgencia Nacional de Infraestructura. (n.d.). Visor de mapas. Retrieved September 22, 2020, from https://sig.ani.gov.co/mapas/spa
dc.relation.referencesAguirre, I. J. (2016). Variación del precio de las SE GIS de alta tensión en el mercado chileno. Universidad Torcuato Di Tella.spa
dc.relation.referencesAli, S., Taweekun, J., Techato, K., Waewsak, J., & Gyawali, S. (2019). GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renewable Energy, 132, 1360–1372. https://doi.org/10.1016/j.renene.2018.09.035spa
dc.relation.referencesAMENAZAS INUNDACIÓN - IDEAM. (n.d.). Retrieved July 14, 2020, from http://www.ideam.gov.co/web/agua/amenazas-inundacionspa
dc.relation.referencesAmeur, A., Berrada, A., Loudiyi, K., & Aggour, M. (2020). Forecast modeling and performance assessment of solar PV systems. Journal of Cleaner Production, 267, 122167. https://doi.org/10.1016/j.jclepro.2020.122167spa
dc.relation.referencesÁngel-Sanint, E. (2010). Metodos cuantitativos para la toma de decisiones ambientales (2a ed.). Medellín: Universidad Nacional de Colombia sede Medellín. Retrieved from http://intranet.minas.medellin.unal.edu.co/index.php?option=com_content&view=article&id=1475:metodos-cuantitativos-para-la-toma-de-decisiones-ambientales&catid=120:libros&Itemid=214spa
dc.relation.referencesÁngel-Sanint, E., & Cadena, L. F. (2005). Metodología para la selección de rutas de proyectos lineales transfronterizos incorporando múltiples criterios y decisores en los análisis de restricciones y posibilidades ambientales. Gestión y Ambiente, 8(1), 35–46.spa
dc.relation.referencesÁngel-Sanint, E., Carmona, S. I., & Villegas, L. C. (2010). Gestión ambiental en proyectos de desarollo. Gestion Ambiental en proyectos de desarrollo. (Cuarta).spa
dc.relation.referencesÁngel-Sanint, E., García-Orrego, S., Escobar, S., & Tachet, L. (2020). Determinación de aerogeneradores genéricos, a partir de la tecnología existente, para la estimación del potencial eolico en Colombia. Envigado.spa
dc.relation.referencesÁngel-Sanint, E., & Sanín-Hernández, A. (2010). Determinación de restricciones y posibilidades ambientales para la expansion del transporte de gas natural en Colombia. Gestión y Ambiente, (3), 131–148.spa
dc.relation.referencesANLA. (2018). Resolución 02059. Participación Ciudadana. Retrieved from http://www.anla.gov.co/contenido/contenido.aspx?catID=1300&conID=11788spa
dc.relation.referencesAnwarzai, M. A., & Nagasaka, K. (2017). Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 71(December 2016), 150–160. https://doi.org/10.1016/j.rser.2016.12.048spa
dc.relation.referencesÁreas importantes para la conservación de las aves AICAS. (n.d.). Retrieved July 13, 2020, from http://www.humboldt.org.co/en/servicios-2/bird-conservation-aicasspa
dc.relation.referencesAvalúos Catastrales Integrales en SMMLV | ICDE. (n.d.). Retrieved October 3, 2020, from http://www.icde.org.co/servicios/geocontenidos-web/upra-avaluos-catastrales-integrales-smmlvspa
dc.relation.referencesAydin, N. Y., Kentel, E., & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364–373. https://doi.org/10.1016/j.rser.2009.07.023spa
dc.relation.referencesAzlan, F., Kurnia, J. C., Tan, B. T., & Ismadi, M. Z. (2021). Review on optimisation methods of wind farm array under three classical wind condition problems. Renewable and Sustainable Energy Reviews, 135(August 2020), 110047. https://doi.org/10.1016/j.rser.2020.110047spa
dc.relation.referencesBaban, S. M. ., & Parry, Ti. (2001). Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy, 24(1), 59–71.spa
dc.relation.referencesBaseer, M. A., Rehman, S., Meyer, J. P., & Alam, M. M. (2017). GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy, 141, 1166–1176. https://doi.org/10.1016/j.energy.2017.10.016spa
dc.relation.referencesBergström, H., Alfredsson, H., Arnqvist, J., Carlén, I., Dellwik, E., Fransson, J., … Söderberg, S. (2013). Wind power in forests : wind and effects on loads. Elforsk.spa
dc.relation.referencesBID. (2017). La Red del Futuro: Desarrollo de una red eléctrica limpia y sostenible para América Latina (1st ed.). Retrieved from https://publications.iadb.org/bitstream/handle/11319/8682/La-Red-del-Futuro-Desarrollo-de-una-red-electrica-limpia-y-sostenible-para-America-Latina.PDFspa
dc.relation.referencesBID. (2019). Evolución futura de costos de las energías renovables y almacenamiento en América Latina. https://doi.org/10.18235/0002101spa
dc.relation.referencesBP. (2020). Statistical Review of World Energy (Vol. 69). Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdfspa
dc.relation.referencesBrewer, J., Ames, D. P., Solan, D., Lee, R., & Carlisle, J. (2015). Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability. Renewable Energy, 81, 825–836. https://doi.org/10.1016/j.renene.2015.04.017spa
dc.relation.referencesBusby, R. L. (2012). Wind Power: The Industry Grows Up (1st ed.). Tulsa, Oklahoma: Pen Well Corporation.spa
dc.relation.referencesCarvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36(August), 100531. https://doi.org/10.1016/j.seta.2019.100531spa
dc.relation.referencesCastillo-Ramírez, A., Mejía-Giraldo, D., & Molina-Castro, J. D. (2017). Fiscal incentives impact for RETs investments in Colombia. Energy Sources, Part B: Economics, Planning and Policy, 12(9), 759–764. https://doi.org/10.1080/15567249.2016.1276648spa
dc.relation.referencesCastillo-Ramírez, A, Mejía-Giraldo, D., & Giraldo-Ocampo, J. D. (2015). Geospatial levelized cost of energy in Colombia: GeoLCOE. In 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM) (pp. 298–303). https://doi.org/10.1109/ISGT-LA.2015.7381171spa
dc.relation.referencesCastillo-Ramírez, Alejandro, Mejía-Giraldo, D., & Mun̂oz-Galeano, N. (2017). Large-scale solar PV LCOE comprehensive breakdown methodology. CTyF - Ciencia, Tecnologia y Futuro, 7(1), 117–136. https://doi.org/10.29047/01225383.69spa
dc.relation.referencesCevallos-Sierra, J., & Ramos-Martin, J. (2018). Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews, 81(August 2017), 1154–1165. https://doi.org/10.1016/j.rser.2017.08.015spa
dc.relation.referencesColombia cuenta con 275 especies de aves migratorias, diez están amenazadas de extinción | Ministerio de Ambiente y Desarrollo Sostenible. (n.d.). Retrieved July 13, 2020, from https://www.minambiente.gov.co/index.php/noticias-asuntos-ambientales/1777-colombia-cuenta-con-275-especies-de-aves-migratorias-diez-estan-amenazadas-de-extincionspa
dc.relation.referencesComisión de Regulación de Energía y Gas (CREG). CIRCULAR 036 (2006).spa
dc.relation.referencesCongreso de la República de Colombia. Ley 1185 de 2008 (2008).spa
dc.relation.referencesCongreso de la República de Colombia. Ley 1715 de 2014, Diario Oficial No. 49.150 § (2014). Retrieved from http://www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdfspa
dc.relation.referencesCORPOEMA, & UPME. (2010). Formulación de un plan de desarrollo para las fuentes no convencionals de energía en Colombia - PDFNCE (Vol. 2).spa
dc.relation.referencesDavalos, E. (2016). New answers to an old problem: Social investment and coca crops in Colombia. International Journal of Drug Policy, 31, 121–130. https://doi.org/https://doi.org/10.1016/j.drugpo.2016.02.002spa
dc.relation.referencesDelicado, A., Figueiredo, E., & Silva, L. (2016). Community perceptions of renewable energies in Portugal: Impacts on environment, landscape and local development. Energy Research and Social Science, 13, 84–93. https://doi.org/10.1016/j.erss.2015.12.007spa
dc.relation.referencesDenholm, P., Hand, M., Jackson, M., & Ong, S. (2009). Land Use Requirements of Modern Wind Power Plants in the United States. United States. https://doi.org/10.2172/964608spa
dc.relation.referencesDimcev, V., Najdenkoski, K., Stoilkov, V., & Kokolanski, Z. (2011). Wind Energy Potential Assessment in Republic of Macedonia. Journal of Energy and Power Engineering, 5(4), 324–330. https://doi.org/10.24084/repqj08.666spa
dc.relation.referencesDoorga, J. R. S., Rughooputh, S. D. D. V., & Boojhawon, R. (2019). Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renewable Energy, 133, 1201–1219. https://doi.org/10.1016/j.renene.2018.08.105spa
dc.relation.referencesECMWF. (n.d.). ERA5-Land | ECMWF. Retrieved March 27, 2020, from https://www.ecmwf.int/en/era5-landspa
dc.relation.referencesEdenhofer, O., Madruga, R. P., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., … von Stechow, C. (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781139151153spa
dc.relation.referencesElsner, P. (2019). Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource. Renewable and Sustainable Energy Reviews, 104(January), 394–407. https://doi.org/10.1016/j.rser.2019.01.034spa
dc.relation.referencesEnergy Information Administration (EIA). (2020). Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020. Us Eia Lcoe.spa
dc.relation.referencesEPA. (2018). RE-Powering America’s Land Initiative: Renewable Energy Screening Factsheet., (May), 1–6. Retrieved from http://www.epa.gov/renewableenergyland/docs/re-powering_financing_fact_sheet.pdfspa
dc.relation.referencesGhose, S., & Franchetti, M. J. (2018). Chapter 11 - Economic Aspects of Food Waste-to-Energy System Deployment. In T. A. Trabold & C. W. B. T.-S. F. W.-T. S. Babbitt (Eds.) (pp. 203–229). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-811157-4.00011-5spa
dc.relation.referencesGiamalaki, M., & Tsoutsos, T. (2019). Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renewable Energy, 141, 64–75. https://doi.org/10.1016/j.renene.2019.03.100spa
dc.relation.referencesGómez, N. (2011). Energización de las ZNI de Colombia a partir de las energias solar y eólica.spa
dc.relation.referencesGonzález-Duque, D., Ortega, S., Hoyos, S., & Álvarez-Villa, Ó. D. (2018). Impacts on Solar Radiation During El Niño Southern Oscillation Activity in Colombia.spa
dc.relation.referencesGranjas solares - Celsia. (n.d.). Retrieved November 4, 2020, from https://www.celsia.com/es/granjas-solares/spa
dc.relation.referencesHaghighat Mamaghani, A., Avella Escandon, S. A., Najafi, B., Shirazi, A., & Rinaldi, F. (2016). Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.086spa
dc.relation.referencesHalland, H., Lokanc, M., Nair, A., & Kannan, S. P. (2016). El sector de las industrias extractivas (Primera Ed). Banco Mundial.spa
dc.relation.referencesHau, E., & von Renouard, H. (2006). Rotor Aerodynamics. Wind Turbines, 91–160. https://doi.org/10.1007/3-540-29284-5_5spa
dc.relation.referencesHenao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158(2020), 612–627. https://doi.org/10.1016/j.renene.2020.05.055spa
dc.relation.referencesHöfer, T., Sunak, Y., Siddique, H., & Madlener, R. (2016). Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Applied Energy, 163, 222–243. https://doi.org/10.1016/j.apenergy.2015.10.138spa
dc.relation.referencesHuertas, L., & Pinilla, Á. (2007). Predicción de rendimiento de parques eólicos como herramienta de evaluación. Empresas Públicas de Medellín - Universidad de los Andes.spa
dc.relation.referencesIDEAM. (n.d.-a). Atlas Interactivo - Radiación IDEAM. Retrieved July 18, 2019, from http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlspa
dc.relation.referencesIDEAM. (n.d.-b). Atlas Interactivo - Vientos - IDEAM. Retrieved July 18, 2019, from http://atlas.ideam.gov.co/visorAtlasVientos.htmlspa
dc.relation.referencesIEA. (2019). Renewables 2019 – Analysis - IEA. International Energy Agency. Retrieved from https://www.iea.org/reports/renewables-2019spa
dc.relation.referencesInstituto de Hidrología Meteorología y Estudios Ambientales (IDEAM), & Unidad de Planeación Minero Energética (UPME). (2006). Atlas de viento y energía eólica de Colombia.spa
dc.relation.referencesInternational Electrotechnical Commission. Wind energy generation systems - Part 1: Design Requirements, 4 IEC 61400-1 § (2019).spa
dc.relation.referencesINVIAS, & Ministerio de Transporte. Resolución 2412 de 2013.spa
dc.relation.referencesIPSE. Soluciones energéticas para las zonas no interconectadas de Colombia IPSE, Ministerio de Minas y Energía § (2014). Retrieved from https://www.minminas.gov.co/documents/10180/742159/09C-SolucionesEnergeticasZNI-IPSE.pdf/2871b35d-eaf7-4787-b778-ee73b18dbc0espa
dc.relation.referencesIRENA. (2020). Renewable Power Generation Costs in 2019.spa
dc.relation.referencesJain, A., Das, P., Yamujala, S., Bhakar, R., & Mathur, J. (2020). Resource potential and variability assessment of solar and wind energy in India. Energy, 211, 118993. https://doi.org/10.1016/j.energy.2020.118993spa
dc.relation.referencesJangid, J., Bera, A. K., Joseph, M., Singh, V., Singh, T. P., Pradhan, B. K., & Das, S. (2016). Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS. Renewable and Sustainable Energy Reviews, 65, 1–10. https://doi.org/10.1016/j.rser.2016.06.078spa
dc.relation.referencesJanke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy, 35(10), 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014spa
dc.relation.referencesJaramillo Á, P., & Vinasco, L. T. (2005). Análisis multiobjetivo difuso espacial: Una herramienta para localizar proyectos lineales con un enfoque de gestión ambiental. Universidad Nacional de Colombia, 8(1), 19–20. Retrieved from http://www.redalyc.org/pdf/1694/169421171005.pdfspa
dc.relation.referencesJun, D., Tian-Tian, F., Yi-Sheng, Y., & Yu, M. (2014). Macro-site selection of wind/solar hybrid power station based on ELECTRE-II. Renewable and Sustainable Energy Reviews, 35, 194–204. https://doi.org/10.1016/j.rser.2014.04.005spa
dc.relation.referencesJung, C., Schindler, D., & Laible, J. (2018). National and global wind resource assessment under six wind turbine installation scenarios. Energy Conversion and Management, 156(November 2017), 403–415. https://doi.org/10.1016/j.enconman.2017.11.059spa
dc.relation.referencesKabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82(August 2017), 894–900. https://doi.org/10.1016/j.rser.2017.09.094spa
dc.relation.referencesLatinopoulos, D., & Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550–560. https://doi.org/10.1016/j.renene.2015.01.041spa
dc.relation.referencesLazard. (2017). Lazard’S Levelized Cost of Energy Analysis Version 13.0. Lazard.Com, 11(November), 1–21.spa
dc.relation.referencesLiu, J., Xu, F., & Lin, S. (2017). Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: A case study in Northwest China. Journal of Cleaner Production, 148, 386–397. https://doi.org/10.1016/j.jclepro.2017.02.012spa
dc.relation.referencesLoewen, J. (2020). LCOE is an undiscounted metric that inaccurately disfavors renewable energy resources. Electricity Journal, 33(6), 106769. https://doi.org/10.1016/j.tej.2020.106769spa
dc.relation.referencesLópez, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066spa
dc.relation.referencesLopez Lezama, J. M., Villada, F., & Muñoz Galeano, N. (2017). Effects of Incentives for Renewable Energy in Colombia. Ingenieria y Universidad, 21(2). https://doi.org/10.11144/Javeriana.iyu21-2.eirespa
dc.relation.referencesMarín, J. B., & Villada, F. (2020). Regionalized discount rate to evaluate renewable energy projects in Colombia. International Journal of Energy Economics and Policy, 10(2), 332–336. https://doi.org/10.32479/ijeep.8924spa
dc.relation.referencesMattar, C., & Guzmán-Ibarra, M. C. (2017). A techno-economic assessment of offshore wind energy in Chile. Energy, 133, 191–205. https://doi.org/10.1016/j.energy.2017.05.099spa
dc.relation.referencesMAVDT. (2010). Documento CONPES 3680. Lineamientos para la consolidación del Sistema Nacional de Áreas Protegidas. Consejo Nacional de Política Económica y Social Departamento Nacional de Planeación, 46. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesMentis, D., Hermann, S., Howells, M., Welsch, M., & Siyal, S. H. (2015). Assessing the technical wind energy potential in africa a GIS-based approach. Renewable Energy, 83, 110–125. https://doi.org/10.1016/j.renene.2015.03.072spa
dc.relation.referencesMinisterio de Medio Ambiente y Desarrollo Sostenible. (n.d.). Ecosistemas Estratégicos | Ministerio de Ambiente y Desarrollo Sostenible. Retrieved September 16, 2020, from https://www.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/ecosistemas-estrategicosspa
dc.relation.referencesMinisterio del Medio Ambiente. (2002). Programa para el Manejo Sostenible y Restauración de Ecosistemas de la Alta Montaña Colombiana: Páramos (Vol. 1). https://doi.org/10.1111/j.1748-0361.1995.tb00413.xspa
dc.relation.referencesNaciones Unidas. (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible. Una oportunidad para América Latina y el Caribe. Naciones Unidas. https://doi.org/10.1016/0950-4230(91)80011-Ispa
dc.relation.referencesOkorie, M. E., Inambao, F., & Chiguvare, Z. (2017). Evaluation of Wind Shear Coefficients, Surface Roughness and Energy Yields over Inland Locations in Namibia. Procedia Manufacturing, 7, 630–638. https://doi.org/10.1016/j.promfg.2016.12.094spa
dc.relation.referencesOmitaomu, O. A., Blevins, B. R., Jochem, W. C., Mays, G. T., Belles, R., Hadley, S. W., … Rose, A. N. (2012). Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Applied Energy, 96, 292–301. https://doi.org/10.1016/j.apenergy.2011.11.087spa
dc.relation.referencesOrdóñez, G., Osma, G., Vergara, P., & Rey, J. (2014). Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series: Materials Science and Engineering, 59(1). https://doi.org/10.1088/1757-899X/59/1/012004spa
dc.relation.referencesOrtega, S., Osorio, A. F., & Agudelo, P. (2013). Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case study: Isla Fuerte, Colombia. Renewable Energy, 57(January 2009), 240–248. https://doi.org/10.1016/j.renene.2012.11.038spa
dc.relation.referencesOsorio, A. F., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in Colombia. Renewable and Sustainable Energy Reviews, 53, 966–977. https://doi.org/10.1016/j.rser.2015.09.057spa
dc.relation.referencesPabón-Hernández, S. M. (2017). Geospatial assessment of the wind energy for an onshore project in the Caribean region of Colombia. Hamburg University of Applied Sciences.spa
dc.relation.referencesParques Arqueológicos Nacionales - ICANH - Instituto Colombiano de Antropología e Historia. (n.d.). Retrieved November 29, 2019, from https://www.icanh.gov.co/index.php?idcategoria=1203spa
dc.relation.referencesParques Nacionales Naturales de Colombia | Somos la gente de la conservación. (n.d.). Retrieved November 29, 2019, from http://www.parquesnacionales.gov.co/portal/es/spa
dc.relation.referencesPasqualino, J., Cabrera, C., & Chamorro, M. V. (2015). Los impactos ambientales de la implementación de las energías eólica y solar en el Caribe Colombiano. Fundación Universitaria Tecnológica Comfenalco, 13(1), 68–75. https://doi.org/10.15665/rp.v13i1.361spa
dc.relation.referencesPinilla, Á. (1997). Manual De Aplicación De La Energía Eólica. https://doi.org/ISBN 958-96121-5-6spa
dc.relation.referencesPinilla, Á. (2008). El poder del Viento. Revista de Ingeniería, 28, 64–69. Retrieved from http://www.scielo.org.co/pdf/ring/n28/n28a10.pdf%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:El+poder+del+viento+Wind+power#1spa
dc.relation.referencesPinilla, A., Rodriguez, L., & Trujillo, R. (2009). Performance evaluation of Jepirachi Wind Park. Renewable Energy, 34(1), 48–52. https://doi.org/10.1016/j.renene.2008.04.015spa
dc.relation.referencesPrăvălie, R., Patriche, C., & Bandoc, G. (2019). Spatial assessment of solar energy potential at global scale. A geographical approach. Journal of Cleaner Production, 209, 692–721. https://doi.org/10.1016/j.jclepro.2018.10.239spa
dc.relation.referencesPrentiss, M. (2015). Energy Revolution. Energy Revolution. https://doi.org/10.4159/harvard.9780674736139spa
dc.relation.referencesPresidencia de la República de Colombia. (n.d.-a). Con nueva subasta, Gobierno Nacional superó en más del 50% la meta en energías renovables. Retrieved June 5, 2020, from https://id.presidencia.gov.co/Paginas/prensa/2019/Con-nueva-subasta-Gobierno-Nacional-supero-en-mas-del-50-la-meta-en-energias-renovables-191022.aspxspa
dc.relation.referencesPresidencia de la República de Colombia. Decreto 2811 de 1974.spa
dc.relation.referencesPresidencia de la República de Colombia. Decreto 1629 de 2019 (2019).spa
dc.relation.referencesPrimary energy | Statistical Review of World Energy | Energy economics | BP. (n.d.). Retrieved September 16, 2018, from https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/primary-energy.htmlspa
dc.relation.referencesRagheb, M. (2017a). Chapter 25 - Economics of Wind Power Generation. In T. M. B. T.-W. E. E. Letcher (Ed.) (pp. 537–555). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809451-8.00025-4spa
dc.relation.referencesRagheb, M. (2017b). Chapter 7 - History of Harnessing Wind Power. In T. M. B. T.-W. E. E. Letcher (Ed.) (pp. 127–143). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809451-8.00007-2spa
dc.relation.referencesREN21. (2018). Renewable 2018 global status report. Retrieved from www.ren21.netspa
dc.relation.referencesRETIE. Resolución 9 0708 de agosto 30 de 2013, Resolucion 90708 § (2013).spa
dc.relation.referencesRodman, L. C., & Meentemeyer, R. K. (2006). A geographic analysis of wind turbine placement in Northern California. Energy Policy, 34(15), 2137–2149. https://doi.org/10.1016/j.enpol.2005.03.004spa
dc.relation.referencesRodríguez-Urrego, D., & Rodríguez-Urrego, L. (2018). Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews, 92(April), 160–170. https://doi.org/10.1016/j.rser.2018.04.065spa
dc.relation.referencesRosso Cerón, A. M., & Viatcheslav, K. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 103–110.spa
dc.relation.referencesSánchez-Lozano, J. M., García-Cascales, M. S., & Lamata, M. T. (2016). GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Applied Energy, 171, 86–102. https://doi.org/10.1016/j.apenergy.2016.03.030spa
dc.relation.referencesSánchez-Lozano, Juan M., Teruel-Solano, J., Soto-Elvira, P. L., & Socorro García-Cascales, M. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544–556. https://doi.org/10.1016/j.rser.2013.03.019spa
dc.relation.referencessecop-ii | Colombia Compra Eficiente | Agencia Nacional de Contratación Pública. (n.d.). Retrieved October 3, 2020, from https://www.colombiacompra.gov.co/secop-iispa
dc.relation.referencesSIAME. (1999). Guía Ambiental Para Proyectos De Transmisión De Energía Eléctrica. Retrieved from http://www.siame.gov.co/siame/documentos/Guias_Ambientales/Guías Resolución 1023 del 28 de julio de 2005/SECTOR ENERGÉTICO/Guia para proyectos de transmisión eléctrica.pdfspa
dc.relation.referencesSistema Integrado de Monitoreo de Cultivos Ilícitos. (n.d.). Retrieved July 13, 2020, from https://www.unodc.org/colombia/es/simci/simci.htmlspa
dc.relation.referencesSiyal, S. H., Mörtberg, U., Mentis, D., Welsch, M., Babelon, I., & Howells, M. (2015). Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach. Energy, 83(2015), 447–461. https://doi.org/10.1016/j.energy.2015.02.044spa
dc.relation.referencesTegou, L. I., Polatidis, H., & Haralambopoulos, D. A. (2010). Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134–2147. https://doi.org/10.1016/j.jenvman.2010.05.010spa
dc.relation.referencesTeske, S., Nagrath, K., Morris, T., & Dooley, K. (2019). Renewable Energy Resource Assessment. In S. Teske (Ed.), Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C (pp. 161–173). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05843-2_7spa
dc.relation.referencesUPME. (2005). Atlas de radiación solar de Colombia. Atlas de Radiación Solar de Colombia (Vol. 0). Retrieved from http://www.upme.gov.co/Docs/Atlas_Radiacion_Solar/2-Mapas_Radiacion_Solar.pdf%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Mapas+de+Radiaci�n+Solar+Global+Sobre+una+Superficie+Plana#0spa
dc.relation.referencesUPME. (2018a). Boletín Estadístico. UPME. Retrieved from http://biblioteca.ucp.edu.co/OJS/index.php/paginas/article/view/2570%5Cnhttp://unesdoc.unesco.org/images/0011/001163/116345s.pdf%5Cnhttp://www.ucv.ve/fileadmin/user_upload/sadpro/Documentos/docencia_vol3_n2_2002/8_art._5_fernando_Garcia.pdf%5Cnhttp://www.spa
dc.relation.referencesUPME. (2018b). Plan de expansión de referencia generación -transmisión 2017 - 2031. Ministerio de Minas y Energía. Retrieved from http://www1.upme.gov.co/Documents/Energia Electrica/Plan_GT_2017_2031_PREL.pdfspa
dc.relation.referencesUPME. (2019). Informe sobre la realización de la subasta CLPE No. 02-2019, (69), 1–45. Retrieved from https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Documents/Subasta-CLPE-02-2019/Informe_al_minenergia_subasta_CLPE-02-2019.pdf%0Awww.upme.gov.cospa
dc.relation.referencesUPME. (2020). Capacidad Efectiva de Generación (SIN). Retrieved from http://www.upme.gov.co/Reports/Default.aspx?ReportPath=%2FSIEL+UPME%2FGeneración%2FCapacidad+Efectiva+de+Generación+(SIN)spa
dc.relation.referencesUPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesUPME, PlanIn, & SA&S. (2017). Metodología para cuantificar costos y beneficios ambientales del desarrollo de las obras de transmisión. Producto 6.spa
dc.relation.referencesVan Haaren, R., & Fthenakis, V. (2011). GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews, 15(7), 3332–3340. https://doi.org/10.1016/j.rser.2011.04.010spa
dc.relation.referencesVides-Prado, A., Camargo, E. O., Vides-Prado, C., Orozco, I. H., Chenlo, F., Candelo, J. E., & Sarmiento, A. B. (2018). Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renewable and Sustainable Energy Reviews, 82(May 2017), 4245–4255. https://doi.org/10.1016/j.rser.2017.05.101spa
dc.relation.referencesWang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021spa
dc.relation.referencesWatson, J. J. W., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20–31. https://doi.org/10.1016/j.landurbplan.2015.02.001spa
dc.relation.referencesWorld Bank Group. (n.d.). Global Solar Atlas. Retrieved July 30, 2019, from https://globalsolaratlas.info/spa
dc.relation.referencesWorld Bank Group. (2018). Global Wind Atlas. Retrieved June 16, 2019, from https://globalwindatlas.info/spa
dc.relation.referencesXM. (2019). Informe de resultados de la subasta de asignación de obligaciones de energía firme 2022-2023.spa
dc.relation.referencesYang, Q., Huang, T., Wang, S., Li, J., Dai, S., Wright, S., … Peng, H. (2019). A GIS-based high spatial resolution assessment of large-scale PV generation potential in China. Applied Energy, 247(April), 254–269. https://doi.org/10.1016/j.apenergy.2019.04.005spa
dc.relation.referencesYushchenko, A., de Bono, A., Chatenoux, B., Patel, M. K., & Ray, N. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81(April 2016), 2088–2103. https://doi.org/10.1016/j.rser.2017.06.021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.ecmEnergía eolica
dc.subject.lembRecursos energéticos renovables
dc.subject.proposalToma de Decisiones Multicriteriospa
dc.subject.proposalFuentes no convencionales de energía renovablespa
dc.subject.proposalRestricciones ambientalesspa
dc.subject.proposalSistemas de información geográficaspa
dc.subject.proposalMulticriteria decision makingeng
dc.subject.proposalNon-conventional renewable energy sourceseng
dc.subject.proposalEnvironmental restrictionseng
dc.subject.proposalGeographic information systemeng
dc.titleAnálisis espacial multicriterio para la ubicación de parques eólicos y granjas solares en Colombiaspa
dc.title.translatedSpatial multicriteria assessment for wind parks and solar farms location in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEnergética 2030spa
oaire.fundernameEnergética 2030spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036645775_2021.pdf
Tamaño:
10.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: