Análisis espacial multicriterio para la ubicación de parques eólicos y granjas solares en Colombia
dc.contributor.advisor | Ángel Sanint, Enrique | |
dc.contributor.author | García Orrego, Simón | |
dc.contributor.financer | Energética 2030 | |
dc.coverage.city | Guajira (Departamento, Colombia) | |
dc.coverage.city | Atlántico (Departamento, Colombia) | |
dc.date.accessioned | 2021-05-10T15:43:38Z | |
dc.date.available | 2021-05-10T15:43:38Z | |
dc.date.issued | 2021-05-08 | |
dc.description.abstract | En Colombia para el 2030 se espera que el 15% de la energía eléctrica se genere a partir de fuentes renovables no convencionales, pero no se tiene certeza de la forma en que se alcanzará dicha meta y cuáles son las ubicaciones que reúnen las variables idóneas para albergar proyectos de esta naturaleza. Para determinar las zonas que presentan las mejores características para desarrollar parques eólicos y granjas solares fotovoltaicas en Colombia, se implementaron Sistemas de Información Geográfica para entender cómo se distribuyen las condiciones físicas, bióticas, económicas, culturales y políticas que pueden restringir o condicionar la implementación de estos proyectos, posteriormente se calcularon los LCOE asociados con cada ubicación y se valoraron, a través de entrevistas realizadas a un conjunto de expertos, las características ambientales que obligan al desarrollador del proyecto a hacer un mayor gasto en gestión ambiental; logrando así obtener mapas donde se puede visualizar las zonas con potencial clasificadas según su rentabilidad y facilidad para desarrollar un proyecto allí. Los resultados permiten estimar el potencial real instalable en cada una de las tecnologías en todo el territorio colombiano y dar señales para el sistema nacional interconectado de hacia dónde se espera que se den los nuevos desarrollos energéticos del país. El recurso eólico termina ofreciendo unas condiciones ideales principalmente en zonas de los departamentos de La Guajira y Atlántico; el recurso solar, por su parte, es atractivo en la generalidad de los departamentos que hacen parte del SIN, sobresaliendo aquellos pertenecientes a la región Caribe. | spa |
dc.description.abstract | In Colombia by 2030 it is expected that 15% of the electrical energy will be generated from non-conventional renewable sources, but it is not certain how this goal will be achieved, and which are the locations with true aptitude to host projects of this nature. In order to determine the areas that present the best characteristics to develop wind and photovoltaic solar farms in Colombia, Geographic Information Systems were implemented to understand how the physical, biotic, economic, cultural and political conditions that can restrict or condition the implementation of these projects are distributed, the LCOE associated with each location were subsequently calculated and, through interviews with a group of experts, the environmental characteristics that force the project developer to spend more on environmental management were assessed. Thus, achieving maps where you can view the areas with potential classified according to their profitability and ease of developing a project. The results allow estimating the real installable potential in each of the technologies throughout the Colombian territory and provide signals for the national interconnected system of where the new energy developments in the country are expected to take place. The wind resource ends up offering ideal conditions mainly in parts of La Guajira and Atlántico departments, the solar resource, for its part, is attractive in most of the Departments that are part of the SIN, standing out those belonging to the Caribbean region. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Energías Renovables | spa |
dc.format.extent | 142 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79490 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Geociencias y Medo Ambiente | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Medellín - Minas - Maestría en Medio Ambiente y Desarrollo | spa |
dc.relation.references | Agencia Nacional de Infraestructura. (n.d.). Visor de mapas. Retrieved September 22, 2020, from https://sig.ani.gov.co/mapas/ | spa |
dc.relation.references | Aguirre, I. J. (2016). Variación del precio de las SE GIS de alta tensión en el mercado chileno. Universidad Torcuato Di Tella. | spa |
dc.relation.references | Ali, S., Taweekun, J., Techato, K., Waewsak, J., & Gyawali, S. (2019). GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renewable Energy, 132, 1360–1372. https://doi.org/10.1016/j.renene.2018.09.035 | spa |
dc.relation.references | AMENAZAS INUNDACIÓN - IDEAM. (n.d.). Retrieved July 14, 2020, from http://www.ideam.gov.co/web/agua/amenazas-inundacion | spa |
dc.relation.references | Ameur, A., Berrada, A., Loudiyi, K., & Aggour, M. (2020). Forecast modeling and performance assessment of solar PV systems. Journal of Cleaner Production, 267, 122167. https://doi.org/10.1016/j.jclepro.2020.122167 | spa |
dc.relation.references | Ángel-Sanint, E. (2010). Metodos cuantitativos para la toma de decisiones ambientales (2a ed.). Medellín: Universidad Nacional de Colombia sede Medellín. Retrieved from http://intranet.minas.medellin.unal.edu.co/index.php?option=com_content&view=article&id=1475:metodos-cuantitativos-para-la-toma-de-decisiones-ambientales&catid=120:libros&Itemid=214 | spa |
dc.relation.references | Ángel-Sanint, E., & Cadena, L. F. (2005). Metodología para la selección de rutas de proyectos lineales transfronterizos incorporando múltiples criterios y decisores en los análisis de restricciones y posibilidades ambientales. Gestión y Ambiente, 8(1), 35–46. | spa |
dc.relation.references | Ángel-Sanint, E., Carmona, S. I., & Villegas, L. C. (2010). Gestión ambiental en proyectos de desarollo. Gestion Ambiental en proyectos de desarrollo. (Cuarta). | spa |
dc.relation.references | Ángel-Sanint, E., García-Orrego, S., Escobar, S., & Tachet, L. (2020). Determinación de aerogeneradores genéricos, a partir de la tecnología existente, para la estimación del potencial eolico en Colombia. Envigado. | spa |
dc.relation.references | Ángel-Sanint, E., & Sanín-Hernández, A. (2010). Determinación de restricciones y posibilidades ambientales para la expansion del transporte de gas natural en Colombia. Gestión y Ambiente, (3), 131–148. | spa |
dc.relation.references | ANLA. (2018). Resolución 02059. Participación Ciudadana. Retrieved from http://www.anla.gov.co/contenido/contenido.aspx?catID=1300&conID=11788 | spa |
dc.relation.references | Anwarzai, M. A., & Nagasaka, K. (2017). Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 71(December 2016), 150–160. https://doi.org/10.1016/j.rser.2016.12.048 | spa |
dc.relation.references | Áreas importantes para la conservación de las aves AICAS. (n.d.). Retrieved July 13, 2020, from http://www.humboldt.org.co/en/servicios-2/bird-conservation-aicas | spa |
dc.relation.references | Avalúos Catastrales Integrales en SMMLV | ICDE. (n.d.). Retrieved October 3, 2020, from http://www.icde.org.co/servicios/geocontenidos-web/upra-avaluos-catastrales-integrales-smmlv | spa |
dc.relation.references | Aydin, N. Y., Kentel, E., & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364–373. https://doi.org/10.1016/j.rser.2009.07.023 | spa |
dc.relation.references | Azlan, F., Kurnia, J. C., Tan, B. T., & Ismadi, M. Z. (2021). Review on optimisation methods of wind farm array under three classical wind condition problems. Renewable and Sustainable Energy Reviews, 135(August 2020), 110047. https://doi.org/10.1016/j.rser.2020.110047 | spa |
dc.relation.references | Baban, S. M. ., & Parry, Ti. (2001). Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy, 24(1), 59–71. | spa |
dc.relation.references | Baseer, M. A., Rehman, S., Meyer, J. P., & Alam, M. M. (2017). GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy, 141, 1166–1176. https://doi.org/10.1016/j.energy.2017.10.016 | spa |
dc.relation.references | Bergström, H., Alfredsson, H., Arnqvist, J., Carlén, I., Dellwik, E., Fransson, J., … Söderberg, S. (2013). Wind power in forests : wind and effects on loads. Elforsk. | spa |
dc.relation.references | BID. (2017). La Red del Futuro: Desarrollo de una red eléctrica limpia y sostenible para América Latina (1st ed.). Retrieved from https://publications.iadb.org/bitstream/handle/11319/8682/La-Red-del-Futuro-Desarrollo-de-una-red-electrica-limpia-y-sostenible-para-America-Latina.PDF | spa |
dc.relation.references | BID. (2019). Evolución futura de costos de las energías renovables y almacenamiento en América Latina. https://doi.org/10.18235/0002101 | spa |
dc.relation.references | BP. (2020). Statistical Review of World Energy (Vol. 69). Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf | spa |
dc.relation.references | Brewer, J., Ames, D. P., Solan, D., Lee, R., & Carlisle, J. (2015). Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability. Renewable Energy, 81, 825–836. https://doi.org/10.1016/j.renene.2015.04.017 | spa |
dc.relation.references | Busby, R. L. (2012). Wind Power: The Industry Grows Up (1st ed.). Tulsa, Oklahoma: Pen Well Corporation. | spa |
dc.relation.references | Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36(August), 100531. https://doi.org/10.1016/j.seta.2019.100531 | spa |
dc.relation.references | Castillo-Ramírez, A., Mejía-Giraldo, D., & Molina-Castro, J. D. (2017). Fiscal incentives impact for RETs investments in Colombia. Energy Sources, Part B: Economics, Planning and Policy, 12(9), 759–764. https://doi.org/10.1080/15567249.2016.1276648 | spa |
dc.relation.references | Castillo-Ramírez, A, Mejía-Giraldo, D., & Giraldo-Ocampo, J. D. (2015). Geospatial levelized cost of energy in Colombia: GeoLCOE. In 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM) (pp. 298–303). https://doi.org/10.1109/ISGT-LA.2015.7381171 | spa |
dc.relation.references | Castillo-Ramírez, Alejandro, Mejía-Giraldo, D., & Mun̂oz-Galeano, N. (2017). Large-scale solar PV LCOE comprehensive breakdown methodology. CTyF - Ciencia, Tecnologia y Futuro, 7(1), 117–136. https://doi.org/10.29047/01225383.69 | spa |
dc.relation.references | Cevallos-Sierra, J., & Ramos-Martin, J. (2018). Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews, 81(August 2017), 1154–1165. https://doi.org/10.1016/j.rser.2017.08.015 | spa |
dc.relation.references | Colombia cuenta con 275 especies de aves migratorias, diez están amenazadas de extinción | Ministerio de Ambiente y Desarrollo Sostenible. (n.d.). Retrieved July 13, 2020, from https://www.minambiente.gov.co/index.php/noticias-asuntos-ambientales/1777-colombia-cuenta-con-275-especies-de-aves-migratorias-diez-estan-amenazadas-de-extincion | spa |
dc.relation.references | Comisión de Regulación de Energía y Gas (CREG). CIRCULAR 036 (2006). | spa |
dc.relation.references | Congreso de la República de Colombia. Ley 1185 de 2008 (2008). | spa |
dc.relation.references | Congreso de la República de Colombia. Ley 1715 de 2014, Diario Oficial No. 49.150 § (2014). Retrieved from http://www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdf | spa |
dc.relation.references | CORPOEMA, & UPME. (2010). Formulación de un plan de desarrollo para las fuentes no convencionals de energía en Colombia - PDFNCE (Vol. 2). | spa |
dc.relation.references | Davalos, E. (2016). New answers to an old problem: Social investment and coca crops in Colombia. International Journal of Drug Policy, 31, 121–130. https://doi.org/https://doi.org/10.1016/j.drugpo.2016.02.002 | spa |
dc.relation.references | Delicado, A., Figueiredo, E., & Silva, L. (2016). Community perceptions of renewable energies in Portugal: Impacts on environment, landscape and local development. Energy Research and Social Science, 13, 84–93. https://doi.org/10.1016/j.erss.2015.12.007 | spa |
dc.relation.references | Denholm, P., Hand, M., Jackson, M., & Ong, S. (2009). Land Use Requirements of Modern Wind Power Plants in the United States. United States. https://doi.org/10.2172/964608 | spa |
dc.relation.references | Dimcev, V., Najdenkoski, K., Stoilkov, V., & Kokolanski, Z. (2011). Wind Energy Potential Assessment in Republic of Macedonia. Journal of Energy and Power Engineering, 5(4), 324–330. https://doi.org/10.24084/repqj08.666 | spa |
dc.relation.references | Doorga, J. R. S., Rughooputh, S. D. D. V., & Boojhawon, R. (2019). Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renewable Energy, 133, 1201–1219. https://doi.org/10.1016/j.renene.2018.08.105 | spa |
dc.relation.references | ECMWF. (n.d.). ERA5-Land | ECMWF. Retrieved March 27, 2020, from https://www.ecmwf.int/en/era5-land | spa |
dc.relation.references | Edenhofer, O., Madruga, R. P., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., … von Stechow, C. (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781139151153 | spa |
dc.relation.references | Elsner, P. (2019). Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource. Renewable and Sustainable Energy Reviews, 104(January), 394–407. https://doi.org/10.1016/j.rser.2019.01.034 | spa |
dc.relation.references | Energy Information Administration (EIA). (2020). Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020. Us Eia Lcoe. | spa |
dc.relation.references | EPA. (2018). RE-Powering America’s Land Initiative: Renewable Energy Screening Factsheet., (May), 1–6. Retrieved from http://www.epa.gov/renewableenergyland/docs/re-powering_financing_fact_sheet.pdf | spa |
dc.relation.references | Ghose, S., & Franchetti, M. J. (2018). Chapter 11 - Economic Aspects of Food Waste-to-Energy System Deployment. In T. A. Trabold & C. W. B. T.-S. F. W.-T. S. Babbitt (Eds.) (pp. 203–229). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-811157-4.00011-5 | spa |
dc.relation.references | Giamalaki, M., & Tsoutsos, T. (2019). Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renewable Energy, 141, 64–75. https://doi.org/10.1016/j.renene.2019.03.100 | spa |
dc.relation.references | Gómez, N. (2011). Energización de las ZNI de Colombia a partir de las energias solar y eólica. | spa |
dc.relation.references | González-Duque, D., Ortega, S., Hoyos, S., & Álvarez-Villa, Ó. D. (2018). Impacts on Solar Radiation During El Niño Southern Oscillation Activity in Colombia. | spa |
dc.relation.references | Granjas solares - Celsia. (n.d.). Retrieved November 4, 2020, from https://www.celsia.com/es/granjas-solares/ | spa |
dc.relation.references | Haghighat Mamaghani, A., Avella Escandon, S. A., Najafi, B., Shirazi, A., & Rinaldi, F. (2016). Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.086 | spa |
dc.relation.references | Halland, H., Lokanc, M., Nair, A., & Kannan, S. P. (2016). El sector de las industrias extractivas (Primera Ed). Banco Mundial. | spa |
dc.relation.references | Hau, E., & von Renouard, H. (2006). Rotor Aerodynamics. Wind Turbines, 91–160. https://doi.org/10.1007/3-540-29284-5_5 | spa |
dc.relation.references | Henao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158(2020), 612–627. https://doi.org/10.1016/j.renene.2020.05.055 | spa |
dc.relation.references | Höfer, T., Sunak, Y., Siddique, H., & Madlener, R. (2016). Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Applied Energy, 163, 222–243. https://doi.org/10.1016/j.apenergy.2015.10.138 | spa |
dc.relation.references | Huertas, L., & Pinilla, Á. (2007). Predicción de rendimiento de parques eólicos como herramienta de evaluación. Empresas Públicas de Medellín - Universidad de los Andes. | spa |
dc.relation.references | IDEAM. (n.d.-a). Atlas Interactivo - Radiación IDEAM. Retrieved July 18, 2019, from http://atlas.ideam.gov.co/visorAtlasRadiacion.html | spa |
dc.relation.references | IDEAM. (n.d.-b). Atlas Interactivo - Vientos - IDEAM. Retrieved July 18, 2019, from http://atlas.ideam.gov.co/visorAtlasVientos.html | spa |
dc.relation.references | IEA. (2019). Renewables 2019 – Analysis - IEA. International Energy Agency. Retrieved from https://www.iea.org/reports/renewables-2019 | spa |
dc.relation.references | Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM), & Unidad de Planeación Minero Energética (UPME). (2006). Atlas de viento y energía eólica de Colombia. | spa |
dc.relation.references | International Electrotechnical Commission. Wind energy generation systems - Part 1: Design Requirements, 4 IEC 61400-1 § (2019). | spa |
dc.relation.references | INVIAS, & Ministerio de Transporte. Resolución 2412 de 2013. | spa |
dc.relation.references | IPSE. Soluciones energéticas para las zonas no interconectadas de Colombia IPSE, Ministerio de Minas y Energía § (2014). Retrieved from https://www.minminas.gov.co/documents/10180/742159/09C-SolucionesEnergeticasZNI-IPSE.pdf/2871b35d-eaf7-4787-b778-ee73b18dbc0e | spa |
dc.relation.references | IRENA. (2020). Renewable Power Generation Costs in 2019. | spa |
dc.relation.references | Jain, A., Das, P., Yamujala, S., Bhakar, R., & Mathur, J. (2020). Resource potential and variability assessment of solar and wind energy in India. Energy, 211, 118993. https://doi.org/10.1016/j.energy.2020.118993 | spa |
dc.relation.references | Jangid, J., Bera, A. K., Joseph, M., Singh, V., Singh, T. P., Pradhan, B. K., & Das, S. (2016). Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS. Renewable and Sustainable Energy Reviews, 65, 1–10. https://doi.org/10.1016/j.rser.2016.06.078 | spa |
dc.relation.references | Janke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy, 35(10), 2228–2234. https://doi.org/10.1016/j.renene.2010.03.014 | spa |
dc.relation.references | Jaramillo Á, P., & Vinasco, L. T. (2005). Análisis multiobjetivo difuso espacial: Una herramienta para localizar proyectos lineales con un enfoque de gestión ambiental. Universidad Nacional de Colombia, 8(1), 19–20. Retrieved from http://www.redalyc.org/pdf/1694/169421171005.pdf | spa |
dc.relation.references | Jun, D., Tian-Tian, F., Yi-Sheng, Y., & Yu, M. (2014). Macro-site selection of wind/solar hybrid power station based on ELECTRE-II. Renewable and Sustainable Energy Reviews, 35, 194–204. https://doi.org/10.1016/j.rser.2014.04.005 | spa |
dc.relation.references | Jung, C., Schindler, D., & Laible, J. (2018). National and global wind resource assessment under six wind turbine installation scenarios. Energy Conversion and Management, 156(November 2017), 403–415. https://doi.org/10.1016/j.enconman.2017.11.059 | spa |
dc.relation.references | Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82(August 2017), 894–900. https://doi.org/10.1016/j.rser.2017.09.094 | spa |
dc.relation.references | Latinopoulos, D., & Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550–560. https://doi.org/10.1016/j.renene.2015.01.041 | spa |
dc.relation.references | Lazard. (2017). Lazard’S Levelized Cost of Energy Analysis Version 13.0. Lazard.Com, 11(November), 1–21. | spa |
dc.relation.references | Liu, J., Xu, F., & Lin, S. (2017). Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: A case study in Northwest China. Journal of Cleaner Production, 148, 386–397. https://doi.org/10.1016/j.jclepro.2017.02.012 | spa |
dc.relation.references | Loewen, J. (2020). LCOE is an undiscounted metric that inaccurately disfavors renewable energy resources. Electricity Journal, 33(6), 106769. https://doi.org/10.1016/j.tej.2020.106769 | spa |
dc.relation.references | López, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066 | spa |
dc.relation.references | Lopez Lezama, J. M., Villada, F., & Muñoz Galeano, N. (2017). Effects of Incentives for Renewable Energy in Colombia. Ingenieria y Universidad, 21(2). https://doi.org/10.11144/Javeriana.iyu21-2.eire | spa |
dc.relation.references | Marín, J. B., & Villada, F. (2020). Regionalized discount rate to evaluate renewable energy projects in Colombia. International Journal of Energy Economics and Policy, 10(2), 332–336. https://doi.org/10.32479/ijeep.8924 | spa |
dc.relation.references | Mattar, C., & Guzmán-Ibarra, M. C. (2017). A techno-economic assessment of offshore wind energy in Chile. Energy, 133, 191–205. https://doi.org/10.1016/j.energy.2017.05.099 | spa |
dc.relation.references | MAVDT. (2010). Documento CONPES 3680. Lineamientos para la consolidación del Sistema Nacional de Áreas Protegidas. Consejo Nacional de Política Económica y Social Departamento Nacional de Planeación, 46. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Mentis, D., Hermann, S., Howells, M., Welsch, M., & Siyal, S. H. (2015). Assessing the technical wind energy potential in africa a GIS-based approach. Renewable Energy, 83, 110–125. https://doi.org/10.1016/j.renene.2015.03.072 | spa |
dc.relation.references | Ministerio de Medio Ambiente y Desarrollo Sostenible. (n.d.). Ecosistemas Estratégicos | Ministerio de Ambiente y Desarrollo Sostenible. Retrieved September 16, 2020, from https://www.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/ecosistemas-estrategicos | spa |
dc.relation.references | Ministerio del Medio Ambiente. (2002). Programa para el Manejo Sostenible y Restauración de Ecosistemas de la Alta Montaña Colombiana: Páramos (Vol. 1). https://doi.org/10.1111/j.1748-0361.1995.tb00413.x | spa |
dc.relation.references | Naciones Unidas. (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible. Una oportunidad para América Latina y el Caribe. Naciones Unidas. https://doi.org/10.1016/0950-4230(91)80011-I | spa |
dc.relation.references | Okorie, M. E., Inambao, F., & Chiguvare, Z. (2017). Evaluation of Wind Shear Coefficients, Surface Roughness and Energy Yields over Inland Locations in Namibia. Procedia Manufacturing, 7, 630–638. https://doi.org/10.1016/j.promfg.2016.12.094 | spa |
dc.relation.references | Omitaomu, O. A., Blevins, B. R., Jochem, W. C., Mays, G. T., Belles, R., Hadley, S. W., … Rose, A. N. (2012). Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Applied Energy, 96, 292–301. https://doi.org/10.1016/j.apenergy.2011.11.087 | spa |
dc.relation.references | Ordóñez, G., Osma, G., Vergara, P., & Rey, J. (2014). Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series: Materials Science and Engineering, 59(1). https://doi.org/10.1088/1757-899X/59/1/012004 | spa |
dc.relation.references | Ortega, S., Osorio, A. F., & Agudelo, P. (2013). Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case study: Isla Fuerte, Colombia. Renewable Energy, 57(January 2009), 240–248. https://doi.org/10.1016/j.renene.2012.11.038 | spa |
dc.relation.references | Osorio, A. F., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in Colombia. Renewable and Sustainable Energy Reviews, 53, 966–977. https://doi.org/10.1016/j.rser.2015.09.057 | spa |
dc.relation.references | Pabón-Hernández, S. M. (2017). Geospatial assessment of the wind energy for an onshore project in the Caribean region of Colombia. Hamburg University of Applied Sciences. | spa |
dc.relation.references | Parques Arqueológicos Nacionales - ICANH - Instituto Colombiano de Antropología e Historia. (n.d.). Retrieved November 29, 2019, from https://www.icanh.gov.co/index.php?idcategoria=1203 | spa |
dc.relation.references | Parques Nacionales Naturales de Colombia | Somos la gente de la conservación. (n.d.). Retrieved November 29, 2019, from http://www.parquesnacionales.gov.co/portal/es/ | spa |
dc.relation.references | Pasqualino, J., Cabrera, C., & Chamorro, M. V. (2015). Los impactos ambientales de la implementación de las energías eólica y solar en el Caribe Colombiano. Fundación Universitaria Tecnológica Comfenalco, 13(1), 68–75. https://doi.org/10.15665/rp.v13i1.361 | spa |
dc.relation.references | Pinilla, Á. (1997). Manual De Aplicación De La Energía Eólica. https://doi.org/ISBN 958-96121-5-6 | spa |
dc.relation.references | Pinilla, Á. (2008). El poder del Viento. Revista de Ingeniería, 28, 64–69. Retrieved from http://www.scielo.org.co/pdf/ring/n28/n28a10.pdf%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:El+poder+del+viento+Wind+power#1 | spa |
dc.relation.references | Pinilla, A., Rodriguez, L., & Trujillo, R. (2009). Performance evaluation of Jepirachi Wind Park. Renewable Energy, 34(1), 48–52. https://doi.org/10.1016/j.renene.2008.04.015 | spa |
dc.relation.references | Prăvălie, R., Patriche, C., & Bandoc, G. (2019). Spatial assessment of solar energy potential at global scale. A geographical approach. Journal of Cleaner Production, 209, 692–721. https://doi.org/10.1016/j.jclepro.2018.10.239 | spa |
dc.relation.references | Prentiss, M. (2015). Energy Revolution. Energy Revolution. https://doi.org/10.4159/harvard.9780674736139 | spa |
dc.relation.references | Presidencia de la República de Colombia. (n.d.-a). Con nueva subasta, Gobierno Nacional superó en más del 50% la meta en energías renovables. Retrieved June 5, 2020, from https://id.presidencia.gov.co/Paginas/prensa/2019/Con-nueva-subasta-Gobierno-Nacional-supero-en-mas-del-50-la-meta-en-energias-renovables-191022.aspx | spa |
dc.relation.references | Presidencia de la República de Colombia. Decreto 2811 de 1974. | spa |
dc.relation.references | Presidencia de la República de Colombia. Decreto 1629 de 2019 (2019). | spa |
dc.relation.references | Primary energy | Statistical Review of World Energy | Energy economics | BP. (n.d.). Retrieved September 16, 2018, from https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/primary-energy.html | spa |
dc.relation.references | Ragheb, M. (2017a). Chapter 25 - Economics of Wind Power Generation. In T. M. B. T.-W. E. E. Letcher (Ed.) (pp. 537–555). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809451-8.00025-4 | spa |
dc.relation.references | Ragheb, M. (2017b). Chapter 7 - History of Harnessing Wind Power. In T. M. B. T.-W. E. E. Letcher (Ed.) (pp. 127–143). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809451-8.00007-2 | spa |
dc.relation.references | REN21. (2018). Renewable 2018 global status report. Retrieved from www.ren21.net | spa |
dc.relation.references | RETIE. Resolución 9 0708 de agosto 30 de 2013, Resolucion 90708 § (2013). | spa |
dc.relation.references | Rodman, L. C., & Meentemeyer, R. K. (2006). A geographic analysis of wind turbine placement in Northern California. Energy Policy, 34(15), 2137–2149. https://doi.org/10.1016/j.enpol.2005.03.004 | spa |
dc.relation.references | Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2018). Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews, 92(April), 160–170. https://doi.org/10.1016/j.rser.2018.04.065 | spa |
dc.relation.references | Rosso Cerón, A. M., & Viatcheslav, K. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 103–110. | spa |
dc.relation.references | Sánchez-Lozano, J. M., García-Cascales, M. S., & Lamata, M. T. (2016). GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Applied Energy, 171, 86–102. https://doi.org/10.1016/j.apenergy.2016.03.030 | spa |
dc.relation.references | Sánchez-Lozano, Juan M., Teruel-Solano, J., Soto-Elvira, P. L., & Socorro García-Cascales, M. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544–556. https://doi.org/10.1016/j.rser.2013.03.019 | spa |
dc.relation.references | secop-ii | Colombia Compra Eficiente | Agencia Nacional de Contratación Pública. (n.d.). Retrieved October 3, 2020, from https://www.colombiacompra.gov.co/secop-ii | spa |
dc.relation.references | SIAME. (1999). Guía Ambiental Para Proyectos De Transmisión De Energía Eléctrica. Retrieved from http://www.siame.gov.co/siame/documentos/Guias_Ambientales/Guías Resolución 1023 del 28 de julio de 2005/SECTOR ENERGÉTICO/Guia para proyectos de transmisión eléctrica.pdf | spa |
dc.relation.references | Sistema Integrado de Monitoreo de Cultivos Ilícitos. (n.d.). Retrieved July 13, 2020, from https://www.unodc.org/colombia/es/simci/simci.html | spa |
dc.relation.references | Siyal, S. H., Mörtberg, U., Mentis, D., Welsch, M., Babelon, I., & Howells, M. (2015). Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach. Energy, 83(2015), 447–461. https://doi.org/10.1016/j.energy.2015.02.044 | spa |
dc.relation.references | Tegou, L. I., Polatidis, H., & Haralambopoulos, D. A. (2010). Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134–2147. https://doi.org/10.1016/j.jenvman.2010.05.010 | spa |
dc.relation.references | Teske, S., Nagrath, K., Morris, T., & Dooley, K. (2019). Renewable Energy Resource Assessment. In S. Teske (Ed.), Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C (pp. 161–173). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05843-2_7 | spa |
dc.relation.references | UPME. (2005). Atlas de radiación solar de Colombia. Atlas de Radiación Solar de Colombia (Vol. 0). Retrieved from http://www.upme.gov.co/Docs/Atlas_Radiacion_Solar/2-Mapas_Radiacion_Solar.pdf%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Mapas+de+Radiaci�n+Solar+Global+Sobre+una+Superficie+Plana#0 | spa |
dc.relation.references | UPME. (2018a). Boletín Estadístico. UPME. Retrieved from http://biblioteca.ucp.edu.co/OJS/index.php/paginas/article/view/2570%5Cnhttp://unesdoc.unesco.org/images/0011/001163/116345s.pdf%5Cnhttp://www.ucv.ve/fileadmin/user_upload/sadpro/Documentos/docencia_vol3_n2_2002/8_art._5_fernando_Garcia.pdf%5Cnhttp://www. | spa |
dc.relation.references | UPME. (2018b). Plan de expansión de referencia generación -transmisión 2017 - 2031. Ministerio de Minas y Energía. Retrieved from http://www1.upme.gov.co/Documents/Energia Electrica/Plan_GT_2017_2031_PREL.pdf | spa |
dc.relation.references | UPME. (2019). Informe sobre la realización de la subasta CLPE No. 02-2019, (69), 1–45. Retrieved from https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Documents/Subasta-CLPE-02-2019/Informe_al_minenergia_subasta_CLPE-02-2019.pdf%0Awww.upme.gov.co | spa |
dc.relation.references | UPME. (2020). Capacidad Efectiva de Generación (SIN). Retrieved from http://www.upme.gov.co/Reports/Default.aspx?ReportPath=%2FSIEL+UPME%2FGeneración%2FCapacidad+Efectiva+de+Generación+(SIN) | spa |
dc.relation.references | UPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | UPME, PlanIn, & SA&S. (2017). Metodología para cuantificar costos y beneficios ambientales del desarrollo de las obras de transmisión. Producto 6. | spa |
dc.relation.references | Van Haaren, R., & Fthenakis, V. (2011). GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews, 15(7), 3332–3340. https://doi.org/10.1016/j.rser.2011.04.010 | spa |
dc.relation.references | Vides-Prado, A., Camargo, E. O., Vides-Prado, C., Orozco, I. H., Chenlo, F., Candelo, J. E., & Sarmiento, A. B. (2018). Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renewable and Sustainable Energy Reviews, 82(May 2017), 4245–4255. https://doi.org/10.1016/j.rser.2017.05.101 | spa |
dc.relation.references | Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021 | spa |
dc.relation.references | Watson, J. J. W., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20–31. https://doi.org/10.1016/j.landurbplan.2015.02.001 | spa |
dc.relation.references | World Bank Group. (n.d.). Global Solar Atlas. Retrieved July 30, 2019, from https://globalsolaratlas.info/ | spa |
dc.relation.references | World Bank Group. (2018). Global Wind Atlas. Retrieved June 16, 2019, from https://globalwindatlas.info/ | spa |
dc.relation.references | XM. (2019). Informe de resultados de la subasta de asignación de obligaciones de energía firme 2022-2023. | spa |
dc.relation.references | Yang, Q., Huang, T., Wang, S., Li, J., Dai, S., Wright, S., … Peng, H. (2019). A GIS-based high spatial resolution assessment of large-scale PV generation potential in China. Applied Energy, 247(April), 254–269. https://doi.org/10.1016/j.apenergy.2019.04.005 | spa |
dc.relation.references | Yushchenko, A., de Bono, A., Chatenoux, B., Patel, M. K., & Ray, N. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81(April 2016), 2088–2103. https://doi.org/10.1016/j.rser.2017.06.021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.ecm | Energía eolica | |
dc.subject.lemb | Recursos energéticos renovables | |
dc.subject.proposal | Toma de Decisiones Multicriterio | spa |
dc.subject.proposal | Fuentes no convencionales de energía renovable | spa |
dc.subject.proposal | Restricciones ambientales | spa |
dc.subject.proposal | Sistemas de información geográfica | spa |
dc.subject.proposal | Multicriteria decision making | eng |
dc.subject.proposal | Non-conventional renewable energy sources | eng |
dc.subject.proposal | Environmental restrictions | eng |
dc.subject.proposal | Geographic information system | eng |
dc.title | Análisis espacial multicriterio para la ubicación de parques eólicos y granjas solares en Colombia | spa |
dc.title.translated | Spatial multicriteria assessment for wind parks and solar farms location in Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Energética 2030 | spa |
oaire.fundername | Energética 2030 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1036645775_2021.pdf
- Tamaño:
- 10.68 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Medio Ambiente y Desarrollo
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: