Grupo modular parametrizado y representaciones en SL(2,K)
Cargando...
Archivos
Autores
Díaz Avila, Dairo Luis
Director
Tipo de contenido
Document language:
Español
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
En este trabajo se estudia en general las representaciones de grupos finitamente presentados en SL(2; C) concentrándonos en el estudio del subgrupo II de SL(2;Z[t]), generado por la matriz parabólica y la matriz elíptica, donde Z[t] es el anillo de polinomios en la variable t con coeficientes en los enteros. Previo a introducir este grupo, estudiamos aspectos básicos de la teoría de representaciones y algunas familias de subgrupos de SL(2; C), en particular, los grupos de Hecke. El grupo II es una generalización de los grupos de Hecke. Describimos con claridad los elementos de II y estudiamos los subgrupos libres de indice 4. Mostramos una lista de estos subgrupos y probamos que son los ˙únicos, estableciendo cu·les de ellos son normales.