Decomposition of the Laplace-Beltrami operator on riemannian manifolds

Cargando...
Miniatura

Autores

Estévez Joya, Lizeth Alexandra

Document language:

Inglés

Fecha

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

En este trabajo estudiamos las condiciones geométricas requeridas sobre una variedad pseudo-Riemanniana M para garantizar la existencia de soluciones de una ecuación diferencial parcial de segundo orden planteada sobre M. Seguimos de cerca las ideas principales expuestas en [3], donde las consideraciones se llevan a cabo en presencia de una métrica Riemanniana y se usa la descomposición del operador Laplace-Beltrami dada por Helgason en [14]. A pesar de que en el caso indefinido la geometría de la variedad cambia significativamente y hay varios obstáculos a los que prestar atención, las condiciones para los resultados de Helgason se pueden encontrar naturalmente. En vista de esto, consideramos M como una variedad Lorentziana globalmente hiperbólica, pues en este contexto se puede identificar fácilmente una subvariedad unidimensional \Sigma transversal a las órbitas de una acción de grupo dada. Esto significa que M está dotada de una acción polar y así la ecuación se puede reducir sobre \Sigma como en el caso Riemanniano. Entonces las soluciones se obtienen de tal manera que resultan ser constantes a largo de las órbitas de la acción. Por último, proponemos una extensión de nuestras consideraciones a productos warped Lorentzianos. (Texto tomado de la fuente).

Abstract

The goal of this work is to study the geometric conditions required on a pseudo-Riemannian manifold M to guarantee the existence of solutions of a second order partial differential equation posed on M. We closely follow the basic ideas in [3], where the considerations are carried out in the presence of a Riemannian metric and it is used the decomposition of the Laplace-Beltrami operator given by Helgason in [14]. In the indefinite case, the geometry of the manifold changes significantly and there are various pitfalls to watch out for. However, conditions for Helgason's results, in a certain sense, can be naturally set. Hence, we consider M as a globally hyperbolic Lorentzian manifold because a one dimensional submanifold \Sigma transversal to the orbits of a given group action is easily recognisable. This means M is endowed with a polar action and thus the equation can be reduced on \Sigma as in the Riemannian case. Then the solutions are obtained in such a way that these are constant along the orbits of the action. Finally, we propose an extension of our considerations to Lorentzian warped products.

Descripción

Ilustraciones

Palabras clave

Citación